1
|
Ishida H, Saito SY, Ishikawa T. α1A-Adrenoceptors, but not α1B- or α1D-adrenoceptors, contribute to enhanced contractile response to phenylephrine in cooling conditions in the rat tail artery. Eur J Pharmacol 2018; 838:120-128. [DOI: 10.1016/j.ejphar.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/24/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022]
|
2
|
Fotso Soh J, Strong HR, Daneshtalab N, Tabrizchi R. The effect of inflammation on sympathetic nerve mediated contractions in rat isolated caudal artery. Eur J Pharmacol 2016; 792:54-62. [PMID: 27793651 DOI: 10.1016/j.ejphar.2016.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
Chronic inflammatory process(es) contributes to changes in vascular function in a variety of diseases. Sympathetic nerve-mediated responses in blood vessels play a pivotal role in regular physiological functions. We tested the hypothesis that sympathetic neuro-effector function will be altered as consequence of inflammatory state. Sympathetic nerve-mediated contractions and alpha adrenergic receptor expressions were evaluated in isolated caudal arteries of rats treated with saline and Complete Freund's adjuvant (CFA). While CFA-treated animals had significantly higher plasma levels of tumor necrosis factor-alpha compared to saline, blood pressure remained unchanged. Immunofluorescence revealed increased expression of ionized calcium adapter binding molecule-1 in the adventitia of blood vessels from CFA-treated animals compared to saline. In isolated arteries, electrical field stimulations between 1.25 and 40Hz resulted in frequency-dependent contractions that wasabolished by tetrodotoxin. Neurogenic contractions from CFA groups were significantly greater than saline. While the presence of alpha1-adrenoceptor antagonist (prazosin) significantly inhibited contractions at lower frequencies of stimulation (1.25-5Hz) in isolated arteries of CFA-treated rats compared to controls, alpha2-adrenoceptor antagonist (rauwolscine) had modest effects. Inhibition of neuronal reuptake by cocaine comparably enhanced field-stimulated responses in vessels of experimental and control animals. Immunofluorescence revealed a difference in expression of alpha1- and alpha2-adrenoceptors in the endothelium of blood vessels of CFA compared to saline controls. Collectively, our observations lend support to enhanced neurogenic contractions in blood vessels of inflamed animals possibly attributing to alterations in responsiveness and/or distribution of post-junctional alpha1-adrenoceptors.
Collapse
Affiliation(s)
- Jocelyn Fotso Soh
- Division of BioMedical Sciences, Faculty of Medicine Memorial University, St. John's, NL, Canada
| | - Hilary R Strong
- Division of BioMedical Sciences, Faculty of Medicine Memorial University, St. John's, NL, Canada
| | - Noriko Daneshtalab
- Division of BioMedical Sciences, Faculty of Medicine Memorial University, St. John's, NL, Canada; School of Pharmacy Memorial University, St. John's, NL, Canada.
| | - Reza Tabrizchi
- Division of BioMedical Sciences, Faculty of Medicine Memorial University, St. John's, NL, Canada.
| |
Collapse
|
3
|
Pytka K, Lustyk K, Żmudzka E, Kotańska M, Siwek A, Zygmunt M, Dziedziczak A, Śniecikowska J, Olczyk A, Gałuszka A, Śmieja J, Waszkielewicz AM, Marona H, Filipek B, Sapa J, Mogilski S. Chemically Homogenous Compounds with Antagonistic Properties at All α1-Adrenoceptor Subtypes but not β1-Adrenoceptor Attenuate Adrenaline-Induced Arrhythmia in Rats. Front Pharmacol 2016; 7:229. [PMID: 27536240 PMCID: PMC4971072 DOI: 10.3389/fphar.2016.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/15/2016] [Indexed: 01/11/2023] Open
Abstract
Studies proved that among all α1-adrenoceptors, cardiac myocytes functionally express only α1A- and α1B-subtype. Scientists indicated that α1A-subtype blockade might be beneficial in restoring normal heart rhythm. Therefore, we aimed to determine the role of α1-adrenoceptors subtypes (i.e., α1A and α1B) in antiarrhythmic effect of six structurally similar derivatives of 2-methoxyphenylpiperazine. We compared the activity of studied compounds with carvedilol, which is β1- and α1-adrenoceptors blocker with antioxidant properties. To evaluate the affinity for adrenergic receptors, we used radioligand methods. We investigated selectivity at α1-adrenoceptors subtypes using functional bioassays. We tested antiarrhythmic activity in adrenaline-induced (20 μg/kg i.v.), calcium chloride-induced (140 and 25 mg/kg i.v.) and barium chloride-induced (32 and 10 mg/kg i.v.) arrhythmia models in rats. We also evaluated the influence of studied compounds on blood pressure in rats, as well as lipid peroxidation. All studied compounds showed high affinity toward α1-adrenoceptors but no affinity for β1 receptors. Biofunctional studies revealed that the tested compounds blocked α1A-stronger than α1B-adrenoceptors, but except for HBK-19 they antagonized α1A-adrenoceptor weaker than α1D-subtype. HBK-19 showed the greatest difference in pA2 values-it blocked α1A-adrenoceptors around seven-fold stronger than α1B subtype. All compounds showed prophylactic antiarrhythmic properties in adrenaline-induced arrhythmia, but only the activity of HBK-16, HBK-17, HBK-18, and HBK-19 (ED50 = 0.18-0.21) was comparable to that of carvedilol (ED50 = 0.36). All compounds reduced mortality in adrenaline-induced arrhythmia. HBK-16, HBK-17, HBK-18, and HBK-19 showed therapeutic antiarrhythmic properties in adrenaline-induced arrhythmia. None of the compounds showed activity in calcium chloride- or barium chloride-induced arrhythmias. HBK-16, HBK-17, HBK-18, and HBK-19 decreased heart rhythm at ED84. All compounds significantly lowered blood pressure in normotensive rats. HBK-18 showed the strongest hypotensive properties (the lowest active dose: 0.01 mg/kg). HBK-19 was the only compound in the group, which did not show hypotensive effect at antiarrhythmic doses. HBK-16, HBK-17, HBK-18, HBK-19 showed weak antioxidant properties. Our results indicate that the studied 2-methoxyphenylpiperazine derivatives that possessed stronger α1A-adrenolytic properties (i.e., HBK-16, HBK-17, HBK-18, and HBK-19) were the most active compounds in adrenaline-induced arrhythmia. Thus, we suggest that the potent blockade of α1A-receptor subtype is essential to attenuate adrenaline-induced arrhythmia.
Collapse
Affiliation(s)
- Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Elżbieta Żmudzka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Magdalena Kotańska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Małgorzata Zygmunt
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Agnieszka Dziedziczak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Joanna Śniecikowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Adrian Olczyk
- Control and Robotics Group, Institute of Automatic Control, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology Gliwice, Poland
| | - Adam Gałuszka
- Control and Robotics Group, Institute of Automatic Control, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology Gliwice, Poland
| | - Jarosław Śmieja
- Systems Engineering Group, Institute of Automatic Control, Faculty of Automatic Control, Electronics and Informatics, Silesian University of Technology Gliwice, Poland
| | - Anna M Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| |
Collapse
|
4
|
Côco H, Pernomian L, Marchi KC, Gomes MS, de Andrade CR, Ramalho LNZ, Tirapelli CR, de Oliveira AM. Consequence of hyperhomocysteinaemia on α1-adrenoceptor-mediated contraction in the rat corpus cavernosum: the role of reactive oxygen species. ACTA ACUST UNITED AC 2016; 68:63-75. [PMID: 26725912 DOI: 10.1111/jphp.12486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/12/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Our main objective was to investigate the mechanisms underlying the effects of hyperhomocysteinaemia (HHcy) on contractile response mediated by α1-adrenoceptors in the rat corpus cavernosum. METHODS Concentration-response curves for phenylephrine (PE) were obtained in strips of corpus cavernosum, in absence or after incubation with tiron, tempol or polyethylene glycol (PEG)-catalase combined or not with tempol. We also measured the superoxide anion (O2(-)) and hydrogen peroxide (H2O2) generation, superoxide dismutase (SOD) and catalase activity and α-actin expression in rat corpus cavernosum from both groups. KEY FINDINGS HHcy increased PE-induced contraction in cavernosal strips. Tiron, PEG-catalase or tempol increased PE-induced contraction in strips from control rats, but it was not altered by tiron or PEG-catalase in HHcy rats, whereas tempol reduced this response. The combination of PEG-catalase and tempol did not alter the contractile response to PE in both groups. HHcy increased O2(-) generation and SOD activity, whereas H2O2 concentration was reduced. Finally, HHcy did not alter catalase activity or expression of α-actin. CONCLUSIONS The major new finding from this study is that HHcy induced a marked increase in PE-induced contraction in rat corpus cavernosum by a mechanism that involves increased O2(-) generation and it could play a role in the pathogenesis of erectile dysfunction associated with HHcy.
Collapse
Affiliation(s)
- Hariane Côco
- Departament of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Larissa Pernomian
- Laboratory of Vascular Injury, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Katia C Marchi
- Departament of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Mayara S Gomes
- Laboratory of Vascular Injury, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Cláudia R de Andrade
- Department of Pathology and Legal Medicine, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Leandra N Z Ramalho
- Nucleus of Applied Bioprospection and Molecular Research, Faculdades Inta, Fortaleza, CE, Brazil
| | - Carlos R Tirapelli
- Laboratory of Pharmacology, Escola de Enfermagem de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Ana M de Oliveira
- Laboratory of Vascular Injury, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
Zaręba P, Dudek M, Lustyk K, Siwek A, Starowicz G, Bednarski M, Nowiński L, Raźny K, Sapa J, Malawska B, Kulig K. α-Adrenoceptor antagonistic and hypotensive properties of novel arylpiperazine derivatives of pyrrolidin-2-one. Bioorg Med Chem 2015; 23:2104-11. [PMID: 25813897 DOI: 10.1016/j.bmc.2015.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 11/26/2022]
Abstract
This study focused on a series of pyrrolidin-2-one derivatives connected via two or four methylene units to arylpiperazine fragment. The compounds obtained for α₁- and α₂-adrenoceptors were assessed. The compound with highest affinity for the α₁-adrenoceptors was 1-{4-[4-(2-chloro-phenyl)-piperazin-1-yl]-butyl}-pyrrolidin-2-one (10 h) with pKi=7.30. Compound with pKi (α₁) ⩾6.44 were evaluated in functional bioassays for intrinsic activity at α₁A- and α₁B-adrenoceptors. All compounds tested were antagonists of the α₁B-adrenoceptors. Additionally, compounds 10e and 10h were α₁A-adrenoceptors antagonist. The dual α₁A-/α₁B-adrenoceptors antagonists, compounds 10e and 10h were also tested in vivo for their hypotensive activity in rats. These compounds, when dosed of 1.0 mg/kg iv in normotensive, anesthetized rats, significantly decreased systolic and diastolic pressure and their hypotensive effects lasted for longer than one hour.
Collapse
Affiliation(s)
- Paula Zaręba
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Magdalena Dudek
- Department of Pharmacodynamics, Jagiellonian University, Collegium Medicum, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Klaudia Lustyk
- Department of Pharmacological Screening, Jagiellonian University, Medical College, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Jagiellonian University, Collegium Medicum, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Gabriela Starowicz
- Department of Pharmacobiology, Jagiellonian University, Collegium Medicum, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University, Medical College, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Leszek Nowiński
- Department of Pharmacodynamics, Jagiellonian University, Collegium Medicum, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Katarzyna Raźny
- Department of Pharmacological Screening, Jagiellonian University, Medical College, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Jacek Sapa
- Department of Pharmacological Screening, Jagiellonian University, Medical College, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kulig
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
6
|
Rapacz A, Sapa J, Nowiński L, Mogilski S, Pytka K, Filipek B, Siwek A, Szkaradek N, Marona H. Biofunctional studies of new 2-methoxyphenylpiperazine xanthone derivatives with α₁-adrenolytic properties. Pharmacol Rep 2014; 67:267-74. [PMID: 25712649 DOI: 10.1016/j.pharep.2014.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/13/2014] [Accepted: 10/13/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND The aim of this study was to assess the selectivity of the studied xanthone derivatives for α1-adrenoceptor subtypes (α1A, α1B, α1D, α1L) in functional experiments in order to verify if they possess any selectivity for a distinct subtype of α1-adrenoceptor. Moreover, several pharmacological tests were carried out to assess whether they reveal other than α1-adrenoceptor blocking properties such as: antagonistic for 5-HT2 receptors, vasorelaxant or spasmolytic. METHODS The influence on α1A-adrenoceptors was examined in biofunctional studies employing isolated rat vas deferens, on α1B-adrenoceptors in guinea-pig spleen, on α1D-adrenoceptors in rat aorta, and on α1L-adrenoceptors in rabbit spleen. Affinity for 5-HT2 receptors was measured in radioligand binding assay, whereas antagonistic potency for 5-HT2 receptors was studied on isolated rat aorta. Vasorelaxant effect of tested compounds was assessed in functional study employing rat aorta, whereas direct spasmolytic activity was investigated using the isolated rabbit small intestine. RESULTS The present study provides evidences that the tested 2-methoxyphenylpiperazine xanthone derivatives are non-selective α1-adrenoceptor blockers. However, at higher concentrations the direct spasmolytic effect could enhance their hypotensive activity. The obtained results indicate that the studied xanthones possessed weak calcium entry blocking activity, as well as antagonistic properties for 5-HT2A receptors. CONCLUSIONS The results of the present study support the idea that the hypotensive activity of the studied compounds is related to their α1-adrenolytic properties.
Collapse
Affiliation(s)
- Anna Rapacz
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland.
| | - Jacek Sapa
- Department of Pharmacological Screening, Chair of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | - Leszek Nowiński
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Siwek
- Department of Cytobiology and Histochemistry, Laboratory of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
| | - Natalia Szkaradek
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
7
|
SAR-studies on the importance of aromatic ring topologies in search for selective 5-HT7 receptor ligands among phenylpiperazine hydantoin derivatives. Eur J Med Chem 2014; 78:324-39. [DOI: 10.1016/j.ejmech.2014.01.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/05/2014] [Accepted: 01/07/2014] [Indexed: 11/22/2022]
|
8
|
Kubacka M, Mogilski S, Filipek B, Marona H. The hypotensive activity and alpha1-adrenoceptor antagonistic properties of some aroxyalkyl derivatives of 2-methoxyphenylpiperazine. Eur J Pharmacol 2012; 698:335-44. [PMID: 23117089 DOI: 10.1016/j.ejphar.2012.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/12/2012] [Accepted: 10/22/2012] [Indexed: 11/17/2022]
Abstract
In the search for new hypotesive agents a series of aroxyalkyl derivatives of 2-methoxyphenylpiperazine was obtained. The aim of the present study was to examine their hypotensive properties and to evaluate their mechanism of action. In the study their hypotensive activity after i.v. and p.o. administration, influence on the pressor responses to adrenaline, noradrenaline and methoxamine, direct spasmolytic and vasorelaxant effects were assessed. In the next step two compounds which were the most active and selective for α(1)-adrenoceptors were evaluated for their α(1)-adrenoreceptor subtypes selectivity in functional bioassays. The data from our experiments indicate that the hypotensive activity of tested aroxyalkyl derivatives of 2-methoxyphenylpiperazine is mainly a result of their α(1)- or α(1)/α(2)-adrenoceptor blocking properties. The two most active compounds showed to be the competitive antagonists of α(1)-adrenoceptors with stronger activity at α(1D)-, α(1A)- and α(1L)- and weaker at α(1B)-subtype.
Collapse
Affiliation(s)
- Monika Kubacka
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland.
| | | | | | | |
Collapse
|
9
|
Sapa J, Kubacka M. The possible mechanism of hypotensive activity of some pyrrolidin-2-one derivatives with antagonist properties at alpha1-adrenoceptors. Eur J Pharmacol 2011; 673:40-8. [DOI: 10.1016/j.ejphar.2011.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/21/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
|
10
|
Physiological significance of P2X receptor-mediated vasoconstriction in five different types of arteries in rats. Purinergic Signal 2011; 7:221-9. [PMID: 21559787 DOI: 10.1007/s11302-011-9226-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/01/2011] [Indexed: 10/18/2022] Open
Abstract
P2X(1) receptors, the major subtype of P2X receptors in the vascular smooth muscle, are essential for α,β-methylene adenosine 5'-triphosphate (α,β-MeATP)-induced vasoconstriction. However, relative physiological significance of P2X(1) receptor-regulated vasoconstriction in the different types of arteries in the rat is not clear as compared with α(1)-adrenoceptor-regulated vasoconstriction. In the present study, we found that vasoconstrictive responses to noncumulative administration of α,β-MeATP in the rat isolated mesenteric arteries were significantly smaller than those to single concentration administration of α,β-MeATP. Therefore, we firstly reported the characteristic of α,β-MeATP-regulated vasoconstrictions in rat tail, internal carotid, pulmonary, mesenteric arteries, and aorta using single concentration administration of α,β-MeATP. The rank order of maximal vasoconstrictions for α,β-MeATP (E (max·α,β-MeATP)) was the same as that of maximal vasoconstrictions for noradrenaline (E (max·NA)) in the internal carotid, pulmonary, mesenteric arteries, and aorta. Moreover, the value of (E (max·α,β-MeATP)/E (max·KCl))/(E (max·NA)/E (max·KCl)) was 0.4 in each of the four arteries, but it was 0.8 in the tail artery. In conclusion, P2X(1) receptor-mediated vasoconstrictions are equally important in rat internal carotid, pulmonary, mesenteric arteries, and aorta, but much greater in the tail artery, suggesting its special role in physiological function.
Collapse
|
11
|
Search for influence of spatial properties on affinity at α1-adrenoceptor subtypes for phenylpiperazine derivatives of phenytoin. Bioorg Med Chem Lett 2010; 20:6152-6. [DOI: 10.1016/j.bmcl.2010.07.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/23/2010] [Accepted: 07/25/2010] [Indexed: 11/17/2022]
|
12
|
Jantschak F, Popp AM, Hofmann RA, Villalón CM, Centurión D, Pertz HH. Postjunctional α2C-adrenoceptors mediate vasoconstriction in rat tail artery: influence of precontraction and temperature on vasoreactivity. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:487-97. [DOI: 10.1007/s00210-010-0564-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022]
|
13
|
Pereira AC, Olivon VC, de Oliveira AM. Impaired calcium influx despite hyper-reactivity in contralateral carotid following balloon injury: eNOS involvement. Eur J Pharmacol 2010; 642:121-7. [DOI: 10.1016/j.ejphar.2010.05.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 03/25/2010] [Accepted: 05/06/2010] [Indexed: 11/24/2022]
|
14
|
Sporkova A, Perez-Rivera A, Galligan JJ. Interaction between alpha(1)- and alpha(2)-adrenoreceptors contributes to enhanced constrictor effects of norepinephrine in mesenteric veins compared to arteries. Eur J Pharmacol 2010; 643:239-46. [PMID: 20599923 DOI: 10.1016/j.ejphar.2010.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/19/2010] [Accepted: 06/10/2010] [Indexed: 02/07/2023]
Abstract
Mesenteric veins are more sensitive than arteries to the constrictor effects of sympathetic nerve stimulation and alpha-adrenoceptor agonists. We tested the hypothesis that alpha(1)- and alpha(2)-adrenoceptors interact to enhance adrenergic reactivity of mesenteric veins. We studied neurogenic and agonist-induced constrictions of mesenteric veins and arteries in vitro. Norepinephrine concentration-response curves were left-shifted in veins compared to arteries. UK 14,304 (0.01-1 microM, alpha(2)-adrenoceptor receptor agonist) did not constrict arteries or veins but enhanced constrictions and Ca(2+) signals mediated by alpha(1)-adrenoceptor stimulation in veins. Yohimbine (alpha(2)-adrenoceptor receptor antagonist) and MK912 (alpha(2C)-adrenoceptor receptor antagonist), but not alpha(2A)- or alpha(2B)-adrenoceptor antagonists, produced rightward shifts in norepinephrine concentration-response curves in veins. Pharmacological studies revealed that alpha(1D)-adrenoceptors mediate venous constrictions. Norepinephrine responses in veins from alpha(2C)-adrenoceptor knock-out (KO) mice were not different from wild type veins. Yohimbine inhibited norepinephrine constrictions in alpha(2C)-adrenoceptor KO veins suggesting that there is upregulation of other alpha(2)-adrenoceptors in alpha(2C)-KO mice. These data indicate that alpha(1D)- and alpha(2C)-adrenoceptors interact in veins but not in arteries. This interaction enhances venous adrenergic reactivity. Mesenteric vein-specific alpha(2)-adrenoceptor linked Ca(2+) and perhaps other signaling pathways account for enhanced venous adrenergic reactivity.
Collapse
Affiliation(s)
- Alexandra Sporkova
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | |
Collapse
|
15
|
Görnemann T, Villalón CM, Centurión D, Pertz HH. Phenylephrine contracts porcine pulmonary veins via alpha(1B)-, alpha(1D)-, and alpha(2)-adrenoceptors. Eur J Pharmacol 2009; 613:86-92. [PMID: 19376108 DOI: 10.1016/j.ejphar.2009.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/20/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
Abstract
We have recently shown that the postjunctional alpha(2)-adrenoceptor mediating contraction of porcine pulmonary veins is of the alpha(2C)-subtype. We could also demonstrate that alpha(1)-adrenoceptors might contribute to the contraction in that blood vessel. In the present study, we aimed at characterising the alpha(1)-adrenoceptor subtype(s) involved using pharmacological and molecular biological methods. In isolated rings of porcine pulmonary veins the typical alpha(1)-adrenoceptor agonist phenylephrine caused a concentration-dependent contraction that was inhibited by the alpha(1B)-adrenoceptor selective antagonists 1-[4-(4-amino-6,7-dimethoxyquinazolin-2-yl)piperazin-1-yl]-2-[2-(isopropyl)-6-methoxyphenoxy]ethan-1-one (Rec15/2615; pA(2) 8.96+/-0.13) and 4-amino-2-[4-[1-(benzyloxycarbonyl)-2(S)-[[(1,1-dimethylethyl)amino]carbonyl]-piperazinyl]-6,7-dimethoxyquinazoline (L-765,314; pA(2) 7.22+/-0.05), as well as the alpha(1D)-adrenoceptor selective antagonist 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione (BMY7378; pA(2) 8.29+/-0.15, slope of the Schild plot 0.75+/-0.09, significantly different from unity, P<0.05), but not by the alpha(1A)-adrenoceptor selective antagonists (+/-)-1,3,5-trimethyl-6-[[3-[4-((2,3-dihydro-2-hydroxymethyl)-1,4-benzodioxin-5-yl)-1-piperazinyl]propyl]amino]-2,4(1H,3H)-pyrimidinedione (B8805-033) and N-[2-(2-cyclopropylmethoxyphenoxy)ethyl]-5-chloro-alpha,alpha-dimethyl-1H-indole-3-ethanamine (RS-17053). These findings suggest that phenylephrine activates both alpha(1B)- and alpha(1D)-adrenoceptors. The observation was confirmed by reverse-transcriptase polymerase chain reaction (RT-PCR) in porcine pulmonary veins, where mRNA signals for alpha(1B)- and alpha(1D)-adrenoceptors could be detected. However, the antagonist properties of rauwolscine and yohimbine (non-subtype selective alpha(2)-adrenoceptor antagonists) against phenylephrine showed that this agonist also activates alpha(2)-adrenoceptors in pulmonary veins. This was strengthened in experiments using tissues that were stimulated with forskolin (cell permeable activator of adenylyl cyclase). Phenylephrine mimicked the effect of the selective alpha(2)-adrenoceptor agonist UK14304 by causing an inhibition of forskolin-stimulated cAMP accumulation that was blocked by rauwolscine. It is concluded that, in addition to alpha(1B)- and alpha(1D)-adrenoceptors, phenylephrine can stimulate alpha(2)-adrenoceptors in porcine pulmonary veins.
Collapse
Affiliation(s)
- Tilo Görnemann
- Freie Universität Berlin, Institut für Pharmazie, Berlin (Dahlem), Germany
| | | | | | | |
Collapse
|
16
|
Handzlik J, Maciag D, Kubacka M, Mogilski S, Filipek B, Stadnicka K, Kieć-Kononowicz K. Synthesis, alpha 1-adrenoceptor antagonist activity, and SAR study of novel arylpiperazine derivatives of phenytoin. Bioorg Med Chem 2008; 16:5982-98. [PMID: 18490167 DOI: 10.1016/j.bmc.2008.04.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 11/25/2022]
Abstract
In the search for new antiarrhythmic agents, some active 2-methoxyphenylpiperazine derivatives of phenytoin were obtained as a chemical modification of compound AZ-99 (3-ethyl-1-[2-hydroxy-3-(4-phenylpiperazin-1-yl)-propyl]-2,4-dioxo-5,5-diphenylimidazolidine). These compounds possessed structural properties similar to those of alpha(1)-adrenoceptor antagonists. In the present study, the affinities of the 2-methoxyphenylpiperazine derivatives (1a-3a) for alpha(1)- and alpha(2)-adrenoceptors were evaluated using radioligand ([(3)H]prazosin, [(3)H]clonidine) binding assays. In the next step, a new series of phenylpiperazine derivatives of phenytoin (4a-16a) containing 2-methoxyphenyl-, 2-ethoxyphenyl-, 2-pyridyl- or 2-furoylpiperazine moiety, as well as, various ester or alkyl substituents at 3-position of hydantoin ring were synthesized. The newly synthesized compounds were tested for their affinity to alpha(1)- and alpha(2)-adrenoceptors. They have shown affinities for alpha(1)-adrenoceptors at nanomolar to submicromolar range. Some compounds were moderately selective ligands of alpha(1)-adrenoceptors. Selected compounds (3a-5a, 7a, 13a, 14a) were also evaluated for their alpha(1)-adrenoceptor antagonistic properties in functional bioassays. A SAR study indicated that the most active compounds contain 2-alkoxyphenylpiperazine moieties and methyl or 2-methylpropionate substituent at 3-N position in hydantoin. The exchange of 2-alkoxyphenyl moiety into 2-furoyl or 2-pyridyl group significantly decreased affinities for alpha(1)-adrenoceptors. Molecular modelling results obtained using conformational analysis CONFLEX and PM5 method for geometry optimization, allowed for comparison of the spatial properties of tested compounds with pharmacophore model created by Barbaro et al. for the ideal alpha(1)-adrenoceptor antagonist.
Collapse
Affiliation(s)
- Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | | | | | | | | | | | | |
Collapse
|
17
|
Khan MAH, Sattar MA, Abdullah NA, Johns EJ. Alpha1B-adrenoceptors mediate adrenergically-induced renal vasoconstrictions in rats with renal impairment. Acta Pharmacol Sin 2008; 29:193-203. [PMID: 18215348 DOI: 10.1111/j.1745-7254.2008.00727.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM This study examined whether alpha1B-adrenoceptors are involved in mediating adrenergically-induced renal vasoconstrictor responses in rats with pathophysiological and normal physiological states. METHODS Male Wistar Kyoto and spontaneously hypertensive rats were induced with acute renal failure or experimental early diabetic nephropathy by cisplatin or streptozotocin, respectively. Cisplatin-induced renal failure was confirmed by impaired renal function and pronounced tubular damage. Experimental early diabetic nephropathy was confirmed by hyperglycemia, changes in physiological parameters, and renal function. The hemodynamic study was conducted on anesthetized rats after 7 d of cisplatin (renal failure) and 4 weeks of streptozotocin (experimental early diabetic nephropathy). RESULTS In the rats with renal failure and experimental early diabetic nephropathy, there were marked reductions in their baseline renal blood flow (P<0.01). The baseline mean arterial blood pressure was either unaltered or lower (all P>0.05) in the renal failure and experimental early diabetic nephropathy rats, respectively, as compared to their non-renal failure and non-diabetic nephropathy controls. In the rats with renal impairment, chloroethylclonidine caused either accentuation or attenuation (all P<0.01) of the renal vasoconstrictor responses elicited by the adrenergic stimuli. However, in the non-renal failure and in the non-diabetic nephropathy rats, chloroethylclonidine did not cause any alteration in such responses (P>0.05). CONCLUSION This study demonstrated the presence of functional alpha1B-adrenoceptors that mediated the adrenergically-induced renal vasoconstrictions in rats with renal impairment, but not in rats with normal renal function.
Collapse
Affiliation(s)
- Md Abdul Hye Khan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | | | | | | |
Collapse
|
18
|
Görnemann T, Jähnichen S, Schurad B, Latté KP, Horowski R, Tack J, Flieger M, Pertz HH. Pharmacological properties of a wide array of ergolines at functional alpha1-adrenoceptor subtypes. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:321-30. [DOI: 10.1007/s00210-007-0221-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 11/08/2007] [Indexed: 11/25/2022]
|
19
|
Wijetunge S, Hughes AD. Src family tyrosine kinases mediate contraction of rat isolated tail arteries in response to a hyposmotic stimulus. J Hypertens 2007; 25:1871-8. [PMID: 17762651 PMCID: PMC2763211 DOI: 10.1097/hjh.0b013e328255e8f0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Hypotonic solutions cause vasoconstriction in rat tail arteries, due largely to activation of L-type calcium channels (CaV1.2). We studied possible roles of tyrosine kinases, particularly src family kinases (SFK) and extracellular signal-related kinases (ERK1/2), in this response. METHODS Rat tail arteries were mounted on a myograph for measurement of isometric force. Arteries were bathed in isosmotic physiological saline solution (300 mOsm/l) containing 50 mmol/l mannitol and were stimulated by a hyposmotic solution containing 0 mmol/l mannitol (PSS-M). Activation of tyrosine kinases and ERK1/2 by hyposmotic solution was examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting on rat tail artery lysates with specific phospho-antibodies. RESULTS Western blotting showed SFK src and yes present in rat tail artery. PSS-M increased tyrosine phosphorylation of several proteins, including SFK and ERK1/2. Genistein blocked phosphorylation of SFK and ERK1/2 by PSS-M. In isolated arteries PSS-M caused a contraction inhibited by the tyrosine kinase inhibitor, genistein, and three structurally different selective SFK inhibitors, herbimycin-A, PP1 and SU6656. Mitogen-activated protein kinase kinase inhibitor PD98059 or selective inhibitors of platelet-derived growth factor receptor (AG1296) and epidermal growth factor receptor (AG1478) had no effect on contraction induced by a hypotonic solution. CONCLUSIONS Hyposmotic conditions activate SFK, src and yes, and contract rat tail artery by a SFK-dependent mechanism. ERK1/2 are activated by the hypotonic solution, but do not play a role in the contractile response. SFK modulation of CaV1.2 may be an important mechanism mediating vasoconstriction to mechanical stimuli in vascular smooth muscle.
Collapse
Affiliation(s)
- Sumangali Wijetunge
- Clinical Pharmacology, NHLI Division, Faculty of Medicine, Imperial College London, London, UK.
| | | |
Collapse
|
20
|
Kamikihara SY, Mueller A, Lima V, Akinaga J, Nojimoto FD, Castilho A, Buratini J, Pupo AS. alpha1-Adrenoceptors in proximal segments of tail arteries from control and reserpinised rats. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:117-26. [PMID: 17676312 DOI: 10.1007/s00210-007-0176-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
It has been recently shown that the supersensitivity of distal segments of the rat tail artery to phenylephrine after chemical sympathectomy with reserpine results from the appearance of alpha(1D)-adrenoceptors. It is known that both alpha(1A)- and alpha(1D)-adrenoceptors are involved in the contractions of proximal portions of the rat tail artery. Therefore, this study investigated whether sympathectomy with reserpine would induce supersensitivity in proximal segments of the rat tail artery, a tissue in which alpha(1D)-adrenoceptors are already functional. Proximal segments of tail arteries from reserpinised rats were three- to sixfold more sensitive to phenylephrine and methoxamine than were arteries from control rats (n = 6-2; p < 0.05). The imidazolines N-[5-(4,5-Dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide hydrobromide (A-61603) and oxymetazoline, which activate selectively alpha(1A)-adrenoceptors, were equipotent in tail arteries from control and reserpinised rats (n = 4-2; p < 0.05), whereas buspirone, which activates selectively alpha(1D)-adrenoceptor, was approximately 4-fold more potent in tail arteries from reserpinised rats (n = 4-6; p < 0.05). Prazosin (nonselective) and 5-methylurapidil (alpha(1A)-selective), were competitive antagonists of contractions induced by phenylephrine and were equipotent in tail arteries from control and reserpinised rats (n = 4-6). The selective alpha(1D)-adrenoceptor antagonist 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione dihydrochloride (BMY-7378) presented similar complex antagonism in tail arteries from control and reserpinised rats, with Schild slopes much lower than 1.0 (p < 0.05, n = 4-6). Semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) revealed that mRNA encoding alpha(1A)-and alpha(1B)-adrenoceptors are similarly distributed in tail arteries from control and reserpinised rats, whereas mRNA for alpha(1D)-adrenoceptors is twice more abundant in the tail artery from reserpinised rats. In conclusion, the supersensitivity induced by reserpine is related only to alpha(1D)-adrenoceptors, even in tissues where this receptor subtype is already present and functional. Only the use of subtype-selective alpha(1)-adrenoceptor agonists detected the increased alpha(1D)-adrenoceptor component after reserpinisation, as the antagonists behaved similarly in tail arteries from control and reserpinised rats.
Collapse
MESH Headings
- Adrenergic alpha-1 Receptor Agonists
- Adrenergic alpha-1 Receptor Antagonists
- Animals
- Arteries/drug effects
- Arteries/innervation
- Arteries/metabolism
- Buspirone/pharmacology
- Gene Expression
- Imidazoles/pharmacology
- In Vitro Techniques
- Male
- Methoxamine/pharmacology
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Oxymetazoline/pharmacology
- Phenylephrine/pharmacology
- Piperazines/pharmacology
- Prazosin/pharmacology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-1/biosynthesis
- Reserpine/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Sympathectomy
- Tail/blood supply
- Tetrahydronaphthalenes/pharmacology
Collapse
Affiliation(s)
- Susana Y Kamikihara
- Department of Pharmacology, Instituto de Biociências, UNESP, Botucatu, SP 18618-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hillman KL, Doze VA, Porter JE. Alpha1A-adrenergic receptors are functionally expressed by a subpopulation of cornu ammonis 1 interneurons in rat hippocampus. J Pharmacol Exp Ther 2007; 321:1062-8. [PMID: 17337632 DOI: 10.1124/jpet.106.119297] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The importance of adrenergic receptors (ARs) in the hippocampus has generally focused on betaARs; however, interest is growing in hippocampal alphaARs given their purported neuroprotective role. We have previously reported alpha(1)AR transcripts in a subpopulation of cornu ammonis 1 (CA1) interneurons. The goal of this study was to identify the specific alpha(1)AR subtype (alpha(1A), alpha(1B), alpha(1D)) functionally expressed by these cells. Using cell-attached recordings to measure action potential frequency changes, concentration-response curves for the selective alpha(1)AR agonist phenylephrine (PE) were generated in the presence of competitive subtype-selective alpha(1)AR antagonists. Schild regression analysis was then used to estimate equilibrium dissociation constants (K(b)) for each receptor antagonist in our system. The selective alpha(1A)AR antagonists, 5-methylurapidil and WB-4101 [2-[(2,6-dimethoxyphenoxyethyl)aminomethyl]-1,4-benzodioxane hydrochloride], produced consecutive rightward shifts in the concentration-response curve for PE when used at discriminating, nanomolar concentrations. Calculated K(b) values for 5-methylurapidil (10 nM) and WB-4101 (5 nM) correlate to previously published affinity values for these antagonists at the alpha(1A)AR. The selective alpha(1B)AR antagonist L-765,314 [(2S)-4-(4-amino-6,7-dimethoxy-2-quinazolinyl)-2-[[(1,1-dimethylethyl)amino]carbonyl]-1-piperazinecarboxylic acid], as well as the selective alpha(1D)AR antagonist BMY7378 [8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione dihydrochloride], produced significant rightward shifts in the concentration-response curve for PE only when used at nondistinguishing, micromolar concentrations. Calculated K(b) values for L-765,314 (794 nM) and BMY7378 (316 nM) do not agree with affinity values for these antagonists at the alpha(1B) or alpha(1D)AR, respectively. Rather, these K(b) values more closely match equilibrium dissociation constants estimated for these compounds when used to identify alpha(1A)AR subtypes. Together, our results provide strong evidence to support functional expression of alpha(1A)ARs in a subpopulation of CA1 interneurons.
Collapse
Affiliation(s)
- Kristin L Hillman
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Stop 9037, Grand Forks, North Dakota 58202-9037, USA
| | | | | |
Collapse
|
22
|
Parés-Hipólito J, Gómez-Zamudio JH, Gallardo-Ortiz IA, López-Guerrero JJ, Santamaría-Ortiz J, Ibarra M, Villalobos-Molina R. Selective agonists reveal ?1A- and ?1B-adrenoceptor subtypes in caudal artery of the young rat. ACTA ACUST UNITED AC 2006; 26:371-8. [PMID: 16968476 DOI: 10.1111/j.1474-8673.2006.00380.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple alpha(1)-adrenoceptors were evaluated in caudal artery of the young Wistar rat using selective agonists and antagonists. Arteries were exposed to the selective alpha(1A)-adrenoceptor agonist, A-61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl] methanesulfonamide) or to phenylephrine and to prazosin (alpha(1)-adrenoceptor antagonist), or the selective alpha(1A)-adrenoceptor antagonists 5-methylurapidil, RS 100329 (5-methyl-3-[3-[4-[2-(2,2,2,-trifluoroethoxy)phenyl]-1-piperazinyl]propyl]-2,4-(1H)-pyrimidinedione), RS 17053 (N-[2(2-cyclopropylmethoxy) ethyl]-5-chloro-alpha, alpha-dimethyl-1H-indole-3-ethanamide), and the selective alpha(1D)-adrenoceptor antagonist BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5] decane-7,9-dione). Results showed a 100-fold higher potency of A-61603 for the alpha(1)-adrenoceptor present in the artery, compared with phenylephrine. Prazosin displaced both agonists with high affinity, whereas 5-methylurapidil, RS 100329 and RS 17053 displaced A-61603 with high affinity, indicating the presence of alpha(1A)-adrenoceptors. The selective alpha(1A)-adrenoceptor antagonists blocked phenylephrine responses with low affinity, suggesting that phenylephrine activated a second receptor population in caudal artery. BMY 7378 antagonized with low affinity both A-61603 and phenylephrine-induced contractions, indicating absence of alpha(1D)-adrenoceptors in the vessel. The results suggest that functional alpha(1B)-adrenoceptors are present in caudal arteries of the young Wistar rat.
Collapse
Affiliation(s)
- J Parés-Hipólito
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Sede Sur, Mexico, D.F
| | | | | | | | | | | | | |
Collapse
|
23
|
Kennedy WB, Crane L, Gonzalez RR, George OK, Edwards LP. Centrally Acting Imidazolines Stimulate Vascular Alpha 1A-Adrenergic Receptors in Rat-Tail Artery. Cell Mol Neurobiol 2006; 26:645-57. [PMID: 16897362 DOI: 10.1007/s10571-006-9109-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 06/26/2006] [Indexed: 01/02/2023]
Abstract
: 1. Centrally acting imidazoline antihypertensive agents clonidine and moxonidine also act peripherally to contract blood vessels. While these agents act at both I(1)-imidazoline and alpha 2 adrenergic receptors centrally, the receptor types by which they mediate contraction require further definition. We therefore characterized the receptor subtype by which these agents mediate contraction of proximal rat-tail artery. 2. Dose-response curves were determined for phenylephrine and for several imidazoline ligands, using endothelium denuded, isolated ring segments, of tail arteries from adult male Sprague-Dawley rats. Ring segments were mounted on a force transducer with platinum wires and immersed in a tissue bath containing Krebs solution, to which drugs could be added. Signals were digitized and recorded by a computer. 3. Tail artery contractions expressed as a percent of contraction to 106 mM potassium were phenylephrine (96%), moxonidine (88%), clonidine (52%), and UK14304 (30%). Neither rilmenidine nor harmane caused contraction. Contraction of tail artery to moxonidine or clonidine could be blocked by alpha 1 antagonist urapidil or prazosin, and also by alpha 1A subtype selective antagonist WB4101. Schild plots were generated and a calculated pA2 value of 9.2 for prazosin in the presence of clonidine confirms clonidine as an agonist at alpha 1A receptors in proximal segments of rat-tail artery. 4. Our work suggests that clonidine and moxonidine are promiscuous compounds at micromolar concentrations and that harmane and rilmenidine are more selective compounds for in vivo imidazoline research.
Collapse
Affiliation(s)
- Wentsworth B Kennedy
- Department of Pharmacology/Physiology, Loma Linda University, Risley Hall, 110421 Campus Street, Loma Linda, California 92350, USA
| | | | | | | | | |
Collapse
|
24
|
de Andrade CR, Fukada SY, Olivon VC, de Godoy MAF, Haddad R, Eberlin MN, Cunha FQ, de Souza HP, Laurindo FRM, de Oliveira AM. Alpha1D-adrenoceptor-induced relaxation on rat carotid artery is impaired during the endothelial dysfunction evoked in the early stages of hyperhomocysteinemia. Eur J Pharmacol 2006; 543:83-91. [PMID: 16828078 DOI: 10.1016/j.ejphar.2006.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 05/27/2006] [Accepted: 06/02/2006] [Indexed: 11/20/2022]
Abstract
Hyperhomocysteinemia is a known risk factor for cardiovascular diseases, but the underlying mechanisms of this pathology are complex. We aimed to evaluate the effect of hyperhomocysteinemia in vasorelaxations induced by alpha(1D)-adrenoceptor agonists. Vascular reactivity of rat carotid artery to the alpha-adrenoceptor agonist, phenylephrine, was enhanced in hyperhomocysteinemia. Mechanical removal of endothelium did not modify the carotid responsiveness to phenylephrine, compared to control. Phenylephrine induces endothelium-dependent relaxation, in the presence of 5-methyl urapidil (alpha(1A)-adrenoceptor antagonist). We hypothesised that endothelial-relaxant alpha(1)-adrenoceptors are impaired by hyperhomocysteinemia. Incubation with prazosin (selective alpha(1)-adrenoceptor antagonist) or BMY7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4,5]decane-7, 9-dione dihydrochloride) (selective alpha(1D)-adrenoceptor antagonist), similarly inhibited phenylephrine-induced relaxations in both control and hyperhomocysteinemic carotids. Immunohistochemistry showed enhanced immunoreactivity for eNOS and iNOS in hyperhomocysteinemic rats. In carotid arteries from hyperhomocysteinemic rats there was a decrease in superoxide dismutase activity and enhanced superoxide anion production. We conclude that alpha(1D)-adrenoceptors mediate endothelium-dependent relaxation triggered by phenylephrine in rat carotid artery and affect the final tone. Furthermore, the enhanced phenylephrine-induced contraction in carotid artery due to hyperhomocysteinemia is endothelium-dependent and involves a loss of the inhibitory effect of relaxant alpha(1D)-adrenoceptors by reducing NO biodisponibility.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Carotid Arteries/drug effects
- Carotid Arteries/metabolism
- Carotid Arteries/physiopathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/pharmacology
- Hyperhomocysteinemia/chemically induced
- Hyperhomocysteinemia/metabolism
- Hyperhomocysteinemia/physiopathology
- Male
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/biosynthesis
- Phenylephrine/pharmacology
- Piperazines/pharmacology
- Prazosin/pharmacology
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/metabolism
- Superoxide Dismutase/metabolism
- Superoxides/metabolism
- Vasoconstriction/drug effects
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Claudia Roberta de Andrade
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schurad B, Horowski R, Jähnichen S, Görnemann T, Tack J, Pertz HH. Proterguride, a highly potent dopamine receptor agonist promising for transdermal administration in Parkinson's disease: Interactions with α1-, 5-HT2- and H1-receptors. Life Sci 2006; 78:2358-64. [PMID: 16310806 DOI: 10.1016/j.lfs.2005.09.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 09/21/2005] [Indexed: 11/19/2022]
Abstract
Dopamine receptor agonists play an important role in the treatment of Parkinson's disease and hyperprolactinemic conditions. Proterguride (n-propyldihydrolisuride) was already reported to be a highly potent dopamine receptor agonist, thus its action at different non-dopaminergic monoamine receptors, alpha(1A/1B/1D), 5-HT(2A/2B)- and histamine H(1), was investigated using different functional in vitro assays. The drug behaved as an antagonist at alpha(1)-adrenoceptors without the ability to discriminate between the subtypes (pA(2) values: alpha(1A) 7.31; alpha(1B) 7.37; alpha(1D) 7.35) and showed antagonistic properties at the histamine H(1) receptor. In contrast, at serotonergic receptors (5-HT(2A), 5-HT(2B)) proterguride acted as a partial agonist. The drug stimulated 5-HT(2A) receptors of rat tail artery in lower concentrations than 5-HT itself but failed to evoke comparable efficacy (proterguride: pEC(50) 8.34, E(max) 53% related to the maximum response to 5-HT; 5-HT: pEC(50) 7.03). Agonism at 5-HT(2B) receptors is presently considered to be involved in drug-induced valvular heart disease. Activation of 5-HT(2B) receptors in porcine pulmonary arteries by proterguride (pEC(50) 7.13, E(max) 49%; E(max) (5-HT) 69%), however, occurred at concentrations much higher than plasma concentrations achieving dopaminergic efficacy in humans. The results are discussed focussing on the relevance of action at 5-HT(2B) receptors as well as their significance for a transdermal administration of proterguride. Since it is well accepted that pulsatile dopaminergic stimulation is associated with treatment-related motor complications in the dopaminergic therapy of Parkinson's disease, the transdermal route of administration is of great clinical interest due to the possibility to achieve constant plasma concentrations.
Collapse
MESH Headings
- Administration, Cutaneous
- Animals
- Antiparkinson Agents/administration & dosage
- Antiparkinson Agents/pharmacology
- Aorta, Thoracic/drug effects
- Arteries/drug effects
- Dopamine Agonists/administration & dosage
- Dopamine Agonists/pharmacology
- Ergolines/administration & dosage
- Ergolines/pharmacology
- Guinea Pigs
- In Vitro Techniques
- Muscle, Smooth, Vascular/drug effects
- Pulmonary Artery/drug effects
- Rats
- Receptor, Serotonin, 5-HT2B/drug effects
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Histamine H1/drug effects
- Receptors, Serotonin/drug effects
- Regional Blood Flow/drug effects
- Spleen/drug effects
- Swine
- Tail/blood supply
- Urea/administration & dosage
- Urea/analogs & derivatives
- Urea/pharmacology
Collapse
Affiliation(s)
- B Schurad
- NeuroBiotec GmbH, Tegeler Str. 6, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Kamikihara SY, Mueller A, Lima V, Silva ART, da Costa IB, Buratini J, Pupo AS. Differential Distribution of Functional α1-Adrenergic Receptor Subtypes along the Rat Tail Artery. J Pharmacol Exp Ther 2005; 314:753-61. [PMID: 15872040 DOI: 10.1124/jpet.105.087502] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rat tail artery has been used for the study of vasoconstriction mediated by alpha(1A)-adrenoceptors (ARs). However, rings from proximal segments of the tail artery (within the initial 4 cm, PRTA) were at least 3-fold more sensitive to methoxamine and phenylephrine (n = 6-12; p < 0.05) than rings from distal parts (between the sixth and 10th cm, DRTA). Interestingly, the imidazolines N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide hydrobromide (A-61603) and oxymetazoline, which activate selectively alpha(1A)-ARs, were equipotent in PRTA and DRTA (n = 4-12), whereas buspirone, which activates selectively alpha(1D)-AR, was approximately 70-fold more potent in PRTA than in DRTA (n = 8; p < 0.05). The selective alpha(1D)-AR antagonist 8-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione dihydrochloride (BMY-7378) was approximately 70-fold more potent against the contractions induced by phenylephrine in PRTA (pK(B) of approximately 8.45; n = 6) than in DRTA (pK(B) of approximately 6.58; n = 6), although the antagonism was complex in PRTA. 5-Methylurapidil, a selective alpha(1A)-antagonist, was equipotent in PRTA and DRTA (pK(B) of approximately 8.4), but the Schild slope in DRTA was 0.73 +/- 0.05 (n = 5). The noncompetitive alpha(1B)-antagonist conotoxin rho-TIA reduced the maximal contraction induced by phenylephrine in DRTA, but not in PRTA. These results indicate a predominant role for alpha(1A)-ARs in the contractions of both PRTA and DRTA but with significant coparticipations of alpha(1D)-ARs in PRTA and alpha(1B)-ARs in DRTA. Semiquantitative reverse transcription-polymerase chain reaction revealed that mRNA encoding alpha(1A)- and alpha(1B)-ARs are similarly distributed in PRTA and DRTA, whereas mRNA for alpha(1D)-ARs is twice more abundant in PRTA. Therefore, alpha(1)-ARs subtypes are differentially distributed along the tail artery. It is important to consider the segment from which the tissue preparation is taken to avoid misinterpretations on receptor mechanisms and drug selectivities.
Collapse
Affiliation(s)
- Susana Y Kamikihara
- Department of Pharmacology, Instituto de Biociências, UNESP, Botucatu, São Paulo, Brazil, 18618-000
| | | | | | | | | | | | | |
Collapse
|