1
|
Simšič T, Planinšek O, Baumgartner A. Taste-masking methods in multiparticulate dosage forms with a focus on poorly soluble drugs. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:177-199. [PMID: 38815202 DOI: 10.2478/acph-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 06/01/2024]
Abstract
In the past, the administration of medicines for children mainly involved changes to adult dosage forms, such as crushing tablets or opening capsules. However, these methods often led to inconsistent dosing, resulting in under- or overdosing. To address this problem and promote adherence, numerous initiatives, and regulatory frameworks have been developed to develop more child-friendly dosage forms. In recent years, multiparticulate dosage forms such as mini-tablets, pellets, and granules have gained popularity. However, a major challenge that persists is effectively masking the bitter taste of drugs in such formulations. This review therefore provides a brief overview of the current state of the art in taste masking techniques, with a particular focus on taste masking by film coating. Methods for evaluating the effectiveness of taste masking are also discussed and commented on. Another important issue that arises frequently in this area is achieving sufficient dissolution of poorly water-soluble drugs. Since the simultaneous combination of sufficient dissolution and taste masking is particularly challenging, the second objective of this review is to provide a critical summary of studies dealing with multiparticulate formulations that are tackling both of these issues.
Collapse
Affiliation(s)
- Tilen Simšič
- 1Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
- 2Alterno Labs d.o.o. 1231 Ljubljana-Črnuče Slovenia
| | - Odon Planinšek
- 1Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ana Baumgartner
- 1Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Kállai-Szabó N, Farkas D, Lengyel M, Basa B, Fleck C, Antal I. Microparticles and multi-unit systems for advanced drug delivery. Eur J Pharm Sci 2024; 194:106704. [PMID: 38228279 DOI: 10.1016/j.ejps.2024.106704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Microparticles have unique benefits in the formulation of multiparticulate and multi-unit type pharmaceutical dosage forms allowing improved drug safety and efficacy with favorable pharmacokinetics and patient centricity. On the other hand, the above advantages are served by high and well reproducible quality attributes of the medicinal product where even flexible design and controlled processability offer success as well as possible longer product life-cycle for the manufacturers. Moreover, the specific demands of patients can be taken into account, including simplified dosing regimens, flexible dosage, drug combinations, palatability, and ease of swallowing. In the more than 70 years since the first modified-release formulation appeared on the market, many new formulations have been marketed and many publications have appeared in the literature. More unique and newer pharmaceutical technologies and excipients have become available for producing tailor-made particles with micrometer dimensions and beyond. All these have contributed to the fact that the sub-units (e.g. minitablets, pellets, microspheres) that make up a multiparticulate system can vary widely in composition and properties. Some units have mucoadhesive properties and others can float to contribute to a suitable release profile that can be designed for the multiparticulate formula as a whole. Nowadays, there are some available formulations on the market, which are able to release the active substance even for several months (3 or 6 months depending on the type of treatment). In this review, the latest developments in technologies that have been used for a long time are presented, as well as innovative solutions such as the applicability of 3D printing to produce subunits of multiparticulate systems. Furthermore, the diversity of multiparticulate systems, different routes of administration are also presented, touching the ones which are capable of carrying the active substance as well as the relevant, commercially available multiparticle-based medical devices. The versatility in size from 1 µm and multiplicity of formulation technologies promise a solid foundation for the future applications of dosage form design and development.
Collapse
Affiliation(s)
- Nikolett Kállai-Szabó
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary
| | - Dóra Farkas
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary
| | - Miléna Lengyel
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary
| | - Bálint Basa
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary
| | - Christian Fleck
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary.
| |
Collapse
|
3
|
Woyna-Orlewicz K, Brniak W, Tatara W, Strzebońska M, Haznar-Garbacz D, Szafraniec-Szczęsny J, Antosik-Rogóż A, Wojteczko K, Strózik M, Kurek M, Jachowicz R, Mendyk A. Investigating the Impact of Co-processed Excipients on the Formulation of Bromhexine Hydrochloride Orally Disintegrating Tablets (ODTs). Pharm Res 2023; 40:2947-2962. [PMID: 37726407 PMCID: PMC10746752 DOI: 10.1007/s11095-023-03605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Orodispersible tablets (orally disintegrating tablets, ODTs) have been used in pharmacotherapy for over 20 years since they overcome the problems with swallowing solid dosage forms. The successful formula manufactured by direct compression shall ensure acceptable mechanical strength and short disintegration time. Our research aimed to develop ODTs containing bromhexine hydrochloride suitable for registration in accordance with EMA requirements. METHODS We examined the performance of five multifunctional co-processed excipients, i.e., F-Melt® C, F-Melt® M, Ludiflash®, Pharmaburst® 500 and Prosolv® ODT G2 as well as self-prepared physical blend of directly compressible excipients. We tested powder flow, true density, compaction characteristics and tableting speed sensitivity. RESULTS The manufacturability studies confirmed that all the co-processed excipients are very effective as the ODT formula constituents. We noticed superior properties of both F-Melt's®, expressed by good mechanical strength of tablets and short disintegration time. Ludiflash® showed excellent performance due to low works of plastic deformation, elastic recovery and ejection. However, the tablets released less than 30% of the drug. Also, the self-prepared blend of excipients was found sufficient for ODT application and successfully transferred to production scale. Outcome of the scale-up trial revealed that the tablets complied with compendial requirements for orodispersible tablets. CONCLUSIONS We proved that the active ingredient cannot be absorbed in oral cavity and its dissolution profiles in media representing upper part of gastrointestinal tract are similar to marketed immediate release drug product. In our opinion, the developed formula is suitable for registration within the well-established use procedure without necessity of bioequivalence testing.
Collapse
Affiliation(s)
- Krzysztof Woyna-Orlewicz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Ul. Medyczna 9, 30-688, Krakow, Poland
- F1Pharma S.A, Ul. Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Witold Brniak
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Ul. Medyczna 9, 30-688, Krakow, Poland.
| | - Wiktor Tatara
- F1Pharma S.A, Ul. Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Magdalena Strzebońska
- F1Pharma S.A, Ul. Bobrzynskiego 14, 30-348, Krakow, Poland
- Department of Environmental Protection, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | | | - Joanna Szafraniec-Szczęsny
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Ul. Medyczna 9, 30-688, Krakow, Poland
- CHDE Polska S.A, Biesiadna 7, 35-304, Rzeszow, Poland
| | - Agata Antosik-Rogóż
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Ul. Medyczna 9, 30-688, Krakow, Poland
- F1Pharma S.A, Ul. Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Kamil Wojteczko
- Department of Ceramics and Refractories, AGH University of Science and Technology, 30-059, Krakow, Poland
| | | | - Mateusz Kurek
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Ul. Medyczna 9, 30-688, Krakow, Poland
| | - Renata Jachowicz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Ul. Medyczna 9, 30-688, Krakow, Poland
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Ul. Medyczna 9, 30-688, Krakow, Poland
| |
Collapse
|
4
|
Cho HJ, Kim JS, Jin SG, Choi HG. Development of Novel Tamsulosin Pellet-Loaded Oral Disintegrating Tablet Bioequivalent to Commercial Capsule in Beagle Dogs Using Microcrystalline Cellulose and Mannitol. Int J Mol Sci 2023; 24:15393. [PMID: 37895073 PMCID: PMC10607519 DOI: 10.3390/ijms242015393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, we developed a tamsulosin pellet-loaded orally disintegrating tablet (ODT) that is bioequivalent to commercially available products and has improved patient compliance using microcrystalline cellulose (MCC) and mannitol. Utilizing the fluid bed technique, the drug, sustained release (SR) layer, and enteric layer were sequentially prepared by coating MCC pellets with the drug, HPMC, Kollicoat, and a mixture of Eudragit L and Eudragit NE, respectively, resulting in the production of tamsulosin pellets. The tamsulosin pellet, composed of the MCC pellet, drug layer, SR layer, and enteric layer at a weight ratio of 20:0.8:4.95:6.41, was selected because its dissolution was equivalent to that of the commercial capsule. Tamsulosin pellet-loaded ODTs were prepared using tamsulosin pellets and various co-processed excipients. The tamsulosin pellet-loaded ODT composed of tamsulosin pellets, mannitol-MCC mixture, silicon dioxide, and magnesium stearate at a weight ratio of 32.16:161.84:4.0:2.0 gave the best protective effect on the coating process and a dissolution profile similar to that of the commercial capsule. Finally, no significant differences in beagle dogs were observed in pharmacokinetic parameters, suggesting that they were bioequivalent. In conclusion, tamsulosin pellet-loaded ODTs could be a potential alternative to commercial capsules, improving patient compliance.
Collapse
Affiliation(s)
- Hyuk Jun Cho
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
- Pharmaceutical Research Centre, Hanmi Pharmaceutical Co., Ltd., Paltan-Myeon, Hwaseong 18536, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
5
|
Tranová T, Loskot J, Navrátil O, Brniak W, Mužíková J. Effect of co-processed excipient type on properties of orodispersible tablets containing captopril, tramadol, and domperidone. Int J Pharm 2023; 636:122838. [PMID: 36921743 DOI: 10.1016/j.ijpharm.2023.122838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
An important feature of orodispersible tablets (ODTs) is the convenient administration of the drugs, in some cases, faster onset of action, stability maintenance, and dose precision. This work focused on the preparation of ODTs containing mannitol-based co-processed excipients Prosolv® ODT G2, Ludiflash® and Parteck® ODT in combination with tramadol, captopril, and domperidone by direct compression. Prosolv® ODT G2 showed high energy of plastic deformation due to the content of microcrystalline cellulose. Parteck® ODT provided compact tablets due to the content of granulated mannitol. All drugs decreased tensile strength, increased friability, prolonged disintegration time, and decreased the porosity of tablets. Tablets containing Prosolv® ODT G2 with captopril, domperidone, and tramadol; and Parteck® ODT with domperidone met the requirements for ODTs production, i.e., friability ≤ 1% and disintegration time ≤ 180 s, fast wetting time, high water absorption ratio, and adequate tensile strength. The disintegration time was tested using both the pharmacopeial method and the BJKSN-13 apparatus. The results indicate the significant difference between these methods, with the disintegration time being longer when tested with the BJKSN-13 instrument.
Collapse
Affiliation(s)
- Thao Tranová
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jan Loskot
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic.
| | - Ondřej Navrátil
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 3,166 28 Prague 6, Czech Republic
| | - Witold Brniak
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Jitka Mužíková
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
6
|
Koch N, Jennotte O, Toussaint C, Lechanteur A, Evrard B. Production challenges of tablets containing lipid excipients: Case study using cannabidiol as drug model. Int J Pharm 2023; 633:122639. [PMID: 36693485 DOI: 10.1016/j.ijpharm.2023.122639] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
The aims of this study were, firstly, to select an optimal lipid solid dispersion of cannabidiol among different lipid excipients (Gelucire® 50/13, 48/16, 44/14 and Labrasol®) and inorganic carriers (colloidal silica, Syloid® XDP and Neusilin® US2) through a screening plan. The enhancement of aqueous solubility of cannabidiol from a free-flowing powder with adequate drug content was obtained by mixing cannabidiol (20%) with Gelucire® 50/13 (40%; Gattefossé, France), both incorporated inside mesopores of mesoporous silica Syloid® XDP (40%; Grace, Germany). Secondly, we have studied the tableting properties of this selected dispersion through a Design of Experiments (DoE) by manufacturing tablets with other excipients with using a compression simulator (Styl'One® Evo, Medelpharm, France). The design of experiments included the percentage of lipid solid dispersion, of glidant, of lubricant and different compression forces. The dissolution efficiency, the drug content, the tensile strength and the ejection force were analyzed. The DoE showed that % of dispersion as well as compression forces were the main influential variables. An exit of lipid materials outside the mesopores of silica due to compression process has been highlighted, reflected by reduced tensile strength. This study showed the possibility of manufacturing tablets with lipid materials even if limitations have been highlighted. Indeed, the dispersion percentage must not exceed 27% and compression forces up to 13 kN are required to produce lipid tablets with optimal properties.
Collapse
Affiliation(s)
- Nathan Koch
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium.
| | - Olivier Jennotte
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Céline Toussaint
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| |
Collapse
|
7
|
Formulation of taste-masked orodispersible famotidine tablets by sequential spray drying and direct compression – Bitterness evaluation. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
8
|
Vishvakarma V, Kaur M, Nagpal M, Arora S. Role of Nanotechnology in Taste Masking: Recent Updates. Curr Drug Res Rev 2023; 15:1-14. [PMID: 35619251 DOI: 10.2174/2589977514666220526091259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
One of the important parameters in the case of dosage form is taste. Most of the drugs available in oral dosage form have an unpleasant taste which leads to patient incompliance and affects the success ratio of products in the market. Geriatric and paediatric patients suffer more with the bitter taste of medicines. According to the studies reported, it is found that 50% of the population have the problem swallowing tablets, especially the pediatric and geriatric population. Masking the taste of bitter drugs has become necessary in the pharmaceutical field and increasing interest of researchers to develop various methods for masking the bitter taste of drugs. Five major tastes, felt by our tongue are salt, sour, sweet, bitter, and umami. When the drug dissolves with saliva, drug molecules interact with taste receptors present on the tongue and give taste sensations. Although, many solid oral dosage forms like pills, and tablets have an additional advantage of masking and encapsulation of bitter taste drugs; however, they might not be effective for children because they may or may not swallow pills or tablets. There are various other methods that mask the bitter taste of drugs such as the addition of sweeteners and flavouring agents, granulation, coating, inclusion complexes, extrusion method, ion-exchange resins, etc, discussed in the first section of the article. The second part of this article consists of various nanotechnology-based drug delivery systems that were fabricated by researchers to mask the bitter taste of drugs. A brief of recent literature on various nanocarriers that were fabricated or developed for taste masking has been discussed in this part. A better understanding of these methods will help researchers and pharmaceutical industries to develop novel drug delivery systems with improved taste masking properties.
Collapse
Affiliation(s)
| | - Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
9
|
Cornilă A, Iurian S, Tomuță I, Porfire A. Orally Dispersible Dosage Forms for Paediatric Use: Current Knowledge and Development of Nanostructure-Based Formulations. Pharmaceutics 2022; 14:pharmaceutics14081621. [PMID: 36015247 PMCID: PMC9414456 DOI: 10.3390/pharmaceutics14081621] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
The paediatric population has always suffered from a lack of medicines tailored to their needs, especially in terms of accurate dosage, stability and acceptability. Orodispersible dosage forms have gone through a resurrection as an alternative to liquid formulations or fractioned solid formulations, although they are still subject to several inconveniences, among which the unpleasant taste and the low oral bioavailability of the API are the most significant hurdles in the way of achieving an optimal drug product. Nanostructures can address these inconveniences through their size and variety, owing to the plethora of materials that can be used in their manufacturing. Through the formation and functionalisation of nanostructures, followed by their inclusion in orodispersible dosage forms, safe, stable and acceptable medicines intended for paediatric use can be developed.
Collapse
|
10
|
Development and Evaluation of Cannabidiol Orodispersible Tablets Using a 23-Factorial Design. Pharmaceutics 2022; 14:pharmaceutics14071467. [PMID: 35890362 PMCID: PMC9324952 DOI: 10.3390/pharmaceutics14071467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 01/23/2023] Open
Abstract
Orodispersible tablets (ODTs) are pharmaceutical formulations used to obtain fast therapeutic effects, usually recommended for geriatric and pediatric patients due to their improved compliance, bioavailability, ease of administration, and good palatability. This study aimed to develop ODTs with cannabidiol (CBD) phytocannabinoid extracted from Cannabis sativa used in the treatment of Lennox–Gastaut and Dravet syndromes. The tablets were obtained using an eccentric tableting machine and 9 mm punches. To develop CBD ODTs, the following parameters were varied: the Poloxamer 407 concentration (0 and 10%), the type of co-processed excipient (Prosolv® ODT G2—PODTG2 and Prosolv® EasyTab sp—PETsp), and the type of superdisintegrant (Croscarmellose—CCS, and Soy Polysaccharides—Emcosoy®—EMCS), resulting in eleven formulations (O1–O11). The following dependent parameters were evaluated: friability, disintegration time, crushing strength, and the CBD dissolution at 1, 3, 5, 10, 15, and 30 min. The dependent parameters were verified according to European Pharmacopoeia (Ph. Eur.) requirements. All the tablets obtained were in accordance with quality requirements in terms of friability (less than 1%), and disintegration time (less than 180 s). The crushing strength was between 19 N and 80 N. Regarding the dissolution test, only four formulations exhibited an amount of CBD released higher than 80% at 30 min. Taking into consideration the results obtained and using the Modde 13.1 software, an optimal formulation was developed (O12), which respected the quality criteria chosen (friability 0.23%, crushing strength of 37 N, a disintegration time of 27 s, and the target amount of CBD released in 30 min of 99.3 ± 6%).
Collapse
|
11
|
Application of Multiple-Source Data Fusion for the Discrimination of Two Botanical Origins of Magnolia Officinalis Cortex Based on E-Nose Measurements, E-Tongue Measurements, and Chemical Analysis. Molecules 2022; 27:molecules27123892. [PMID: 35745013 PMCID: PMC9229508 DOI: 10.3390/molecules27123892] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Magnolia officinalis Rehd. et Wils. and Magnolia officinalis Rehd. et Wils. var. biloba Rehd. et Wils, as the legal botanical origins of Magnoliae Officinalis Cortex, are almost impossible to distinguish according to their appearance traits with respect to medicinal bark. The application of AFLP molecular markers for differentiating the two origins has not yet been successful. In this study, a combination of e-nose measurements, e-tongue measurements, and chemical analyses coupled with multiple-source data fusion was used to differentiate the two origins. Linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) were applied to compare the discrimination results. It was shown that the e-nose system presented a good discriminant ability with a low classification error for both LDA and QDA compared with e-tongue measurements and chemical analyses. In addition, the discriminating capacity of LDA for low-level fusion with original data, similar to a combined system, was superior or equal to that acquired individually with the three approaches. For mid-level fusion, the combination of different principals extracted by PCA and variables obtained on the basis of PLS-VIP exhibited an analogous discrimination ability for LDA (classification error 0.0%) and was significantly superior to QDA (classification error 1.67-3.33%). As a result, the combined e-nose, e-tongue, and chemical analysis approach proved to be a powerful tool for differentiating the two origins of Magnoliae Officinalis Cortex.
Collapse
|
12
|
Tranová T, Macho O, Loskot J, Mužíková J. Study of rheological and tableting properties of lubricated mixtures of co-processed dry binders for orally disintegrating tablets. Eur J Pharm Sci 2022; 168:106035. [PMID: 34634469 DOI: 10.1016/j.ejps.2021.106035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/30/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022]
Abstract
Co-processed dry binders for ODTs are important multifunctional excipients for tablet manufacturing by direct compression. Testing their binary mixtures with lubricants is an important aspect of their use in combination with drugs. The aim of this study was to evaluate the rheological and compression properties of lubricated mixtures of co-processed dry binders Parteck® ODT, Prosolv® ODT G2 and Ludiflash®, and subsequently also the compactability and disintegration time of the tablets made thereof. The lubricants employed were magnesium stearate and sodium stearyl fumarate in the concentrations of 0.5% and 1%. The best flowability was shown by Prosolv® ODT G2 combined with magnesium stearate in the concentration of 0.5%. Lubricated mixtures with Prosolv® ODT G2 showed a lower angle of internal friction as well as lower pre-compression energy values. The values of plastic deformation energy were the highest in the case of Prosolv® ODT G2, which was also reflected in the highest tablet strength. On the contrary, the ejection force values were the lowest for this co-processed dry binder. Magnesium stearate reduced the ejection force more effectively than sodium stearyl fumarate. Prosolv® ODT G2 tablets exhibited the highest tensile strength and shortest disintegration time.
Collapse
Affiliation(s)
- Thao Tranová
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Oliver Macho
- Institute of Process Engineering, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Nám. slobody 17, 812 31 Bratislava 1, Slovakia.
| | - Jan Loskot
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Jitka Mužíková
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
13
|
Wiedey R, Kokott M, Breitkreutz J. Orodispersible tablets for pediatric drug delivery: current challenges and recent advances. Expert Opin Drug Deliv 2021; 18:1873-1890. [PMID: 34822316 DOI: 10.1080/17425247.2021.2011856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Child appropriate dosage forms are indispensable in modern medicine and are a prerequisite for successful pediatric drug therapy. For years, experts have called for a paradigm shift, from liquid dosage forms to novel oral solid dosage forms. This review aims to shed light on recent developments in Orodispersible tablets (ODTs) and mini-tablets (ODMTs). AREAS COVERED This review focuses on the presentation and critical discussion of current challenges as well as recent advances in ODTs for pediatric drug delivery. Highlighted aspects are the evidence for acceptability by children, e.g. in comparison to other dosage forms, and limitations given by tablet size at different ages, as well as advances in special ODT formulations (taste masking, modified release, enabling formulations). EXPERT OPINION It is the authors' belief that OD(M)Ts have significant potential as dosage forms in pediatric therapy that has not yet been fully exploited. The reasons for this are, first, that the number of direct acceptance studies is extremely low and the resulting knowledge is therefore rather anecdotal. Despite the high relevance, there seems to be reluctance both in the therapeutic use and conduction of respective studies in children. However, if one combines the knowledge from the few existing studies, surveys, and from approved products, it becomes apparent that so far there is no evidence on limitations of the use of ODTs in pediatric patients.
Collapse
Affiliation(s)
- Raphael Wiedey
- Institute of Pharmaceutics and Biopharmaceutics, Pharmacy Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marcel Kokott
- Institute of Pharmaceutics and Biopharmaceutics, Pharmacy Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Pharmacy Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
14
|
Hejduk A, Czajka S, Lulek J. Impact of co-processed excipient particles solidity and circularity on critical quality attributes of orodispersible minitablets. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.03.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Nasir S, Hussain A, Abbas N, Bukhari NI, Hussain F, Arshad MS. Improved bioavailability of oxcarbazepine, a BCS class II drug by centrifugal melt spinning: In-vitro and in-vivo implications. Int J Pharm 2021; 604:120775. [PMID: 34098052 DOI: 10.1016/j.ijpharm.2021.120775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/23/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Poor bioavailability is a major obstacle in the development of an effective dosage form of the poorly soluble drugs. The present study aimed to improve the dissolution rate of a poorly soluble drug oxcarbazepine (OXC) exploiting the approach of surface area enhancement by fabricating drug loaded microfibers via centrifugal melt spinning (CMS) technique. For the generation of OXC loaded fibers, a well-known cotton candy process was used and the prepared fibers were characterized using SEM, DSC, XPRD and FTIR. Drug loaded fibers were also pressed into tablets which were also subjected to various in-vitro and in-vivo characterizations. The results have shown the formations of stable, amorphous, micro sized fibers, with average diameter of 6.0 ± 2 μm, loading efficiency > 80% and overall yield > 85%. In-vitro dissolution of OXC from fibers was > 90% within two minutes, which is ~ 5 times faster than that of pure drug. Pharmacokinetic data showed an improvement of ~ 25% and 35% in Cmax and AUC, respectively with two hours earlier Tmax. In-vivo studies in human oral cavity showed quick disintegration (45 ± 5 s) with > 90% OXC dissolved. The study concludes that the OXC incorporated in microfibers showed rapid in-vitro and in-vivo (oral) dissolution which resulted in rapid systemic absorption and improved bioavailability parameters. Furthermore, the addition of PVP boosted the extrusion process and stability of fibers and the sucrose base of these fibers has masked the taste of OXC making such formulation palatable, especially for pediatric patients.
Collapse
Affiliation(s)
- Sidra Nasir
- University College of Pharmacy, University of the Punjab, Lahore 54500, Pakistan
| | - Amjad Hussain
- University College of Pharmacy, University of the Punjab, Lahore 54500, Pakistan; Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Nasir Abbas
- University College of Pharmacy, University of the Punjab, Lahore 54500, Pakistan
| | - Nadeem Irfan Bukhari
- University College of Pharmacy, University of the Punjab, Lahore 54500, Pakistan
| | - Fahad Hussain
- University College of Pharmacy, University of the Punjab, Lahore 54500, Pakistan
| | | |
Collapse
|
16
|
Muoka LC, Ross SA, Mithu MSH, Nandi U, Douroumis D. Comparative taste-masking evaluation of microencapsulated bitter drugs using Smartseal 30D and ReadyMix for paediatric dosage forms. AAPS PharmSciTech 2021; 22:141. [PMID: 33884533 DOI: 10.1208/s12249-021-02002-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
The taste of drug substances plays a key role in the development of paediatric formulations with suitable organoleptic properties. The aim of the study was to evaluate the taste masking effectiveness of Smartseal 30D and ReadyMix on a range of bitter drug substances such as diphenhydramine HCl (DPD), ibuprofen lysine (IBU-LS), and phenylephrine HCl (PPH) for the development of paediatric dosage forms. The drugs were microencapsulated in the polymer carriers at 10-20% loadings using spray-drying processing. Spray drying of drug formulations was optimized in terms of percent yield and encapsulation efficiency followed by physicochemical characterization in order to identify the drugs' physical state in the polymer microparticles. The in vivo taste masking efficiency was evaluated using human test panel and showed noticeable reduction of drug's bitterness at all loadings in comparison to the bulk substances.
Collapse
|
17
|
Banerjee S, Joshi U, Singh A, Saharan VA. Lipids for Taste masking and Taste assessment in pharmaceutical formulations. Chem Phys Lipids 2020; 235:105031. [PMID: 33352198 DOI: 10.1016/j.chemphyslip.2020.105031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Pharmaceutical products often have drawbacks of unacceptable taste and palatability which makes it quite difficult for oral administration to some special populations like pediatrics and geriatrics. To curb this issue different approaches like coating, granulation, extrusion, inclusion complexation, ion-exchange resins, etc for taste masking are employed and among them use of lipids have drawn special attention of researchers. Lipids have a lower melting point which is ideal for incorporating drugs in some of these methods like hot-melt extrusion, melt granulation, spray drying/congealing and emulsification. Lipids play a significant role as a barrier to sustain the release of drugs and biocompatible nature of lipids increases their acceptability by the human body. Further, lipids provide vast opportunities of altering pharmacokinetics of the active ingredients by modulating release profiles. In taste sensors, also known as electronic tongue or e-tongue, lipids are used in preparing taste sensing membranes which are subsequently used in preparing taste sensors. Lipid membrane taste sensors have been widely used in assessing taste and palatability of pharmaceutical and food formulations. This review explores applications of lipids in masking the bitter taste in pharmaceutical formulations and significant role of lipids in evaluation of taste and palatability.
Collapse
Affiliation(s)
- Surojit Banerjee
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Ujjwal Joshi
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Anupama Singh
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Vikas Anand Saharan
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248001, India.
| |
Collapse
|
18
|
Guedes MDV, Marques MS, Guedes PC, Contri RV, Kulkamp Guerreiro IC. The use of electronic tongue and sensory panel on taste evaluation of pediatric medicines: a systematic review. Pharm Dev Technol 2020; 26:119-137. [PMID: 33274664 DOI: 10.1080/10837450.2020.1860088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The palatability of medications is an essential factor for children's adherence to drug treatment. Several methods for drug taste assessment have been developed. The aim of this review is to explore the literature reports of the main methods for the evaluation of medicines taste, named electronic tongue (e-tongue, in vitro) and human sensory panel. A systematic search was performed up to March 2020 and a total of 88 articles were selected. The e-tongue (57.5%) has been more frequently described than the sensory panel (10.3%), while some articles (32.2%) used both techniques. 74.7% of the articles mentioned 'pediatric', 'paediatric' or 'children' in the text, but only 19.5% developed formulations targeting pediatric audience and sensory testing in children is rarely seen. The e-tongue has predominance of use in the taste evaluation of pediatric medicines probably since it is fast, easy to perform and risk free, besides presenting less imprecise data and no fatigue. The human panel is more realistic, despite its intrinsic variability. In this sense, it is proposed the use of e-tongue as a fast way to select the most promising sample(s) and, after that, the sensory panel should be applied in order to confirm the taste masking.
Collapse
Affiliation(s)
| | - Morgana Souza Marques
- Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Pablo Cristini Guedes
- Escola de Administração, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Renata Vidor Contri
- Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | |
Collapse
|
19
|
Wang H, Dumpa N, Bandari S, Durig T, Repka MA. Fabrication of Taste-Masked Donut-Shaped Tablets Via Fused Filament Fabrication 3D Printing Paired with Hot-Melt Extrusion Techniques. AAPS PharmSciTech 2020; 21:243. [PMID: 32856144 DOI: 10.1208/s12249-020-01783-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/10/2020] [Indexed: 01/20/2023] Open
Abstract
The objective of this work was to develop taste-masked donut-shaped tablet formulations utilizing fused filament fabrication three-dimensional printing paired with hot-melt extrusion techniques. Caffeine citrate was used as the model drug for its bitter taste, and a 3-point bend test was performed to assess the printability of filaments. The stiffness constant was calculated to represent the printability by fitting the breaking distances and stress data into Hooke's law. The formulations without Eudragit E PO (F6) and with Eudragit E PO (F7) filaments exhibited the desired hardness with a "k" value of 48.30 ± 3.52 and 45.47 ± 3.51 g/mm3 (n = 10), respectively, and were successfully printed. The donut-shaped tablets were 3D printed with 10, 50, and 100% infill densities. In vitro dissolution studies were performed in simulated salivary fluid (pH 6.8, artificial saliva) to evaluate the taste-masking efficiency of the printed donuts. In the first minute, the concentrations of caffeine citrate observed in the dissolution media from all the printed donuts were less than the bitter threshold of caffeine citrate (0.25 mg/mL). Formulation F7, which contained Eudragit E PO copolymer, demonstrated better taste-masking efficiency than formulation F6. Furthermore, both formulations F6 and F7 demonstrated immediate drug release profiles in gastric medium (10% infill, > 80% release within 1 h). Taste-masked caffeine citrate formulations were successfully developed with donut shapes, which will enhance appeal in pediatric populations and increase compliance and patient acceptance of the dosage form.
Collapse
|
20
|
Chauhan G, Shaik AA, Kulkarni NS, Gupta V. The preparation of lipid-based drug delivery system using melt extrusion. Drug Discov Today 2020; 25:S1359-6446(20)30330-5. [PMID: 32835807 DOI: 10.1016/j.drudis.2020.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/30/2020] [Accepted: 07/28/2020] [Indexed: 01/16/2023]
Abstract
Melt extrusion of lipids is versatile with high applicability in the pharmaceutical industry. The formulations prepared can be easily customized depending on the requirements, and have the potential to open a window on personalized medicine.
Collapse
Affiliation(s)
- Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Abdul A Shaik
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Current address: School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Nishant S Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
21
|
Govender R, Abrahmsén-Alami S, Larsson A, Borde A, Liljeblad A, Folestad S. Independent Tailoring of Dose and Drug Release via a Modularized Product Design Concept for Mass Customization. Pharmaceutics 2020; 12:E771. [PMID: 32823877 PMCID: PMC7465528 DOI: 10.3390/pharmaceutics12080771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Independent individualization of multiple product attributes, such as dose and drug release, is a crucial overarching requirement of pharmaceutical products for individualized therapy as is the unified integration of individualized product design with the processes and production that drive patient access to such therapy. Individualization intrinsically demands a marked increase in the number of product variants to suit smaller, more stratified patient populations. One established design strategy to provide enhanced product variety is product modularization. Despite existing customized and/or modular product design concepts, multifunctional individualization in an integrated manner is still strikingly absent in pharma. Consequently, this study aims to demonstrate multifunctional individualization through a modular product design capable of providing an increased variety of release profiles independent of dose and dosage form size. To further exhibit that increased product variety is attainable even with a low degree of product modularity, the modular design was based upon a fixed target dosage form size of approximately 200 mm3 comprising two modules, approximately 100 mm3 each. Each module contained a melt-extruded and molded formulation of 40% w/w metoprolol succinate in a PEG1500 and Kollidon® VA64 erodible hydrophilic matrix surrounded by polylactic acid and/or polyvinyl acetate as additional release rate-controlling polymers. Drug release testing confirmed the generation of predictable, combined drug release kinetics for dosage forms, independent of dose, based on a product's constituent modules and enhanced product variety through a minimum of six dosage form release profiles from only three module variants. Based on these initial results, the potential of the reconfigurable modular product design concept is discussed for unified integration into a pharmaceutical mass customization/mass personalization context.
Collapse
Affiliation(s)
- Rydvikha Govender
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; (S.A.-A.); (A.B.); (A.L.)
- Pharmaceutical Technology, Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden;
| | - Susanna Abrahmsén-Alami
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; (S.A.-A.); (A.B.); (A.L.)
| | - Anette Larsson
- Pharmaceutical Technology, Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden;
| | - Anders Borde
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; (S.A.-A.); (A.B.); (A.L.)
| | - Alexander Liljeblad
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; (S.A.-A.); (A.B.); (A.L.)
| | - Staffan Folestad
- Innovation Strategies and External Liaison, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden;
| |
Collapse
|
22
|
Wu QX, Wang ZD, Zheng MF, Su T, Wang XH, Guan YX, Chen Y. Development of metformin hydrochloride loaded dissolving tablets with novel carboxymethylcellulose/poly-l-lysine/TPP complex. Int J Biol Macromol 2020; 155:411-420. [PMID: 32224176 DOI: 10.1016/j.ijbiomac.2020.03.191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/06/2020] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
Abstract
Natural polymers like polysaccharides, polypeptides and their derivatives are broadly applied in drug delivery due to excellent biocompatibility and biodegradability. In this study, the dissolving tablets, formed with carboxymethylcellulose/poly-l-lysine/tripolyphosphate (CMC/PLL/TPP) complex, were prepared using metformin hydrochloride (MetHCl) as model drug. Confocal laser scanning microscopy observation manifested that FITC-labeled PLL interacted with CMC and formed a uniform interior microstructure. Scanning electron microscope images showed the drug-loaded tablets had well-formed shapes with smooth surfaces. MetHCl embedded interior the microstructures of the tablets and represented in a crystal form. Thermo-gravimetric analysis and differential scanning calorimetry indicated that the drug-loaded tablets had stable thermal properties with less moisture content (3.52%). Fourier transform infrared spectrometer confirmed that the CMC/PLL/TPP complex was fabricated via the electrostatic interactions between -NH3+, -COO- and -[P2O54-]- groups. The drug-loaded tablets had a high drug loading efficiency of 85.76% and drug encapsulation efficiency of 81.47%, and a shorter wetting time of 2.16 min in SSF (pH 6.8) and lower swelling ratio of 233.34%. The drug loaded in the samples could be released completely within 10 min in simulated saliva fluid (SSF pH 6.8), indicating a rapid drug release and dissolving profile in the environment, which could be developed for dissolving tablets.
Collapse
Affiliation(s)
- Qing-Xi Wu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China; Key Laboratory of Eco-engineering and Biotechnology of Anhui Province, Hefei 230601, Anhui, China.
| | - Zi-Dan Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Meng-Fei Zheng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Ting Su
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Xiao-Hui Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yi-Xin Guan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China; Key Laboratory of Eco-engineering and Biotechnology of Anhui Province, Hefei 230601, Anhui, China
| |
Collapse
|
23
|
H. Aodah A, H. Fayed M, Alalaiwe A, B. Alsulays B, F. Aldawsari M, Khafagy ES. Design, Optimization, and Correlation of In Vitro/In Vivo Disintegration of Novel Fast Orally Disintegrating Tablet of High Dose Metformin Hydrochloride Using Moisture Activated Dry Granulation Process and Quality by Design Approach. Pharmaceutics 2020; 12:pharmaceutics12070598. [PMID: 32605039 PMCID: PMC7408287 DOI: 10.3390/pharmaceutics12070598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/05/2023] Open
Abstract
Compression of cohesive, poorly compactable, and high-dose metformin hydrochloride into the orally disintegrating tablet (ODT) is challenging. The objective of this study was to develop metformin ODT using the moisture activated dry granulation (MADG) process. There are no reports in the literature regarding the development of ODT based on MADG technology. The feasibility of developing metformin ODT was assessed utilizing a 32 full factorial design to elucidate the influence of water amount (X1) and the amount of pregelatinized starch (PGS; X2) as independent variables on key granules and tablets’ characteristics. The prepared granules and tablets were characterized for granule size, bulk density, flow properties, tablets’ weight variation, breaking force, friability, capping tendency, in vitro and in vivo disintegration, and drug release. Regression analysis showed that X1 and X2 had a significant (p ≤ 0.05) impact on key granules and tablets’ properties with a predominant effect of the water amount. Otherwise, the amount of PGS had a pronounced effect on tablet disintegration. Optimized ODT was found to show better mechanical strength, low friability, and short disintegration time in the oral cavity. Finally, this technique is expected to provide better ODT for many kinds of high-dose drugs that can improve the quality of life of patients.
Collapse
Affiliation(s)
- Alhussain H. Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.H.F.); (A.A.); (B.B.A.); (M.F.A.); (E.-S.K.)
- Correspondence: ; Tel.: +96-65-9910-8161
| | - Mohamed H. Fayed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.H.F.); (A.A.); (B.B.A.); (M.F.A.); (E.-S.K.)
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.H.F.); (A.A.); (B.B.A.); (M.F.A.); (E.-S.K.)
| | - Bader B. Alsulays
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.H.F.); (A.A.); (B.B.A.); (M.F.A.); (E.-S.K.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.H.F.); (A.A.); (B.B.A.); (M.F.A.); (E.-S.K.)
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.H.F.); (A.A.); (B.B.A.); (M.F.A.); (E.-S.K.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
24
|
Oliveira LJ, Veiga A, Stofella NCF, Cunha AC, da Graça T. Toledo M, Andreazza IF, Murakami FS. Development and Evaluation of Orodispersible Tablets Containing Ketoprofen. Curr Drug Deliv 2020; 17:348-360. [DOI: 10.2174/1567201817666200317122807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/06/2020] [Accepted: 02/20/2020] [Indexed: 12/30/2022]
Abstract
Background:
Orodispersible Tablets (ODTs) are an option to facilitate the intake of pharmaceutical
solid dosage forms, which dissolve in the mouth within 30 seconds releasing the drug immediately
with no need for water intake or chewing.
Objective:
The main goal of our study is the technological development of lactose-free orodispersible
tablets that contain ketoprofen.
Methods:
We assessed different variables during the pharmaceutical development of ODTs: compression
techniques conducted after a wet granulation process, aiming to optimize the flow properties of the
formulation, and a suspension freeze-drying molded in blisters. We developed three formulations for
each method, each containing one of the superdisintegrants: croscarmellose, crospovidone, or starch
glycolate.
Result:
During the production of ODTs, we performed quality control of the granulation process, since
the production of pellets contributed to the enhancement of the disintegration time and content homogeneity.
Quality control tests for ODTs produced by freeze-drying were also satisfactory, despite significant
changes in the final physical aspect of these products when compared to that of ODTs produced
by compression. In addition, the disintegration times of ODTs produced by freeze-drying were substantially
higher. Furthermore, these tablets displayed greater friability and pose a challenge to the control
of a standard individual weight.
Conclusion:
Among the superdisintegrants, croscarmellose contributed most significantly to reduce the
disintegration time and to dissolve KTP effectively in 20 minutes.
Collapse
Affiliation(s)
- Laiane J. Oliveira
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal do Parana, Curitiba, Brazil
| | - Andressa Veiga
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal do Parana, Curitiba, Brazil
| | - Nayana C. F. Stofella
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal do Parana, Curitiba, Brazil
| | - Aline Carolina Cunha
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal do Parana, Curitiba, Brazil
| | - Maria da Graça T. Toledo
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal do Parana, Curitiba, Brazil
| | - Itamar F. Andreazza
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal do Parana, Curitiba, Brazil
| | - Fabio S. Murakami
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal do Parana, Curitiba, Brazil
| |
Collapse
|
25
|
El-Nabarawi MA, Elshafeey AH, Mahmoud DM, El Sisi AM. Fabrication, optimization, and in vitro/in vivo evaluation of diclofenac epolamine flash tablet. Drug Deliv Transl Res 2020; 10:1314-1326. [PMID: 32072473 DOI: 10.1007/s13346-020-00709-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The objective of this work was to design a diclofenac epolamine (DE) flash tablets (FTs) intended to dissolve in the mouth saliva, thereby improving the DE bioavailability and reducing its first-pass liver metabolism. Design-Expert software was used to build a 31.22 full factorial design (12 runs). FTs were fabricated using lyophilization process. The dissolution response was selected to pick the optimized run. The results indicate that the optimized run (R1) showed the fastest drug dissolution (total dissolution in 12 min). The predicted run (Rp) showed a desirability of about 0.93. Differential scanning calorimetry(DSC) analysis results showed a decrease in the drug melting point of the R1 formulation. Fourier-transform infrared spectroscopy (FTIR) showed the compatibility of the drug with other components of formulation, X-ray powder diffraction (XRPD) analysis showed the evolution of the drug physical state from a crystalline to an amorphous form and scanning electron microscopy(SEM) divugled the disappearance of drug crystals in gelatin strands. The results of the pharmacokinetic study performed in 6 human volunteers evidenced an increase in the maximum DE concentration in plasma and, consequently, an increased bioavailability of the FT formulation as compared with a reference formulation(Fr). Concisely, the developed FTs (R1) showed promising results which could be able to enhance oral bioavailability, reduce the therapeutic dose of the drug, and abate of the complications accompanied with conventional dosage forms. Graphical abstract.
Collapse
Affiliation(s)
- Mohamed Ahmed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed Hassen Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dina Mohamed Mahmoud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Amani M El Sisi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
26
|
Conceição J, Adeoye O, Cabral-Marques H, Concheiro A, Alvarez-Lorenzo C, Sousa Lobo JM. Orodispersible Carbamazepine/Hydroxypropyl-β-Cyclodextrin Tablets Obtained by Direct Compression with Five-in-One Co-processed Excipients. AAPS PharmSciTech 2020; 21:39. [PMID: 31897724 DOI: 10.1208/s12249-019-1579-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/12/2019] [Indexed: 11/30/2022] Open
Abstract
The development of orodispersible tablets (ODTs) for poorly soluble and poorly flowable drugs via direct compression is still a challenge. This work aimed to develop ODTs of poorly soluble drugs by combining cyclodextrins that form inclusion complexes to improve wetting and release properties, and directly compressible co-processed excipients able to promote rapid disintegration and solve the poor flowability typical of inclusion complexes. Carbamazepine (CBZ) and hydroxypropyl-β-cyclodextrin (HPβCD) were used, respectively, as a model of a poorly soluble drug with poor flowability and as a solubilizing agent. Specifically, CBZ-an antiepileptic and anticonvulsant drug-may benefit from the studied formulation approach, since some patients have swallowing difficulties or fear of choking and are non-cooperative. Prosolv® ODT G2 and F-Melt® type C were the studied five-in-one co-processed excipients. The complex was prepared by kneading. Flow properties of all materials and main properties of the tablets were characterized. The obtained results showed that ODTs containing CBZ/HPβCD complex can be prepared by direct compression through the addition of co-processed excipients. The simultaneous use of co-processing and cyclodextrin technologies rendered ODTs with an in vitro disintegration time in accordance with the European Pharmacopoeia requirement and with a fast and complete drug dissolution. In conclusion, the combination of five-in-one co-processed excipients and hydrophilic cyclodextrins may help addressing the ODT formulation of poorly soluble drugs with poor flowability, by direct compression and with desired release properties.
Collapse
|
27
|
Comoglu T, Dilek Ozyilmaz E. Orally disintegrating tablets and orally disintegrating mini tablets – novel dosage forms for pediatric use. Pharm Dev Technol 2019; 24:902-914. [DOI: 10.1080/10837450.2019.1615090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tansel Comoglu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Emine Dilek Ozyilmaz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Turkey
| |
Collapse
|