1
|
Casula L, Elena Giacomazzo G, Conti L, Fornasier M, Manca B, Schlich M, Sinico C, Rheinberger T, Wurm FR, Giorgi C, Murgia S. Polyphosphoester-stabilized cubosomes encapsulating a Ru(II) complex for the photodynamic treatment of lung adenocarcinoma. J Colloid Interface Sci 2024; 670:234-245. [PMID: 38761576 DOI: 10.1016/j.jcis.2024.05.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The clinical translation of photosensitizers based on ruthenium(II) polypyridyl complexes (RPCs) in photodynamic therapy of cancer faces several challenges. To address these limitations, we conducted an investigation to assess the potential of a cubosome formulation stabilized in water against coalescence utilizing a polyphosphoester analog of Pluronic F127 as a stabilizer and loaded with newly synthesized RPC-based photosensitizer [Ru(dppn)2(bpy-morph)](PF6)2 (bpy-morph = 2,2'-bipyridine-4,4'-diylbis(morpholinomethanone)), PS-Ru. The photophysical characterization of PS-Ru revealed its robust capacity to induce the formation of singlet oxygen (1O2). Furthermore, the physicochemical analysis of the PS-Ru-loaded cubosomes dispersion demonstrated that the encapsulation of the photosensitizer within the nanoparticles did not disrupt the three-dimensional arrangement of the lipid bilayer. The biological tests showed that PS-Ru-loaded cubosomes exhibited significant phototoxic activity when exposed to the light source, in stark contrast to empty cubosomes and to the same formulation without irradiation. This promising outcome suggests the potential of the formulation in overcoming the drawbacks associated with the clinical use of RPCs in photodynamic therapy for anticancer treatments.
Collapse
Affiliation(s)
- Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Marco Fornasier
- Department of Chemistry, Lund University, SE-22100 Lund, Sweden; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy
| | - Benedetto Manca
- Department of Mathematics and Computer Science, University of Cagliari, via Ospedale 72, 09124 Cagliari, CA, Italy
| | - Michele Schlich
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Timo Rheinberger
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Sergio Murgia
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
2
|
Di Mascolo D, Guerriero I, Pesce C, Spanò R, Palange AL, Decuzzi P. μMESH-Enabled Sustained Delivery of Molecular and Nanoformulated Drugs for Glioblastoma Treatment. ACS NANO 2023; 17:14572-14585. [PMID: 37379253 PMCID: PMC10416560 DOI: 10.1021/acsnano.3c01574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Modest tissue penetrance, nonuniform distribution, and suboptimal release of drugs limit the potential of intracranial therapies against glioblastoma. Here, a conformable polymeric implant, μMESH, is realized by intercalating a micronetwork of 3 × 5 μm poly(lactic-co-glycolic acid) (PLGA) edges over arrays of 20 × 20 μm polyvinyl alcohol (PVA) pillars for the sustained delivery of potent chemotherapeutic molecules, docetaxel (DTXL) and paclitaxel (PTXL). Four different μMESH configurations were engineered by encapsulating DTXL or PTXL within the PLGA micronetwork and nanoformulated DTXL (nanoDTXL) or PTXL (nanoPTXL) within the PVA microlayer. All four μMESH configurations provided sustained drug release for at least 150 days. However, while a burst release of up to 80% of nanoPTXL/nanoDTXL was documented within the first 4 days, molecular DTXL and PTXL were released more slowly from μMESH. Upon incubation with U87-MG cell spheroids, DTXL-μMESH was associated with the lowest lethal drug dose, followed by nanoDTXL-μMESH, PTXL-μMESH, and nanoPTXL-μMESH. In orthotopic models of glioblastoma, μMESH was peritumorally deposited at 15 days post-cell inoculation and tumor proliferation was monitored via bioluminescence imaging. The overall animal survival increased from ∼30 days of the untreated controls to 75 days for nanoPTXL-μMESH and 90 days for PTXL-μMESH. For the DTXL groups, the overall survival could not be defined as 80% and 60% of the animals treated with DTXL-μMESH and nanoDTXL-μMESH were still alive at 90 days, respectively. These results suggest that the sustained delivery of potent drugs properly encapsulated in conformable polymeric implants could halt the proliferation of aggressive brain tumors.
Collapse
Affiliation(s)
- Daniele Di Mascolo
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department
of Electrical and Information Engineering, Politecnico di Bari, 70126 Bari, Italy
| | - Irene Guerriero
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department
of Informatics, Bioengineering, Robotics and System Engineering, Università di Genova, 16145 Genova, Italy
| | - Cristiano Pesce
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padua, 35122 Padova, Italy
| | - Raffaele Spanò
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Anna Lisa Palange
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Paolo Decuzzi
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| |
Collapse
|
3
|
Palange AL, Mascolo DD, Ferreira M, Gawne PJ, Spanò R, Felici A, Bono L, Moore TL, Salerno M, Armirotti A, Decuzzi P. Boosting the Potential of Chemotherapy in Advanced Breast Cancer Lung Metastasis via Micro-Combinatorial Hydrogel Particles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205223. [PMID: 36683230 PMCID: PMC10074128 DOI: 10.1002/advs.202205223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Breast cancer cell colonization of the lungs is associated with a dismal prognosis as the distributed nature of the disease and poor permeability of the metastatic foci challenge the therapeutic efficacy of small molecules, antibodies, and nanomedicines. Taking advantage of the unique physiology of the pulmonary circulation, here, micro-combinatorial hydrogel particles (µCGP) are realized via soft lithographic techniques to enhance the specific delivery of a cocktail of cytotoxic nanoparticles to metastatic foci. By cross-linking short poly(ethylene glycol) (PEG) chains with erodible linkers within a shape-defining template, a deformable and biodegradable polymeric skeleton is realized and loaded with a variety of therapeutic and imaging agents, including docetaxel-nanoparticles. In a model of advanced breast cancer lung metastasis, µCGP amplified the colocalization of docetaxel-nanoparticles with pulmonary metastatic foci, prolonged the retention of chemotoxic molecules at the diseased site, suppressed lesion growth, and boosted survival beyond 20 weeks post nodule engraftment. The flexible design and modular architecture of µCGP would allow the efficient deployment of complex combination therapies in other vascular districts too, possibly addressing metastatic diseases of different origins.
Collapse
Affiliation(s)
- Anna Lisa Palange
- Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| | - Miguel Ferreira
- Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
- Present address:
Harvard Medical School, Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Peter J. Gawne
- Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| | - Alessia Felici
- Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
- Present address:
Division of Oncology, Department of Medicine and Department of PathologyStanford University School of MedicineStanfordCA94305USA
| | - Luca Bono
- Analytical Chemistry FacilityFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| | - Thomas Lee Moore
- Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| | - Marco Salerno
- Materials Characterization FacilityFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| | - Andrea Armirotti
- Analytical Chemistry FacilityFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaVia Morego 30Genoa16163Italy
| |
Collapse
|
4
|
Special issue on the latest advances in regenerative medicine and cancer using drug delivery systems. Eur J Pharm Biopharm 2022; 177:89-90. [PMID: 35750107 DOI: 10.1016/j.ejpb.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|