1
|
Tukacs V, Mittli D, Hunyadi-Gulyás É, Darula Z, Juhász G, Kardos J, Kékesi KA. Comparative analysis of hippocampal extracellular space uncovers widely altered peptidome upon epileptic seizure in urethane-anaesthetized rats. Fluids Barriers CNS 2024; 21:6. [PMID: 38212833 PMCID: PMC10782730 DOI: 10.1186/s12987-024-00508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The brain extracellular fluid (ECF), composed of secreted neurotransmitters, metabolites, peptides, and proteins, may reflect brain processes. Analysis of brain ECF may provide new potential markers for synaptic activity or brain damage and reveal additional information on pathological alterations. Epileptic seizure induction is an acute and harsh intervention in brain functions, and it can activate extra- and intracellular proteases, which implies an altered brain secretome. Thus, we applied a 4-aminopyridine (4-AP) epilepsy model to study the hippocampal ECF peptidome alterations upon treatment in rats. METHODS We performed in vivo microdialysis in the hippocampus for 3-3 h of control and 4-AP treatment phase in parallel with electrophysiology measurement. Then, we analyzed the microdialysate peptidome of control and treated samples from the same subject by liquid chromatography-coupled tandem mass spectrometry. We analyzed electrophysiological and peptidomic alterations upon epileptic seizure induction by two-tailed, paired t-test. RESULTS We detected 2540 peptides in microdialysate samples by mass spectrometry analysis; and 866 peptides-derived from 229 proteins-were found in more than half of the samples. In addition, the abundance of 322 peptides significantly altered upon epileptic seizure induction. Several proteins of significantly altered peptides are neuropeptides (Chgb) or have synapse- or brain-related functions such as the regulation of synaptic vesicle cycle (Atp6v1a, Napa), astrocyte morphology (Vim), and glutamate homeostasis (Slc3a2). CONCLUSIONS We have detected several consequences of epileptic seizures at the peptidomic level, as altered peptide abundances of proteins that regulate epilepsy-related cellular processes. Thus, our results indicate that analyzing brain ECF by in vivo microdialysis and omics techniques is useful for monitoring brain processes, and it can be an alternative method in the discovery and analysis of CNS disease markers besides peripheral fluid analysis.
Collapse
Affiliation(s)
- Vanda Tukacs
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvári Körút 62, Szeged, 6726, Hungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvári Körút 62, Szeged, 6726, Hungary
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Temesvári Körút 62, Szeged, 6726, Hungary
| | - Gábor Juhász
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- InnoScience Hungary Ltd., Bátori Út 9, Mátranovák, 3142, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Katalin Adrienna Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
- InnoScience Hungary Ltd., Bátori Út 9, Mátranovák, 3142, Hungary.
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
2
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
3
|
Fogaça MV, Duman RS. Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions. Front Cell Neurosci 2019. [PMID: 30914923 DOI: 10.3389/fncel.2019.00087/full] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation-inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABAA and GABAB receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression.
Collapse
Affiliation(s)
- Manoela V Fogaça
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Fogaça MV, Duman RS. Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions. Front Cell Neurosci 2019; 13:87. [PMID: 30914923 PMCID: PMC6422907 DOI: 10.3389/fncel.2019.00087] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation-inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABAA and GABAB receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression.
Collapse
Affiliation(s)
- Manoela V Fogaça
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
5
|
Schmerberg CM, Li L. Mass spectrometric detection of neuropeptides using affinity-enhanced microdialysis with antibody-coated magnetic nanoparticles. Anal Chem 2013; 85:915-22. [PMID: 23249250 DOI: 10.1021/ac302403e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microdialysis (MD) is a useful sampling tool for many applications due to its ability to permit sampling from an animal concurrent with normal activity. MD is of particular importance in the field of neuroscience, in which it is used to sample neurotransmitters (NTs) while the animal is behaving in order to correlate dynamic changes in NTs with behavior. One important class of signaling molecules, the neuropeptides (NPs), however, presented significant challenges when studied with MD, due to the low relative recovery (RR) of NPs by this technique. Affinity-enhanced microdialysis (AE-MD) has previously been used to improve recovery of NPs and similar molecules. For AE-MD, an affinity agent (AA), such as an antibody-coated particle or free antibody, is added to the liquid perfusing the MD probe. This AA provides an additional mass transport driving force for analyte to pass through the dialysis membrane and thus increases the RR. In this work, a variety of AAs have been investigated for AE-MD of NPs in vitro and in vivo, including particles with C18 surface functionality and antibody-coated particles. Antibody-coated magnetic nanoparticles (AbMnP) provided the best RR enhancement in vitro, with statistically significant (p < 0.05) enhancements for 4 out of 6 NP standards tested, and RR increases up to 41-fold. These particles were then used for in vivo MD in the Jonah crab, Cancer borealis, during a feeding study, with mass spectrometric (MS) detection. 31 NPs were detected in a 30 min collection sample, compared to 17 when no AA was used. The use of AbMnP also increased the temporal resolution from 4 to 18 h in previous studies to just 30 min in this study. The levels of NPs detected were also sufficient for reliable quantitation with the MS system in use, permitting quantitative analysis of the concentration changes for 7 identified NPs on a 30 min time course during feeding.
Collapse
Affiliation(s)
- Claire M Schmerberg
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, USA
| | | |
Collapse
|
6
|
Deficits in cognition and synaptic plasticity in a mouse model of Down syndrome ameliorated by GABAB receptor antagonists. J Neurosci 2012; 32:9217-27. [PMID: 22764230 DOI: 10.1523/jneurosci.1673-12.2012] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cognitive impairment in Down syndrome (DS) is characterized by deficient learning and memory. Mouse genetic models of DS exhibit impaired cognition in hippocampally mediated behavioral tasks and reduced synaptic plasticity of hippocampal pathways. Enhanced efficiency of GABAergic neurotransmission was implicated in those changes. We have recently shown that signaling through postsynaptic GABA(B) receptors is significantly increased in the dentate gyrus of Ts65Dn mice, a genetic model of DS. Here we examined a role for GABA(B) receptors in cognitive deficits in DS by defining the effect of selective GABA(B) receptor antagonists on behavior and synaptic plasticity of adult Ts65Dn mice. Treatment with the GABA(B) receptor antagonist CGP55845 restored memory of Ts65Dn mice in the novel place recognition, novel object recognition, and contextual fear conditioning tasks, but did not affect locomotion and performance in T-maze. The treatment increased hippocampal levels of brain-derived neurotrophic factor, equally in 2N and Ts65Dn mice. In hippocampal slices, treatment with the GABA(B) receptor antagonists CGP55845 or CGP52432 enhanced long-term potentiation (LTP) in the Ts65Dn DG. The enhancement of LTP was accompanied by an increase in the NMDA receptor-mediated component of the tetanus-evoked responses. These findings are evidence for a contribution of GABA(B) receptors to changes in hippocampal-based cognition in the Ts65Dn mouse. The ability to rescue cognitive performance through treatment with selective GABA(B) receptor antagonists motivates studies to further explore the therapeutic potential of these compounds in people with DS.
Collapse
|
7
|
Kaur P, Asea A. Quantitation of heat-shock proteins in clinical samples using mass spectrometry. Methods Mol Biol 2012; 787:165-88. [PMID: 21898236 DOI: 10.1007/978-1-61779-295-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Mass spectrometry (MS) is a powerful analytical tool for proteomics research and drug and biomarker discovery. MS enables identification and quantification of known and unknown compounds by revealing their structural and chemical properties. Proper sample preparation for MS-based analysis is a critical step in the proteomics workflow because the quality and reproducibility of sample extraction and preparation for downstream analysis significantly impact the separation and identification capabilities of mass spectrometers. The highly expressed proteins represent potential biomarkers that could aid in diagnosis, therapy, or drug development. Because the proteome is so complex, there is no one standard method for preparing protein samples for MS analysis. Protocols differ depending on the type of sample, source, experiment, and method of analysis. Molecular chaperones play significant roles in almost all biological functions due to their capacity for detecting intracellular denatured/unfolded proteins, initiating refolding or denaturation of such malfolded protein sequences and more recently for their role in the extracellular milieu as chaperokines. In this chapter, we describe the latest techniques for quantitating the expression of molecular chaperones in human clinical samples.
Collapse
Affiliation(s)
- Punit Kaur
- Division of Investigative Pathology, College of Medicine, Scott & White Memorial Hospital and Clinic, Temple, TX, USA
| | | |
Collapse
|
8
|
Fatemi SH, Folsom TD, Thuras PD. Deficits in GABA(B) receptor system in schizophrenia and mood disorders: a postmortem study. Schizophr Res 2011; 128:37-43. [PMID: 21303731 PMCID: PMC3085603 DOI: 10.1016/j.schres.2010.12.025] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/14/2010] [Accepted: 12/20/2010] [Indexed: 11/15/2022]
Abstract
Postmortem and genetic studies have clearly demonstrated changes in GABA(B) receptors in neuropsychiatric disorders such as autism, bipolar disorder, major depression, and schizophrenia. Moreover, a number of recent studies have stressed the importance of cerebellar dysfunction in these same disorders. In the current study, we examined protein levels of the two GABA(B) receptor subunits GABBR1 and GABBR2 in lateral cerebella from a well-characterized cohort of subjects with schizophrenia (n=15), bipolar disorder (n=14), major depression (n=13) and healthy controls (n=12). We found significant reductions in protein for both GABBR1 and GABBR2 in lateral cerebella from subjects with schizophrenia, bipolar disorder and major depression when compared with controls. These results provide further evidence of GABAergic dysfunction in these three disorders as well as identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- S. Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
- Department of Pharmacology, University of Minnesota Medical School, 310 Church St. SE, Minneapolis, MN 55455
- Department of Neuroscience, University of Minnesota Medical School, 310 Church St. SE, Minneapolis, MN 55455
| | - Timothy D. Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
| | - Paul D. Thuras
- VA Medical Center, Department of Psychiatry, 1 Veterans Drive, Minneapolis, MN 55417
| |
Collapse
|
9
|
Froestl W. Chemistry and Pharmacology of GABAB Receptor Ligands. GABABRECEPTOR PHARMACOLOGY - A TRIBUTE TO NORMAN BOWERY 2010; 58:19-62. [DOI: 10.1016/s1054-3589(10)58002-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Sunyer B, Shim KS, An G, Höger H, Lubec G. Hippocampal levels of phosphorylated protein kinase A (phosphor-S96) are linked to spatial memory enhancement by SGS742. Hippocampus 2009; 19:90-8. [PMID: 18727045 DOI: 10.1002/hipo.20484] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cognitive enhancement by the GABA (B) receptor antagonist SGS742 has been well-documented, but mechanisms of action are not fully elucidated. Previous work has proposed involvement of somatostatin-14 and protein kinase C in cognitive enhancement; phospho-protein kinase A (p-PKA), fyn, and phospho-fyn are known signaling systems for spatial memory. It was the aim of the study to determine hippocampal levels of these proteins following SGS742-treatment and to correlate them with the outcome from the Morris water maze (MWM), represented by the parameter "time spent in the target quadrant" during the probe trial. OF1 mice were used for the experiments and divided into four groups: intraperitoneal SGS742 and saline solution treatment, both, tested in the MWM, and two yoked controls. Six hours following the probe trial, hippocampal protein levels were determined by immunoblotting. In the MWM, time spent in the target quadrant was significantly enhanced by SGS742 treatment. p-PKA levels were significantly increased only in the SGS742-treated group tested in the MWM as compared to saline treatment. In yoked controls, no significant differences in p-PKA levels between SGS742 and saline treatment were observed. Somatostatin-14 levels were significantly increased in both SGS742-treated groups. No statistically significant changes of other protein levels were observed. We propose that GABA (B) antagonism represented by SGS742 treatment led to cognitive enhancement involving p-PKA, because yoked controls treated with SGS742 were comparable to yoked saline-treated controls. The finding that somatostatin-14 was also induced in the SGS742-treated yoked controls points to a drug side effect, and therefore the role of somatostatin-14 for cognitive enhancement remains open.
Collapse
Affiliation(s)
- Berta Sunyer
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
11
|
Sunyer B, Diao WF, Kang SU, An G, Boddul S, Lubec G. Cognitive Enhancement by SGS742 in OF1 Mice Is Linked to Specific Hippocampal Protein Expression. J Proteome Res 2008; 7:5237-53. [DOI: 10.1021/pr800594b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Berta Sunyer
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Wei-Fei Diao
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sung Ung Kang
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gunyong An
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sanjay Boddul
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Sunyer B, Shim KS, Höger H, Lubec G. The Cognitive Enhancer SGS742 Does not Involve Major Known Signaling Cascades in OF1 Mice. Neurochem Res 2008; 33:1384-92. [DOI: 10.1007/s11064-008-9596-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/10/2008] [Indexed: 11/25/2022]
|
13
|
Simon Á, Kéri G, Kardos J. Comparison of the binding modes of TT-232 in somatostatin receptors type 1 and 4. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.theochem.2007.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Cammalleri M, Cervia D, Dal Monte M, Martini D, Langenegger D, Fehlmann D, Feuerbach D, Pavan B, Hoyer D, Bagnoli P. Compensatory changes in the hippocampus of somatostatin knockout mice: upregulation of somatostatin receptor 2 and its function in the control of bursting activity and synaptic transmission. Eur J Neurosci 2006; 23:2404-22. [PMID: 16706848 DOI: 10.1111/j.1460-9568.2006.04770.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Somatostatin-14 (SRIF) co-localizes with gamma-aminobutyric acid (GABA) in the hippocampus and regulates neuronal excitability. A role of SRIF in the control of seizures has been proposed, although its exact contribution requires some clarification. In particular, SRIF knockout (KO) mice do not exhibit spontaneous seizures, indicating that compensatory changes may occur in KO. In the KO hippocampus, we examined whether specific SRIF receptors and/or the cognate peptide cortistatin-14 (CST) compensate for the absence of SRIF. We found increased levels of both sst2 receptors (sst2) and CST, and we explored the functional consequences of sst2 compensation on bursting activity and synaptic responses in hippocampal slices. Bursting was decreased by SRIF in wild-type (WT) mice, but it was not affected by either CST or sst2 agonist and antagonist. sst4 agonist increased bursting frequency in either WT or KO. In WT, but not in KO, its effects were blocked by agonizing or antagonizing sst2, suggesting that sst2 and sst4 are functionally coupled in the WT hippocampus. Bursting was reduced in KO as compared with WT and was increased upon application of sst2 antagonist, while SRIF, CST and sst2 agonist had no effect. At the synaptic level, we observed that in WT, SRIF decreased excitatory postsynaptic potentials which were, in contrast, increased by sst2 antagonist in KO. We conclude that sst2 compensates for SRIF absence and that its upregulation is responsible for reduced bursting and decreased excitatory transmission in KO mice. We suggest that a critical density of sst2 is needed to control hippocampal activity.
Collapse
Affiliation(s)
- Maurizio Cammalleri
- Department of Physiology and Biochemistry G. Moruzzi, University of Pisa, 56127 Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Muller JF, Mascagni F, McDonald AJ. Postsynaptic targets of somatostatin-containing interneurons in the rat basolateral amygdala. J Comp Neurol 2006; 500:513-29. [PMID: 17120289 DOI: 10.1002/cne.21185] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The basolateral amygdala contains several subpopulations of inhibitory interneurons that can be distinguished on the basis of their content of calcium-binding proteins or peptides. Although previous studies have shown that interneuronal subpopulations containing parvalbumin (PV) or vasoactive intestinal peptide (VIP) innervate distinct postsynaptic domains of pyramidal cells as well as other interneurons, very little is known about the synaptic outputs of the interneuronal subpopulation that expresses somatostatin (SOM). The present study utilized dual-labeling immunocytochemical techniques at the light and electron microscopic levels to analyze the innervation of pyramidal cells, PV+ interneurons, and VIP+ interneurons in the anterior basolateral amygdalar nucleus (BLa) by SOM+ axon terminals. Pyramidal cell somata and dendrites were selectively labeled with antibodies to calcium/calmodulin-dependent protein kinase II (CaMK); previous studies have shown that the vast majority of dendritic spines, whether CAMK+ or not, arise from pyramidal cells. Almost all SOM+ axon terminals formed symmetrical synapses. The main postsynaptic targets of SOM+ terminals were small-caliber CaMK+ dendrites and dendritic spines, some of which were CaMK+. These SOM+ synapses with dendrites were often in close proximity to asymmetrical (excitatory) synapses to these same structures formed by unlabeled terminals. Few SOM+ terminals formed synapses with CaMK+ pyramidal cell somata or large-caliber (proximal) dendrites. Likewise, only 15% of SOM+ terminals formed synapses with PV+, VIP+, or SOM+ interneurons. These findings suggest that inhibitory inputs from SOM+ interneurons may interact with excitatory inputs to pyramidal cell distal dendrites in the BLa. These interactions might affect synaptic plasticity related to emotional learning.
Collapse
Affiliation(s)
- Jay F Muller
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
16
|
Froestl W, Gallagher M, Jenkins H, Madrid A, Melcher T, Teichman S, Mondadori CG, Pearlman R. SGS742: the first GABA(B) receptor antagonist in clinical trials. Biochem Pharmacol 2005; 68:1479-87. [PMID: 15451390 DOI: 10.1016/j.bcp.2004.07.030] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The GABA(B) receptor antagonist SGS742 (CGP36742) displays pronounced cognition enhancing effects in mice, young and old rats and in Rhesus monkeys in active and passive avoidance paradigms, in an eight-arm radial maze and a Morris water maze and in a social learning task. SGS742 blocks the late inhibitory postsynaptic potential and the paired-pulse inhibition of population spikes recorded from CA1 pyramidal neurons of the hippocampus of rats in vitro and in vivo. SGS742 significantly enhances the release of glutamate, aspartate, glycine and somatostatin in vivo. Chronic administration of SGS742 causes an up-regulation of GABA(B) receptors in the frontal cortex of rats. Single doses cause a significant enhancement of the mRNA and protein levels of NGF and BDNF in the cortex and hippocampus of rats. The observed antidepressant effects of SGS742 in rats may be explained by these findings. SGS742 was well tolerated in experimental animals as well as in young and elderly human volunteers with an absolute bioavailability in humans of 44%. In a Phase II double-blind, placebo-controlled study in 110 patients with mild cognitive impairment (MCI), oral administration of SGS742 at a dose of 600 mg t.i.d. for 8 weeks significantly improved attention, in particular choice reaction time and visual information processing as well as working memory measured as pattern recognition speed. A second Phase II clinical trial in 280 Alzheimer's disease patients is underway.
Collapse
Affiliation(s)
- Wolfgang Froestl
- Neuroscience Research, Novartis Pharma AG, WKL-136.5.25, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Jinno S, Kosaka T. Patterns of colocalization of neuronal nitric oxide synthase and somatostatin-like immunoreactivity in the mouse hippocampus: quantitative analysis with optical disector. Neuroscience 2004; 124:797-808. [PMID: 15026120 DOI: 10.1016/j.neuroscience.2004.01.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2004] [Indexed: 11/15/2022]
Abstract
In some brain regions, previous studies reported the frequent coexistence between neuronal nitric oxide synthase (nNOS) and somatostatin (SOM). In the hippocampus, nNOS and SOM were mainly expressed in GABAergic nonprincipal neurons. Here we estimated the immunocytochemical colocalization of nNOS and SOM in the mouse hippocampus using the optical disector. Both in the Ammon's horn and dentate gyrus, we encountered only a few nNOS-immunoreactive (IR)/SOM-like immunoreactive (LIR) neurons. They were mainly located in the stratum oriens of the Ammon's horn and in the dentate hilus. The nNOS-IR/SOM-LIR neurons usually showed characteristic large somata with thick dendrites, whereas the majority of nNOS-IR/SOM-negative neurons showed small somata with thin dendrites. Quantitative data revealed that the double-labeled cells represented only 4% and 7% of nNOS-IR neurons and SOM-LIR neurons, respectively, in the whole area of the hippocampus. We also found the laminar and dorsoventral differences in the degree of colocalization between nNOS and SOM. The percentages of nNOS-IR neurons containing SOM-like immunoreactivity were relatively high in the stratum oriens of the ventral CA1 region (24%), stratum lucidum of the dorsal CA3 region (29%) and dorsal dentate hilus (32%), but they were quite low in the other layers. On the other hand, the percentages of SOM-LIR neurons containing nNOS immunoreactivity were somewhat high in the stratum lucidum of the dorsal CA3 region (19%) and dorsal dentate hilus (28%), whereas they were very low in the other layers. Immunofluorescent triple labeling of axon terminals for nNOS, SOM and glutamic acid decarboxylase indicated that some nNOS-IR/SOM-LIR neurons might be dendritic inhibitory cells. The present results show the infrequent colocalization of nNOS and SOM in the mouse hippocampus, and also suggest that the double-labeled cells may be a particular subpopulation of hippocampal GABAergic nonprincipal neurons.
Collapse
Affiliation(s)
- S Jinno
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
18
|
Simon A, Czajlik A, Perczel A, Kéri G, Nyikos L, Emri Z, Kardos J. Binding crevice for TT-232 in a homology model of type 1 somatostatin receptor. Biochem Biophys Res Commun 2004; 316:1059-64. [PMID: 15044092 DOI: 10.1016/j.bbrc.2004.02.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Indexed: 11/30/2022]
Abstract
Somatostatin receptor type 1 was modelled based on the atomic structure of bovine rhodopsin. Possible ways of binding interaction between somatostatin receptor type 1 and TT-232, a cycloheptapeptide analogue of somatostatin with broad therapeutic potential, were analysed by molecular docking. The twelve TT-232 conformations, obtained by NMR measurements in H(2)O-D(2)O mixture, were similar, disclosing a consensus backbone conformation. Several residues interacting with TT-232, such as Val133, Asp137 (helix 3), Arg197 (helix 4), Phe287, Gln291, Asn294 (helix 6), Ser305, and Tyr313 (helix 7), were found. In accordance, in vitro binding experiments indicated high-affinity binding of TT-232 to (125)I labelled somatostatin sites in brain membranes. The single binding crevice obtained by docking may allow the design and discovery of new peptidomimetics of TT-232 in the future.
Collapse
Affiliation(s)
- Agnes Simon
- Department of Neurochemistry, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út 59-67, Budapest H-1025, Hungary.
| | | | | | | | | | | | | |
Collapse
|