1
|
The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021; 9:biomedicines9020139. [PMID: 33535566 PMCID: PMC7912729 DOI: 10.3390/biomedicines9020139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The kidney is critical in the long-term regulation of blood pressure. Oxidative stress is one of the many factors that is accountable for the development of hypertension. The five dopamine receptor subtypes (D1R–D5R) have important roles in the regulation of blood pressure through several mechanisms, such as inhibition of oxidative stress. Dopamine receptors, including those expressed in the kidney, reduce oxidative stress by inhibiting the expression or action of receptors that increase oxidative stress. In addition, dopamine receptors stimulate the expression or action of receptors that decrease oxidative stress. This article examines the importance and relationship between the renal dopaminergic system and oxidative stress in the regulation of renal sodium handling and blood pressure. It discusses the current information on renal dopamine receptor-mediated antioxidative network, which includes the production of reactive oxygen species and abnormalities of renal dopamine receptors. Recognizing the mechanisms by which renal dopamine receptors regulate oxidative stress and their degree of influence on the pathogenesis of hypertension would further advance the understanding of the pathophysiology of hypertension.
Collapse
|
2
|
Poirier GL, Huang W, Tam K, DiFranza JR, King JA. Evidence of Altered Brain Responses to Nicotine in an Animal Model of Attention Deficit/Hyperactivity Disorder. Nicotine Tob Res 2017; 19:1016-1023. [PMID: 28444321 DOI: 10.1093/ntr/ntx088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/18/2017] [Indexed: 11/14/2022]
Abstract
Introduction Individuals with attention deficit/hyperactivity disorder (ADHD) are susceptible to earlier and more severe nicotine addiction. To shed light on the relationship between nicotine and ADHD, we examined nicotine's effects on functional brain networks in an animal model of ADHD. Methods Awake magnetic resonance imaging was used to compare functional connectivity in adolescent (post-natal day 44 ± 2) males of the spontaneously hypertensive rat (SHR) strain and two control strains, Wistar-Kyoto and Sprague-Dawley (n = 16 each). We analyzed functional connectivity immediately before and after nicotine exposure (0.4 mg/kg base) in naïve animals, using a region-of-interest approach focussing on 16 regions previously implicated in reward and addiction. Results Relative to the control groups, the SHR strain demonstrated increased functional connectivity between the ventral tegmental area (VTA) and retrosplenial cortex in response to nicotine, suggesting an aberrant response to nicotine. In contrast, increased VTA-substantia nigra connectivity in response to a saline injection in the SHR was absent following a nicotine injection, suggesting that nicotine normalized function in this circuit. Conclusions In the SHR, nicotine triggered an atypical response in one VTA circuit while normalizing activity in another. The VTA has been widely implicated in drug reward. Our data suggest that increased susceptibility to nicotine addiction in individuals with ADHD may involve altered responses to nicotine involving VTA circuits. Implications Nicotine addiction is more common among individuals with ADHD. We found that two circuits involving the VTA responded differently to nicotine in animals that model ADHD in comparison to two control strains. In one circuit, nicotine normalized activity that was abnormal in the ADHD animals, while in the other circuit nicotine caused an atypical brain response in the ADHD animals. The VTA has been implicated in drug reward. Our results would be consistent with an interpretation that nicotine may normalize abnormal brain activity in ADHD, and that nicotine may be more rewarding for individuals with ADHD.
Collapse
Affiliation(s)
- Guillaume L Poirier
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School,Worcester, MA
| | - Wei Huang
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School,Worcester, MA
| | - Kelly Tam
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School,Worcester, MA
| | - Joseph R DiFranza
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA.,Department of Family Medicine and Community Health, University of Massachusetts Medical School, Worcester, MA
| | - Jean A King
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA.,Department of Radiology, University of Massachusetts Medical School, Worcester, MA.,Department of Neurology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
3
|
Investigating complex basal ganglia circuitry in the regulation of motor behaviour, with particular focus on orofacial movement. Behav Pharmacol 2015; 26:18-32. [PMID: 25485640 DOI: 10.1097/fbp.0000000000000118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Current concepts of basal ganglia function have evolved from the essentially motoric, to include a range of extramotoric functions that involve not only dopaminergic but also cholinergic, γ-aminobutyric acid (GABA)ergic and glutamatergic mechanisms. We consider these mechanisms and their efferent systems, including spiralling, feed-forward striato-nigro-striatal circuitry, involving the dorsal and ventral striatum and the nucleus accumbens (NAc) core and shell. These processes are illustrated using three behavioural models: turning-pivoting, orofacial movements in rats and orofacial movements in genetically modified mice. Turning-pivoting indicates that dopamine-dependent behaviour elicited from the NAc shell is funnelled through the NAc-nigro-striato-nigro-pedunculopontine pathway, whereas acetylcholine-dependent behaviour elicited from the NAc shell is funnelled through the NAc-ventral pallidum-mediodorsal thalamus pathway. Cooperative/synergistic interactions between striatal D1-like and D2-like dopamine receptors regulate individual topographies of orofacial movements that are funnelled through striatal projection pathways and involve interactions with GABAergic and glutamatergic receptor subtypes. This application of concerted behavioural, neurochemical and neurophysiological techniques implicates a network that is yet broader and interacts with other neurotransmitters and neuropeptides within subcortical, cortical and brainstem regions to 'sculpt' aspects of behaviour into its topographical collective.
Collapse
|
4
|
Ezrokhi M, Luo S, Trubitsyna Y, Cincotta AH. Neuroendocrine and metabolic components of dopamine agonist amelioration of metabolic syndrome in SHR rats. Diabetol Metab Syndr 2014; 6:104. [PMID: 25937836 PMCID: PMC4416398 DOI: 10.1186/1758-5996-6-104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/16/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The hypertensive, pro-inflammatory, obese state is strongly coupled to peripheral and hepatic insulin resistance (in composite termed metabolic syndrome [MS]). Hepatic pro-inflammatory pathways have been demonstrated to initiate or exacerbate hepatic insulin resistance and contribute to fatty liver, a correlate of MS. Previous studies in seasonally obese animals have implicated an important role for circadian phase-dependent increases in hypothalamic dopaminergic tone in the maintenance of the lean, insulin sensitive condition. However, mechanisms driving this dopaminergic effect have not been fully delineated and the impact of such dopaminergic function upon the above mentioned parameters of MS, particularly upon key intra-hepatic regulators of liver inflammation and lipid and glucose metabolism have never been investigated. OBJECTIVE This study therefore investigated the effects of timed daily administration of bromocriptine, a potent dopamine D2 receptor agonist, on a) ventromedial hypothalamic catecholamine activity, b) MS and c) hepatic protein levels of key regulators of liver inflammation and glucose and lipid metabolism in a non-seasonal model of MS - the hypertensive, obese SHR rat. METHODS Sixteen week old SHR rats maintained on 14 hour daily photoperiods were treated daily for 16 days with bromocriptine (10 mg/kg, i.p.) or vehicle at 1 hour before light offset and, subsequent to blood pressure recordings on day 14, were then utilized for in vivo microdialysis of ventromedial hypothalamic catecholamine activity or sacrificed for the analyses of MS factors and regulators of hepatic metabolism. Normal Wistar rats served as wild-type controls for hypothalamic activity, body fat levels, and insulin sensitivity. RESULTS Bromocriptine treatment significantly reduced ventromedial hypothalamic norepinephrine and serotonin levels to the normal range and systolic and diastolic blood pressures, retroperitoneal body fat level, plasma insulin and glucose levels and HOMA-IR relative to vehicle treated SHR controls. Such treatment also reduced plasma levels of C-reactive protein, leptin, and norepinephrine and increased that of plasma adiponectin significantly relative to SHR controls. Finally, bromocriptine treatment significantly reduced hepatic levels of several pro-inflammatory pathway proteins and of the master transcriptional activators of lipogenesis, gluconeogenesis, and free fatty acid oxidation versus control SHR rats. CONCLUSION These findings indicate that in SHR rats, timed daily dopamine agonist treatment improves hypothalamic and neuroendocrine pathologies associated with MS and such neuroendocrine events are coupled to a transformation of liver metabolism potentiating a reduction of elevated lipogenic and gluconeogenic capacity. This liver effect may be driven in part by concurrent reductions in hyperinsulinemia and sympathetic tone as well as by reductions in intra-hepatic inflammation.
Collapse
|
5
|
Fujita S, Kato R, Cui Y, Terakado M, Suga K, Koshikawa N, Kobayashi M. Apomorphine-induced modulation of neural activities in the ventrolateral striatum of rats. Synapse 2013; 67:363-73. [PMID: 23401143 DOI: 10.1002/syn.21644] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/31/2013] [Indexed: 11/07/2022]
Abstract
The dopaminergic system in the ventrolateral portion of the striatum (Svl), part of the basal ganglia, regulates orofacial movements; bilateral co-stimulation of both dopamine D1 -like and D2 -like receptors elicits repetitive jaw movements in rats. However, how the activities of Svl neurons are modulated by the activation of dopaminergic receptors remains unknown. We systematically injected apomorphine, a non-selective dopamine receptor agonist that induced jaw movements under urethane anesthesia, and performed multi-channel unit recording from Svl neurons. The Svl neurons were classified into two subgroups: (1) the phasically active (PA) neurons represented by mainly the medium spiny neurons and the GABAergic interneurons in part, and (2) the tonically active (TA) neurons composed of mainly the cholinergic interneurons. Apomorphine modulated PA neuron firing frequency with wide variability; 33.3% of the PA neurons were facilitated, while 38.3% were suppressed. In the majority of TA neurons, the firing frequency was reduced by apomorphine (71.1%). The cross-correlations between PA and PA, PA and TA, and TA and TA neurons were analyzed, and pairs of PA neurons and pairs of PA and TA neurons, showed negligible apomorphine-induced effect on the number of synchronized spikes. In contrast, pairs between TA neurons showed a consistent decrease in the number of synchronized spikes. The apomorphine-induced suppression of TA neuron activities with decreased synchronized outputs is likely to reduce the amount of locally released acetylcholine, which may contribute to the induction of apomorphine-induced jaw movements in rats.
Collapse
Affiliation(s)
- Satoshi Fujita
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Dopamine is an important regulator of systemic blood pressure via multiple mechanisms. It affects fluid and electrolyte balance by its actions on renal hemodynamics and epithelial ion and water transport and by regulation of hormones and humoral agents. The kidney synthesizes dopamine from circulating or filtered L-DOPA independently from innervation. The major determinants of the renal tubular synthesis/release of dopamine are probably sodium intake and intracellular sodium. Dopamine exerts its actions via two families of cell surface receptors, D1-like receptors comprising D1R and D5R, and D2-like receptors comprising D2R, D3R, and D4R, and by interactions with other G protein-coupled receptors. D1-like receptors are linked to vasodilation, while the effect of D2-like receptors on the vasculature is variable and probably dependent upon the state of nerve activity. Dopamine secreted into the tubular lumen acts mainly via D1-like receptors in an autocrine/paracrine manner to regulate ion transport in the proximal and distal nephron. These effects are mediated mainly by tubular mechanisms and augmented by hemodynamic mechanisms. The natriuretic effect of D1-like receptors is caused by inhibition of ion transport in the apical and basolateral membranes. D2-like receptors participate in the inhibition of ion transport during conditions of euvolemia and moderate volume expansion. Dopamine also controls ion transport and blood pressure by regulating the production of reactive oxygen species and the inflammatory response. Essential hypertension is associated with abnormalities in dopamine production, receptor number, and/or posttranslational modification.
Collapse
Affiliation(s)
- Ines Armando
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Van Anthony M. Villar
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Pedro A. Jose
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| |
Collapse
|
7
|
Behavioural characterisation of rats exposed neonatally to bisphenol-A: responses to a novel environment and to methylphenidate challenge in a putative model of attention-deficit hyperactivity disorder. J Neural Transm (Vienna) 2008; 115:1079-85. [DOI: 10.1007/s00702-008-0044-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 03/09/2008] [Indexed: 02/02/2023]
|
8
|
Kiguchi M, Fujita S, Lee J, Shimizu N, Koshikawa N. Behavioral responses to methylphenidate and apomorphine in rats exposed neonatally to bisphenol-A. J Oral Sci 2007; 49:311-8. [DOI: 10.2334/josnusd.49.311] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
9
|
McBride SM, Culver B, Flynn FW. Prenatal and early postnatal dietary sodium restriction sensitizes the adult rat to amphetamines. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1192-9. [PMID: 16675632 DOI: 10.1152/ajpregu.00774.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute sodium deficiency sensitizes adult rats to psychomotor effects of amphetamine. This study determined whether prenatal and early life manipulation of dietary sodium sensitized adult offspring to psychomotor effects of amphetamine (1 or 3 mg/kg ip) in two strains of rats. Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) dams were fed chow containing low NaCl (0.12%; LN), normal NaCl (1%; NN), or high NaCl (4%; HN) throughout breeding, gestation, and lactation. Male offspring were maintained on the test diet for an additional 3 wk postweaning and then fed standard chow thereafter until testing began. Overall, blood pressure (BP), total fluid intake, salt preference, and adrenal gland weight were greater in SHR than in WKY. WKY LN offspring had greater water intake and adrenal gland weight than did WKY NN and HN offspring, whereas WKY HN offspring had increased BP, salt intake, and salt preference compared with other WKY offspring. SHR HN offspring also had increased BP compared with other SHR offspring; all other measures were similar for SHR offspring. The low-dose amphetamine increased locomotor and stereotypical behavior compared with baseline and saline injection in both WKY and SHR offspring. Dietary sodium history affected the rats' psychomotor response to the higher dose of amphetamine. Injections of 3 mg/kg amphetamine in both strains produced significantly more behavioral activity in the LN offspring than in NN and HN offspring. These results show that early life experience with low-sodium diets produce long-term changes in adult rats' behavioral responses to amphetamine.
Collapse
Affiliation(s)
- Shawna M McBride
- Graduate Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | | | | |
Collapse
|
10
|
Diaz Heijtz R, Castellanos FX. Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontal-striatal circuitry of SHR and Wistar-Kyoto rats. Behav Brain Funct 2006; 2:18. [PMID: 16729883 PMCID: PMC1524794 DOI: 10.1186/1744-9081-2-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 05/26/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular genetic studies suggest the dopamine D1 receptor (D1R) may be implicated in attention-deficit/hyperactivity disorder (ADHD). As little is known about the potential motor role of D1R in ADHD, animal models may provide important insights into this issue. METHODS We investigated the effects of a full and selective D1R agonist, SKF-81297 (0.3, 3 and 10 mg/kg), on motor behaviour and expression of the plasticity-associated gene, c-fos, in habituated young adult male Spontaneously Hypertensive Rats (SHR), the most commonly used animal model of ADHD, and Wistar-Kyoto (WKY; the strain from which SHR were derived). RESULTS SHR rats were more behaviourally active than WKY rats after injection with vehicle. The 0.3 mg/kg dose of SKF-81297 increased motor behaviour (locomotion, sifting, rearing, and sniffing) in both SHR and WKY rats. Total grooming was also stimulated, but only in WKY rats. The same dose increased c-fos mRNA expression in the piriform cortex of both strains. The 3 mg/kg dose increased sifting and sniffing in both strains. Locomotion was also stimulated towards the end of the testing period. The intermediate dose decreased total rearing in both strains, and produced a significant increase in c-fos mRNA in the striatum, nucleus accumbens, olfactory tuberculum, and in the cingulate, agranular insular and piriform cortices. The 10 mg/kg dose of SKF-81297 produced a biphasic effect on locomotion, which was characterized by an initial decrease followed by later stimulation. The latter stimulatory effect was more pronounced in SHR than in WKY rats when compared to their respective vehicle-injected groups. The 10 mg/kg dose also stimulated sifting and sniffing in both strains. Both the 3 and 10 mg/kg doses had no effect on total grooming. The 10 mg/kg dose induced significantly higher levels of c-fos mRNA expression in the nucleus accumbens and adjacent cortical regions (but not striatum) of SHR when compared to WKY rats. CONCLUSION The present results suggest a potential alteration in D1R neurotransmission within the frontal-striatal circuitry of SHR involved in motor control. These findings extend our understanding of the molecular alterations in SHR, a heuristically useful model of ADHD.
Collapse
Affiliation(s)
- Rochellys Diaz Heijtz
- Department of Psychiatry, New York University School of Medicine, New York VA Medical Center, 423 East 23Street, New York, NY 10010, USA
- New York University Child Study Center, 215 Lexington Avenue, New York, New York 10016, USA
| | - F Xavier Castellanos
- New York University Child Study Center, 215 Lexington Avenue, New York, New York 10016, USA
| |
Collapse
|