1
|
Li A, Nicolas J, Mura S. Unlocking the Potential of Hybrid Nanocomposite Hydrogels: Design, Mechanical Properties and Biomedical Performances. ADVANCED FUNCTIONAL MATERIALS 2025; 35. [DOI: 10.1002/adfm.202409670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 01/06/2025]
Abstract
AbstractHybrid nanocomposite hydrogels consist of the homogeneous incorporation of nano‐objects in a hydrogel matrix. The latter, whether made of natural or synthetic materials, possesses a microporous, soft structure that makes it an ideal host for a variety of polymer and lipid‐based nano‐objects as well as metal‐ and silica‐based ones. By carefully choosing the composition and the proportions of the different constituents, hybrid hydrogels can display a wide array of properties, from simple enhancement of mechanical characteristics to specific bioactivity. This review aims to provide an overview of the state of the art in hybrid hydrogels highlighting key aspects that make them a promising choice for a variety of biomedical applications. Strategies for the preparation of hybrid hydrogels are discussed by covering the selection of individual components. The review will also explore the physico‐chemical and rheological characterization of these materials, which is essential for understanding their structure and function, ultimately satisfying specifications for the intended use. Successful examples of biomedical applications will also be presented, and the main challenges to be met will be discussed, with the aim of stimulating the research community to exploit the full potential of these materials.
Collapse
Affiliation(s)
- Anqi Li
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| | - Julien Nicolas
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| | - Simona Mura
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| |
Collapse
|
2
|
Poornima G, Deepa M, Devadharshini M, Gopan G, Mani M, Kannan S. In-situ synthesis and evaluation of anti-bacterial efficacy and angiogenesis of curcumin encapsulated lipogel dermal patch for wound healing applications. BIOMATERIALS ADVANCES 2024; 164:213989. [PMID: 39126901 DOI: 10.1016/j.bioadv.2024.213989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/18/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
The development of synthetic hydrogels as a dermal patch offers unique advantage of providing moist environment around the wound site. The incorporation of curcumin in hydrogel plays a significant role in the healing process of chronic wounds. The present investigation aims to develop nano-formulated curcumin-fused lipogel to impart the dual advantages of sustained drug release and enhanced wound healing ability. The wound healing behaviour of the prepared lipogel has been assessed through series of techniques namely DPPH assay and bacterial inhibitory efficacy through the Kirby Bauer assay against E. coli and S. aureus. Further, the promotion of angiogenesis has been determined through an in-ovo CAM assay. The results obtained from the investigation revealed the enhanced solubility of curcumin in liposome formulation. Moreover, the encapsulation of curcumin in liposomes facilitated prolonged drug release and better antibacterial efficacy against the tested bacterial stains. The developed hydrogel also displayed good adhesion and water retention ability, which is an important prerequisite for better wound healing ability.
Collapse
Affiliation(s)
- Govindaraj Poornima
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605 014, India
| | - Murugan Deepa
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605 014, India
| | - Mohan Devadharshini
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605 014, India
| | - Gopika Gopan
- Department of Microbiology, Pondicherry University, Puducherry-605 014, India
| | - Maheswaran Mani
- Department of Microbiology, Pondicherry University, Puducherry-605 014, India
| | - S Kannan
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605 014, India.
| |
Collapse
|
3
|
Sun S, Wang Q, Zhang B, Cui Y, Si X, Wang G, Wang J, Xu H, Yuan B, Peng C. Vancomycin-Loaded in situ Gelled Hydrogel as an Antibacterial System for Enhancing Repair of Infected Bone Defects. Int J Nanomedicine 2024; 19:10227-10245. [PMID: 39411352 PMCID: PMC11476785 DOI: 10.2147/ijn.s448876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/19/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose During treatment of infected bone defects, control of infection is necessary for effective bone repair, and hence controlled topical application of antibiotics is required in clinical practice. In this study, a biodegradable drug delivery system with in situ gelation at the site of infection was prepared by integrating vancomycin into a polyethylene glycol/oxidized dextran (PEG/ODEX) hydrogel matrix. Methods In this work, PEG/ODEX hydrogels were prepared by Schiff base reaction, and vancomycin was loaded into them to construct a drug delivery system with controllable release and degradability. We first examined the microstructure, degradation time and drug release of the hydrogels. Then we verified the biocompatibility and in vitro ability of the release system. Finally, we used a rat infected bone defect model for further experiments. Results The results showed that this antibacterial system could be completely biodegradable in vivo for 56 days, and its degradation products did not cause specific inflammatory response. The cumulative release of vancomycin from the antibacterial system was 58.3% ± 3.8% at 14 days and 78.4% ± 3.2% at 35 days. The concentration of vancomycin in the surrounding environment was about 1.2 mg/mL, which can effectively remove bacteria. Further studies in vivo showed that the antibacterial system cleared the infection and accelerated repair of infected bone defects in the femur of rats. There was no infection in rats after 8 weeks of treatment. The 3D image analysis of the experimental group showed that the bone volume fraction (BV/TV) was 1.39-fold higher (p < 0.001), the trabecular number (Tb.N) was 1.31-fold higher (p < 0.05), and the trabecular separation (Tb.Sp) was 0.58-fold higher than those of the control group (p < 0.01). Conclusion In summary, this study clearly demonstrates that a clinical strategy based on biological materials can provide an innovative and effective approach to treatment of infected bone defects.
Collapse
Affiliation(s)
- Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Qian Wang
- Department of Otolaryngology, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bin Zhang
- Department of Spinal Surgery, The 964th Hospital of PLA Joint Logistic Support Force, Changchun, People’s Republic of China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xinghui Si
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hang Xu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Baoming Yuan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Chuangang Peng
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
4
|
Ranamalla SR, Tavakoli S, Porfire AS, Tefas LR, Banciu M, Tomuța I, Varghese OP. A quality by design approach to optimise disulfide-linked hyaluronic acid hydrogels. Carbohydr Polym 2024; 339:122251. [PMID: 38823918 DOI: 10.1016/j.carbpol.2024.122251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
In this study, the disulfide-linked hyaluronic acid (HA) hydrogels were optimised for potential application as a scaffold in tissue engineering through the Quality by Design (QbD) approach. For this purpose, HA was first modified by incorporating the cysteine moiety into the HA backbone, which promoted the formation of disulfide cross-linked HA hydrogel at physiological pH. Utilising a Design of Experiments (DoE) methodology, the critical factors to achieve stable biomaterials, i.e. the degree of HA substitution, HA molecular weight, and coupling agent ratio, were explored. To establish a design space, the DoE was performed with 65 kDa, 138 kDa and 200 kDa HA and variable concentrations of coupling agent to optimise conditions to obtain HA hydrogel with improved rheological properties. Thus, HA hydrogel with a 12 % degree of modification, storage modulus of ≈2321 Pa and loss modulus of ≈15 Pa, was achieved with the optimum ratio of coupling agent. Furthermore, biocompatibility assessments in C28/I2 chondrocyte cells demonstrated the non-toxic nature of the hydrogel, underscoring its potential for tissue regeneration. Our findings highlight the efficacy of the QbD approach in designing HA hydrogels with tailored properties for biomedical applications.
Collapse
Affiliation(s)
- Saketh Reddy Ranamalla
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, "Babeș-Bolyai" University, 400015 Cluj-Napoca, Romania; Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hațieganu, 400010 Cluj-Napoca, Romania
| | - Shima Tavakoli
- Macromolecular Chemistry Laboratory, Department of Chemistry-Ångstrom, Uppsala University, Uppsala 751 21, Sweden
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hațieganu, 400010 Cluj-Napoca, Romania
| | - Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hațieganu, 400010 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babeș-Bolyai" University, 400015 Cluj-Napoca, Romania
| | - Ioan Tomuța
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hațieganu, 400010 Cluj-Napoca, Romania.
| | - Oommen P Varghese
- Macromolecular Chemistry Laboratory, Department of Chemistry-Ångstrom, Uppsala University, Uppsala 751 21, Sweden.
| |
Collapse
|
5
|
Zhang P, Wang T, Qian J, Qin H, Liu P, Xiong A, Udduttula A, Wang D, Zeng H, Chen Y. An injectable magnesium-coordinated phosphate chitosan-based hydrogel loaded with vancomycin for antibacterial and osteogenesis in the treatment of osteomyelitis. Regen Biomater 2024; 11:rbae049. [PMID: 38919844 PMCID: PMC11196881 DOI: 10.1093/rb/rbae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024] Open
Abstract
Microbial infections of bones, particularly after joint replacement surgery, are a common occurrence in clinical settings and often lead to osteomyelitis (OM). Unfortunately, current treatment approaches for OM are not satisfactory. To address this issue, this study focuses on the development and evaluation of an injectable magnesium oxide (MgO) nanoparticle (NP)-coordinated phosphocreatine-grafted chitosan hydrogel (CMPMg-VCM) loaded with varying amounts of vancomycin (VCM) for the treatment of OM. The results demonstrate that the loading of VCM does not affect the formation of the injectable hydrogel, and the MgO-incorporated hydrogel exhibits anti-swelling properties. The release of VCM from the hydrogel effectively kills S.aureus bacteria, with CMPMg-VCM (50) showing the highest antibacterial activity even after prolonged immersion in PBS solution for 12 days. Importantly, all the hydrogels are non-toxic to MC3T3-E1 cells and promote osteogenic differentiation through the early secretion of alkaline phosphatase and calcium nodule formation. Furthermore, in vivo experiments using a rat OM model reveal that the CMPMg-VCM hydrogel effectively kills and inhibits bacterial growth, while also protecting the infected bone from osteolysis. These beneficial properties are attributed to the burst release of VCM, which disrupts bacterial biofilm, as well as the release of Mg ions and hydroxyl by the degradation of MgO NPs, which inhibits bacterial growth and prevents osteolysis. Overall, the CMPMg-VCM hydrogel exhibits promising potential for the treatment of microbial bone infections.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Tiehua Wang
- Internal Medicine, Shenzhen New Frontier United Family Hospital, Shenzhen 518031, China
| | - Junyu Qian
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Ao Xiong
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Anjaneyulu Udduttula
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Deli Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yingqi Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
6
|
Chen H, Xue H, Zeng H, Dai M, Tang C, Liu L. 3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: a review. Biomater Res 2023; 27:137. [PMID: 38142273 DOI: 10.1186/s40824-023-00460-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 12/25/2023] Open
Abstract
Hyaluronic acid (HA) is widely distributed in human connective tissue, and its unique biological and physicochemical properties and ability to facilitate biological structure repair make it a promising candidate for three-dimensional (3D) bioprinting in the field of tissue regeneration and biomedical engineering. Moreover, HA is an ideal raw material for bioinks in tissue engineering because of its histocompatibility, non-immunogenicity, biodegradability, anti-inflammatory properties, anti-angiogenic properties, and modifiability. Tissue engineering is a multidisciplinary field focusing on in vitro reconstructions of mammalian tissues, such as cartilage tissue engineering, neural tissue engineering, skin tissue engineering, and other areas that require further clinical applications. In this review, we first describe the modification methods, cross-linking methods, and bioprinting strategies for HA and its derivatives as bioinks and then critically discuss the strengths, shortcomings, and feasibility of each method. Subsequently, we reviewed the practical clinical applications and outcomes of HA bioink in 3D bioprinting. Finally, we describe the challenges and opportunities in the development of HA bioink to provide further research references and insights.
Collapse
Affiliation(s)
- Han Chen
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- Ningxia Medical University, Ningxia, 750004, China
- Xijing Hospital of Air Force Military Medical University, Xi'an, 710032, China
| | - Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- Ningxia Medical University, Ningxia, 750004, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| |
Collapse
|
7
|
Akhlaghi N, Najafpour-Darzi G. Thermosensitive injectable dual drug-loaded chitosan-based hybrid hydrogel for treatment of orthopedic implant infections. Carbohydr Polym 2023; 320:121138. [PMID: 37659783 DOI: 10.1016/j.carbpol.2023.121138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 09/04/2023]
Abstract
A myriad of therapeutic agents and drug delivery systems are available to the surgeons for treating orthopedic implant-associated infections (OIAI), but only very few have demonstrated their effectiveness in preventing bacteria colonization and biofilm formation due to challenges in the local and sustainable therapeutic release. To address this issue, in this work, a thermosensitive injectable hydrogel based on chitosan (CH)-integrated hydroxyapatite nanoparticles (HAP NPs) containing vancomycin (Van) and quercetin (QC)-loaded in F127 micelles (CH-HAP-FQ-Van hydrogel) was fabricated with potential application in the treatment of OIAI. This dual drug delivery system demonstrated a pH-sensitive drug release pattern. In addition, 100 % growth inhibition of Staphylococcus aureus for a duration of 14 days was observed. Apart from the strong antioxidant activities owing to the co-administration of QC even after 432 h, this composite hydrogel revealed 95.88 ± 2.8 % S. aureus biofilm eradication. By consideration of degradation stability (53.52 ± 4.24 %) during 60 days along with smart gelation within 10 min at 37 °C and easy injectability, CH-HAP-FQ-Van hydrogel could be used as a promising ideal local drug delivery system for implant-related infections.
Collapse
Affiliation(s)
- Neda Akhlaghi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol 47148-71167, Iran
| | - Ghasem Najafpour-Darzi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol 47148-71167, Iran.
| |
Collapse
|
8
|
Sekar MP, Suresh S, Zennifer A, Sethuraman S, Sundaramurthi D. Hyaluronic Acid as Bioink and Hydrogel Scaffolds for Tissue Engineering Applications. ACS Biomater Sci Eng 2023. [PMID: 37115515 DOI: 10.1021/acsbiomaterials.3c00299] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Bioprinting is an additive manufacturing technique that focuses on developing living tissue constructs using bioinks. Bioink is crucial in determining the stability of printed patterns, which remains a major challenge in bioprinting. Thus, the choices of bioink composition, modifications, and cross-linking methods are being continuously researched to augment the clinical translation of bioprinted constructs. Hyaluronic acid (HA) is a naturally occurring polysaccharide with the repeating unit of N-acetyl-glucosamine and d-glucuronic acid disaccharides. It is present in the extracellular matrix (ECM) of tissues (skin, cartilage, nerve, muscle, etc.) with a wide range of molecular weights. Due to the nature of its chemical structure, HA could be easily subjected to chemical modifications and cross-linking that would enable better printability and stability. These interesting properties have made HA an ideal choice of bioinks for developing tissue constructs for regenerative medicine applications. In this Review, the physicochemical properties, reaction chemistry involved in various cross-linking strategies, and biomedical applications of HA have been elaborately discussed. Further, the features of HA bioinks, emerging strategies in HA bioink preparations, and their applications in 3D bioprinting have been highlighted. Finally, the current challenges and future perspectives in the clinical translation of HA-based bioinks are outlined.
Collapse
Affiliation(s)
- Muthu Parkkavi Sekar
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Shruthy Suresh
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| |
Collapse
|
9
|
Steadman W, Chapman PR, Schuetz M, Schmutz B, Trampuz A, Tetsworth K. Local Antibiotic Delivery Options in Prosthetic Joint Infection. Antibiotics (Basel) 2023; 12:752. [PMID: 37107114 PMCID: PMC10134995 DOI: 10.3390/antibiotics12040752] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Prosthetic Joint Infection (PJI) causes significant morbidity and mortality for patients globally. Delivery of antibiotics to the site of infection has potential to improve the treatment outcomes and enhance biofilm eradication. These antibiotics can be delivered using an intra-articular catheter or combined with a carrier substance to enhance pharmacokinetic properties. Carrier options include non-resorbable polymethylmethacrylate (PMMA) bone cement and resorbable calcium sulphate, hydroxyapatite, bioactive glass, and hydrogels. PMMA allows for creation of structural spacers used in multi-stage revision procedures, however it requires subsequent removal and antibiotic compatibility and the levels delivered are variable. Calcium sulphate is the most researched resorbable carrier in PJI, but is associated with wound leakage and hypercalcaemia, and clinical evidence for its effectiveness remains at the early stage. Hydrogels provide a versatile combability with antibiotics and adjustable elution profiles, but clinical usage is currently limited. Novel anti-biofilm therapies include bacteriophages which have been used successfully in small case series.
Collapse
Affiliation(s)
- William Steadman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| | - Paul R. Chapman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Herston Infectious Disease Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Infectious Diseases, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Michael Schuetz
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| | - Beat Schmutz
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane 4059, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane 4059, Australia
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Septic Unit Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Kevin Tetsworth
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- School of Medicine, University of Queensland, Brisbane 4029, Australia
| |
Collapse
|
10
|
Anionic polysaccharides for stabilization and sustained release of antimicrobial peptides. Int J Pharm 2023; 636:122798. [PMID: 36889417 DOI: 10.1016/j.ijpharm.2023.122798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Chemical and enzymatic in vivo degradation of antimicrobial peptides represents a major challenge for their therapeutic use to treat bacterial infections. In this work, anionic polysaccharides were investigated for their ability to increase the chemical stability and achieve sustained release of such peptides. The investigated formulations comprised a combination of antimicrobial peptides (vancomycin (VAN) and daptomycin (DAP)) and anionic polysaccharides (xanthan gum (XA), hyaluronic acid (HA), propylene glycol alginate (PGA) and alginic acid (ALG)). VAN dissolved in buffer of pH 7.4 and incubated at 37 °C showed first order degradation kinetics with a reaction rate constant kobs of 5.5 × 10-2 day-1 corresponding with a half-life of 13.9 days. However, once VAN was present in a XA, HA or PGA-based hydrogel, kobs decreased to (2.1-2.3) × 10-2 day-1 while kobs was not affected in an alginate hydrogel and a dextran solution (5.4 × 10-2 and 4.4 × 10-2 day-1). Under the same conditions, XA and PGA also effectively decreased kobs for DAP (5.6 × 10-2 day-1), whereas ALG had no effect and HA even increased the degradation rate. These results demonstrate that the investigated polysaccharides (except ALG for both peptides and HA for DAP) slowed down the degradation of VAN and DAP. DSC analysis was used to investigate on polysaccharide ability to bind water molecules. Rheological analysis highlighted that the polysaccharides containing VAN displayed an increase in G' of their formulations, pointing that the peptides interaction act as crosslinker of the polymer chains. The obtained results suggest that the mechanism of stabilization of VAN and DAP against hydrolytic degradation is conferred by electrostatic interactions between the ionizable amine groups of the drugs and the anionic carboxylate groups of the polysaccharides. This, in turn, results in a close proximity of the drugs to the polysaccharide chain, where the water molecules have a lower mobility and, therefore, a lower thermodynamic activity.
Collapse
|
11
|
Wang J, Yang Y, Huang L, Kong L, Wang X, Shi J, Lü Y, Mu H, Duan J. Development of responsive chitosan-based hydrogels for the treatment of pathogen-induced skin infections. Int J Biol Macromol 2022; 219:1009-1020. [PMID: 35926673 DOI: 10.1016/j.ijbiomac.2022.07.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
Abstract
Vancomycin (Van) remains one of the first-line drugs for the treatment of wound infections caused by methicillin-resistant Staphylococcus aureus (MRSA). However, the unsatisfactory bioavailability of vancomycin alone has greatly limited its potential health benefits. Here a responsive chitosan-based hydrogel was developed as the delivery system which not only would reduce this side effect but also increase efficacy of vancomycin. The hydrogel was prepared by grafting chitosan and cinnamaldehyde-based thioacetal (CTA) together with ginipin (G) as the crosslinker. Upon exposure to reactive oxygen species which were enriched in the bacterial wound, the hydrogel can locally degrade and sustainably release the loaded vancomycin near the lesion to compete with the troubling MRSA. Compared with vancomycin alone, the chitosan-based hydrogel loaded with vancomycin demonstrated accelerated acute wound healing. This achievement reveals that this multi-functional hydrogel may be a promising drug-delivery device for improving the efficacy of local antibiotic therapy.
Collapse
Affiliation(s)
- Junjie Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Lijie Huang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Kong
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingru Shi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yinghua Lü
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Haibo Mu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jinyou Duan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Qi D, Wang N, Cheng Y, Zhao Y, Meng L, Yue X, She P, Gao H. Application of Porous Polyetheretherketone Scaffold/ Vancomycin-Loaded Thermosensitive Hydrogel Composites for Antibacterial Therapy in Bone Repair. Macromol Biosci 2022; 22:e2200114. [PMID: 35850169 DOI: 10.1002/mabi.202200114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/04/2022] [Indexed: 11/09/2022]
Abstract
Polyetheretherketone (PEEK) has been widely used in bone repair, but it often fails due to bacterial infection. Herein, a high-strength porous polyetheretherketone scaffold (ps-PK) loaded with antibacterial drug-loaded hydrogel strategy is proposed. The prepared ps-PK possesses high porosity (30.8%-64.7%) and the compression modulus is between 0.4-0.98 GPa. The interconnected pore-type structure endows it with a drug loading capacity. Poly(D,L -lactic acid-co-glycolic acid)-b-Poly(ethylene glycol)-b-Poly(D,L -lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) thermoresponsive hydrogels loaded with vancomycin are used as the drug sustained-release system. The vancomycin-loaded hydrogels in the solution state at a low temperature were filled into a porous polyetheretherketone scaffold (ps-PK-VGel) and formed a gel state after implantation in vivo. The antibacterial rate of ps-PK-VGel against methicillin-resistant staphylococcus aureus (MRSA) in vitro was 99.7% and histological observation in vivo demonstrates that the ps-PK-VGel shows obvious antibacterial activity. Given its excellent antibacterial ability and mechanical properties, the porous PEEK scaffold composite drug-loaded thermosensitive hydrogel has great potential in bone repair surgery applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Desheng Qi
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Ningning Wang
- Department of Prosthetic Dentistry, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yuanqiang Cheng
- Department of Bone and Joint Surgery, No1 Hospital of Jilin University, Changchun, 130021, China
| | - Yao Zhao
- Department of Bone and Joint Surgery, No1 Hospital of Jilin University, Changchun, 130021, China
| | - Lingcheng Meng
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Xigui Yue
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Peng She
- Department of orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 528406, China
| | - Hang Gao
- Department of Bone and Joint Surgery, No1 Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
13
|
Garg D, Matai I, Sachdev A. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomater Sci Eng 2021; 7:1933-1961. [PMID: 33826312 DOI: 10.1021/acsbiomaterials.0c01408] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications. On this account, this review provides an insight into the significance of anti-infective hydrogels for preventing orthopedic implant associated infections to improve the bone healing process. We briefly discuss the clinical course of implant failure, with a prime focus on orthopedic implants. We identify the different anti-infective coating strategies and hence several anti-infective agents which could be incorporated in the hydrogel matrix. The fundamental design criteria to be considered while fabricating anti-infective hydrogels for orthopedic implants will be discussed. We highlight the different hydrogel coatings based on the origin of the polymers involved in light of their antimicrobial efficacy. We summarize the relevant patents reported in the prevention of implant infections, including orthopedics. Finally, the challenges concerning the clinical translation of the aforesaid hydrogels are described, and considerable solutions for improved clinical practice and better future prospects are proposed.
Collapse
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Ishita Matai
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Abhay Sachdev
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| |
Collapse
|
14
|
Chen ZY, Gao S, Zhang YW, Zhou RB, Zhou F. Antibacterial biomaterials in bone tissue engineering. J Mater Chem B 2021; 9:2594-2612. [PMID: 33666632 DOI: 10.1039/d0tb02983a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone infection is a devastating disease characterized by recurrence, drug-resistance, and high morbidity, that has prompted clinicians and scientists to develop novel approaches to combat it. Currently, although numerous biomaterials that possess excellent biocompatibility, biodegradability, porosity, and mechanical strength have been developed, their lack of effective antibacterial ability substantially limits bone-defect treatment efficacy. There is, accordingly, a pressing need to design antibacterial biomaterials for effective bone-infection prevention and treatment. This review focuses on antibacterial biomaterials and strategies; it presents recently reported biomaterials, including antibacterial implants, antibacterial scaffolds, antibacterial hydrogels, and antibacterial bone cement types, and aims to provide an overview of these antibacterial materials for application in biomedicine. The antibacterial mechanisms of these materials are discussed as well.
Collapse
Affiliation(s)
- Zheng-Yang Chen
- Orthopedic Department, Peking University Third Hospital, Beijing 100191, China.
| | | | | | | | | |
Collapse
|
15
|
Kimmins SD, Hanay SB, Murphy R, O'Dwyer J, Ramalho J, Ryan EJ, Kearney CJ, O'Brien FJ, Cryan SA, Fitzgerald-Hughes D, Heise A. Antimicrobial and degradable triazolinedione (TAD) crosslinked polypeptide hydrogels. J Mater Chem B 2021; 9:5456-5464. [PMID: 34048521 DOI: 10.1039/d1tb00776a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydrogels are perfectly suited to support cell and tissue growth in advanced tissue engineering applications as well as classical wound treatment scenarios. Ideal hydrogel materials for these applications should be easy to produce, biocompatible, resorbable and antimicrobial. Here we report the fabrication of degradable covalent antimicrobial lysine and tryptophan containing copolypeptide hydrogels, whereby the hydrogel properties can be independently modulated by the copolypeptide monomer ratio and chiral composition. Well-defined statistical copolypeptides comprising different overall molecular weights as well as ratios of l- and d-lysine and tryptophan at ratios of 35 : 15, 70 : 30 and 80 : 20 were obtained by N-carboxyanhydride (NCA) polymerisation and subsequently crosslinked by the selective reaction of bifunctional triazolinedione (TAD) with tryptophan. Real-time rheology was used to monitor the crosslinking reaction recording the fastest increase and overall modulus for copolypeptides with the higher tryptophan ratio. Water uptake of cylindrical hydrogel samples was dependent on crosslinking ratio but found independent of chiral composition, while enzymatic degradation proceeded significantly faster for samples containing more l-amino acids. Antimicrobial activity on a range of hydrogels containing different polypeptide chain lengths, lysine/tryptophan composition and l/d enantiomers was tested against reference laboratory strains of Gram-negative Escherichia coli (E. coli; ATCC25922) and Gram-positive, Staphylococcus aureus (S. aureus; ATCC25923). log reductions of 2.8-3.4 were recorded for the most potent hydrogels. In vitro leachable cytotoxicity tests confirmed non-cytotoxicity as per ISO guidelines.
Collapse
Affiliation(s)
- Scott D Kimmins
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland. and Instituto de Química, Pontificia Universidad Católica de Valparaíso, Avda. Universidad 330, Curauma, Placilla, Valparaíso, Chile
| | - Saltuk B Hanay
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| | - Robert Murphy
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| | - Joanne O'Dwyer
- Drug Delivery and Advanced Materials Team, School of Pharmacy, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicines, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Jessica Ramalho
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| | - Emily J Ryan
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicines, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Department of Biomedical Engineering, University of Massachusetts Amherst, MA, USA and Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland
| | - Cathal J Kearney
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicines, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Department of Biomedical Engineering, University of Massachusetts Amherst, MA, USA and Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland and Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences, and Trinity College Dublin, Dublin 2, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicines, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland and Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences, and Trinity College Dublin, Dublin 2, Ireland and Centre for Research in Medical Devices (CURAM), RCSI University of Medicine and Health Sciences, Dublin 2, and National University or Ireland, Galway, Ireland
| | - Sally-Ann Cryan
- Drug Delivery and Advanced Materials Team, School of Pharmacy, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicines, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland and Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences, and Trinity College Dublin, Dublin 2, Ireland and Centre for Research in Medical Devices (CURAM), RCSI University of Medicine and Health Sciences, Dublin 2, and National University or Ireland, Galway, Ireland
| | - Deirdre Fitzgerald-Hughes
- Department of Clinical Microbiology, RCSI University of Medicine and Health Sciences, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| | - Andreas Heise
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland. and Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences, and Trinity College Dublin, Dublin 2, Ireland and Centre for Research in Medical Devices (CURAM), RCSI University of Medicine and Health Sciences, Dublin 2, and National University or Ireland, Galway, Ireland
| |
Collapse
|
16
|
Klep O, Jones HW, Reukov V, Foulger SH. Control of Vancomycin Activity through the Encapsulation and Controlled Release from a Propargyl Acrylate-Poloxamer Nanocomposite System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14607-14613. [PMID: 33231460 DOI: 10.1021/acs.langmuir.0c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vancomycin is a potent antibacterial drug that suffers from poor bioavailability due to its poor water solubility and relatively high molecular weight. Consequently, the application of vancomycin to treat bacteria-induced disease is limited. In this study, the ability of a temperature-stimulated propargyl acrylate-poloxamer nanocomposite (PAPN) system to encapsulate and release vancomycin is investigated. A controllable encapsulation and release system can be used to not only increase and prolong the bioavailability of vancomycin but also activate vancomycin with a temperature change. The PAPN system was prepared using an emulsion polymerization of propargyl acrylate followed by a surface decoration with a poloxamer at a precisely controlled grafting density. The activity of the PAPN system loaded with vancomycin is compared to that of the free drug and unmodified propargyl acrylate nanoparticles. It is shown that the activity of the PAPN system loaded with vancomycin is comparable to that of a freshly prepared, free-floating vancomycin solution. Upon storage, the activity of the free vancomycin in solution decreases, while the PAPN system loaded with vancomycin retains its high activity. Additionally, the PAPN system is able to effectively encapsulate and deactivate vancomycin until heated above a lower critical solution temperature (LCST). At temperatures above the LCST, the PAPN system releases vancomycin restoring the activity of the drug.
Collapse
Affiliation(s)
- Oleksandr Klep
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Anderson, South Carolina 29625, United States
| | - Haley W Jones
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Anderson, South Carolina 29625, United States
| | - Vladimir Reukov
- Department of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
| | - Stephen H Foulger
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Anderson, South Carolina 29625, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
17
|
Chimisso V, Aleman Garcia MA, Yorulmaz Avsar S, Dinu IA, Palivan CG. Design of Bio-Conjugated Hydrogels for Regenerative Medicine Applications: From Polymer Scaffold to Biomolecule Choice. Molecules 2020; 25:E4090. [PMID: 32906772 PMCID: PMC7571016 DOI: 10.3390/molecules25184090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Bio-conjugated hydrogels merge the functionality of a synthetic network with the activity of a biomolecule, becoming thus an interesting class of materials for a variety of biomedical applications. This combination allows the fine tuning of their functionality and activity, whilst retaining biocompatibility, responsivity and displaying tunable chemical and mechanical properties. A complex scenario of molecular factors and conditions have to be taken into account to ensure the correct functionality of the bio-hydrogel as a scaffold or a delivery system, including the polymer backbone and biomolecule choice, polymerization conditions, architecture and biocompatibility. In this review, we present these key factors and conditions that have to match together to ensure the correct functionality of the bio-conjugated hydrogel. We then present recent examples of bio-conjugated hydrogel systems paving the way for regenerative medicine applications.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR-1096, 4058 Basel, Switzerland; (V.C.); (M.A.A.G.); (S.Y.A.); (I.A.D.)
| |
Collapse
|
18
|
Naeimi M, Tajedin R, Farahmandfar F, Naeimi M, Monajjemi M. Preparation and characterization of vancomycin-loaded chitosan/PVA/PEG hydrogels for wound dressing. MATERIALS RESEARCH EXPRESS 2020. [DOI: 10.1088/2053-1591/abb154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Abstract
This study describes a drug-loaded porous hydrogel for delivery of vancomycin. Hydrogels based on chitosan (CS), Polyvinyl alcohol (PVA) and Polyethylene glycol (PEG) were prepared by lyophilization. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and fourier transform infrared (FTIR) spectroscopy were used to characterize the structures. Water uptake percentage and vancomycin release were also measured. The antibacterial activity against Staphylococcus aureus was investigated. According to the results, mean pore diameter (MPD) was decreased by addition of PEG and reached to 1.3 ± 0.5 μm. On the other hand, 43% decrease in water content of the hydrogels showed along with the incorporation of PEG. The inhibition zone confirmed antibacterial effect of the vancomycin-loaded hydrogels. The porous CS/PVA/PEG hydrogels containing vancomycin could be good candidates to potentially be used as wound dressing.
Collapse
|
19
|
Steering the Clinical Translation of Delivery Systems for Drugs and Health Products. Pharmaceutics 2020; 12:pharmaceutics12040350. [PMID: 32294939 PMCID: PMC7238002 DOI: 10.3390/pharmaceutics12040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 11/21/2022] Open
Abstract
Besides the feasibility for industrial scale-up, accelerating the translation from bench to bedside of new technological strategies for controlled delivery and targeting of drugs and other actives relevant for health management, such as medical devices and nutraceuticals, would benefit from an even earlier evaluation in pre-clinical models and clinical settings. At the same time, translational medicine also performs in the opposite direction, incorporating clinical needs and observations into scientific hypotheses and innovative technological proposals. With these aims, the sessions proposed for the 2019 CRS Italy Chapter Workshop will introduce the experience of Italian and worldwide researchers on how to foster the actual work in controlled release and drug delivery towards a reliable pre-clinical and clinical assessment.
Collapse
|
20
|
Censi R, Casadidio C, Deng S, Gigliobianco MR, Sabbieti MG, Agas D, Laus F, Di Martino P. Interpenetrating Hydrogel Networks Enhance Mechanical Stability, Rheological Properties, Release Behavior and Adhesiveness of Platelet-Rich Plasma. Int J Mol Sci 2020; 21:E1399. [PMID: 32092976 PMCID: PMC7073123 DOI: 10.3390/ijms21041399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Platelet-rich plasma (PRP) has attracted much attention for the treatment of articular cartilage defects or wounds due to its intrinsic content of growth factors relevant for tissue repair. However, the short residence time of PRP in vivo, due to the action of lytic enzymes, its weak mechanical properties and the consequent short-term release of bioactive factors has restricted its application and efficacy. The present work aimed at designing new formulation strategies for PRP, based on the use of platelet concentrate (PC)-loaded hydrogels or interpenetrating polymer networks, directed at improving mechanical stability and sustaining the release of bioactive growth factors over a prolonged time-span. The interpenetrating hydrogels comprised two polymer networks interlaced on a molecular scale: (a) a first covalent network of thermosensitive and biodegradable vinyl sulfone bearing p(hydroxypropyl methacrylamide-lacate)-polyethylene glycol triblock copolymers, tandem cross-linked by thermal gelation and Michael addition when combined with thiolated hyaluronic acid, and (b) a second network composed of cross-linked fibrin. The PC-loaded hydrogels, instead, was formed only by network (a). All the designed and successfully synthesized formulations greatly increased the stability of PRP in vitro, leading to significant increase in degradation time and storage modulus of PRP gel. The resulting viscoelastic networks showed the ability to controllably release platelet derived growth factor and transforming growth factr β1, and to improve the tissue adhesiveness of PRP. The newly developed hydrogels show great potential for application in the field of wound healing, cartilage repair and beyond.
Collapse
Affiliation(s)
- Roberta Censi
- School of Pharmacy, University of Camerino, Via. S. Agostino 1, 62032 Camerino (MC), Italy; (C.C.); (S.D.); (M.R.G.); (P.D.M.)
| | - Cristina Casadidio
- School of Pharmacy, University of Camerino, Via. S. Agostino 1, 62032 Camerino (MC), Italy; (C.C.); (S.D.); (M.R.G.); (P.D.M.)
| | - Siyuan Deng
- School of Pharmacy, University of Camerino, Via. S. Agostino 1, 62032 Camerino (MC), Italy; (C.C.); (S.D.); (M.R.G.); (P.D.M.)
| | - Maria Rosa Gigliobianco
- School of Pharmacy, University of Camerino, Via. S. Agostino 1, 62032 Camerino (MC), Italy; (C.C.); (S.D.); (M.R.G.); (P.D.M.)
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy; (M.G.S.); (D.A.)
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy; (M.G.S.); (D.A.)
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy;
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, Via. S. Agostino 1, 62032 Camerino (MC), Italy; (C.C.); (S.D.); (M.R.G.); (P.D.M.)
| |
Collapse
|