1
|
Zaki ES, Sayed RH, Saad MA, El-Yamany MF. Roflumilast ameliorates ovariectomy-induced depressive-like behavior in rats via activation of AMPK/mTOR/ULK1-dependent autophagy pathway. Life Sci 2023:121806. [PMID: 37257579 DOI: 10.1016/j.lfs.2023.121806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
AIMS Roflumilast, a well-known phosphodiesterase-4 (PDE-4) inhibitor, possess an anti-inflammatory activity with approved indications in chronic obstructive pulmonary disease. This study aimed to evaluate the neuroprotective role of roflumilast in ovariectomy (OVX)-induced depressive-like behavior in female rats and to shed light on a potential autophagy enhancing effect. MAIN METHODS Rats were randomly divided into four groups: sham, OVX, OVX + roflumilast (1 mg/kg, p.o), and OVX + roflumilast + chloroquine (CQ) (50 mg/kg, i.p). Drugs were administered for 4 weeks starting 2 weeks after OVX. KEY FINDINGS Roflumilast improved the depressive-like behaviors observed in OVX rats as evidenced by decreasing both forced swimming and open field immobility times while, increasing % sucrose preference and number of open field crossed squares. Histopathological analysis provides further evidence of roflumilast's beneficial effects, demonstrating that roflumilast ameliorated the neuronal damage caused by OVX. Roflumilast antidepressant potential was mediated via restoring hippocampal cAMP and BDNF levels as well as down-regulating PDE4 expression. Moreover, roflumilast revealed anti-inflammatory and anti-apoptotic effects via hindering TNF-α level and diminishing Bax/Bcl2 ratio. Roflumilast restored the autophagic function via up-regulation of p-AMPK, p-ULK1, Beclin-1 and LC3II/I expression, along with downregulation of P62 level and p-mTOR protein expression. The autophagy inhibitor CQ was used to demonstrate the suggested pathway. SIGNIFICANCE The present study revealed that roflumilast showed an anti-depressant activity in OVX female rats via turning on AMPK/mTOR/ULK1-dependent autophagy pathway; and neurotrophic, anti-inflammatory, and anti-apoptotic activities. Roflumilast could offer a more secure alternative to hormone replacement therapy for postmenopausal depression treatment.
Collapse
Affiliation(s)
- Eman S Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Muhammed A Saad
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, 4184, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Muhammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
On the role of serotonin 5-HT 1A receptor in autistic-like behavior: сross talk of 5-HT and BDNF systems. Behav Brain Res 2023; 438:114168. [PMID: 36280010 DOI: 10.1016/j.bbr.2022.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022]
Abstract
Autism spectrum disorders (ASDs) are some of the most common neurodevelopmental disorders; however, the mechanisms underlying ASDs are still poorly understood. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) are known as key players in brain and behavioral plasticity and interact with each other. 5-HT1A receptor is a principal regulator of the brain 5-HT system, which modulates normal and pathological behavior. Here we investigated effects of adeno-associated-virus-based 5-HT1A receptor overexpression in the hippocampus of BTBR mice (which are a model of autism) on various types of behavior and on the expression of 5-HT7 receptor, proBDNF, mature BDNF, and BDNF receptors (TrkB and p75NTR). The 5-HT1A receptor overexpression in BTBR mice reduced stereotyped behavior in the marble-burying test and extended the time spent in the center in the open field test. Meanwhile, this overexpression failed to affect social behavior in the three-chambered test, immobility time in the tail suspension test, locomotor activity in the open field test, and associative learning within the "operant wall" paradigm. The 5-HT1A receptor overexpression in the hippocampus raised hippocampal 5-HT7 receptor mRNA and protein levels. Additionally, the 5-HT1A receptor overexpression lowered both mRNA and protein levels of TrkB receptor but failed to affect proBDNF, mature BDNF, and p75NTR receptor expression in the hippocampus of BTBR mice. Thus, obtained results suggest the involvement of the 5-HT and BDNF systems' interaction mediated by 5-HT1A and TrkB receptors in the mechanisms underlying autistic-like behavior in BTBR mice.
Collapse
|
3
|
Cilostazol as an adjunctive treatment in major depressive disorder: a pilot randomized, double-blind, and placebo-controlled clinical trial. Psychopharmacology (Berl) 2022; 239:551-559. [PMID: 35072758 DOI: 10.1007/s00213-021-06041-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cilostazol, a phosphodiesterase-3 inhibitor, has been reported to improve depressive-like behavior in experimental studies of depression. We investigated the safety and efficacy of cilostazol combination therapy with sertraline in treating patients with major depressive disorder (MDD) in a 6-week, parallel, randomized controlled trial. METHOD Among patients referred to the outpatient clinic of a tertiary hospital, those with a diagnosis of MDD with moderate to severe severity (a score of >19 on the Hamilton depression rating scale (HAM-D)) were enrolled. A total of 54 MDD patients aged 18-65 years were randomly assigned to either the cilostazol (100 mg daily) or the placebo group. Both groups received sertraline 100 mg per day similarly. Changes in HAM-D at weeks 2, 4, and 6 were the primary outcome. Participants and outcome assessors were blinded. RESULTS At week 6, patients in the cilostazol group had significantly lower HAM-D score (p value= 0.015). General linear model repeated-measure analysis showed significant effect for treatment in improving MDD severity (p value <0.001). The remission rate at the study endpoint and number of responders at week 4 were significantly higher in the cilostazol group (p value= 0.047, p value= 0.032, respectively). The cilostazol group demonstrated a significantly shorter time to response. No significant difference was observed in treatment response at the study endpoint, and there were no serious adverse effects. CONCLUSION Our study supports safety and efficacy of cilostazol in treating MDD patients. TRIAL REGISTRATION This trial was registered at the Iranian registry of clinical trials (IRCT: www.irct.ir ; registration number: IRCT20090117001556N130).
Collapse
|
4
|
Kondaurova EM, Plyusnina AV, Ilchibaeva TV, Eremin DV, Rodnyy AY, Grygoreva YD, Naumenko VS. Effects of a Cc2d1a/Freud-1 Knockdown in the Hippocampus on Behavior, the Serotonin System, and BDNF. Int J Mol Sci 2021; 22:ijms222413319. [PMID: 34948116 PMCID: PMC8707087 DOI: 10.3390/ijms222413319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The serotonin 5-HT1A receptor is one of the most abundant and widely distributed brain serotonin (5-HT) receptors that play a major role in the modulation of emotions and behavior. The 5-HT1A receptor gene (Htr1a) is under the control of transcription factor Freud-1 (also known as Cc2d1a/Freud-1). Here, using adeno-associated virus (AAV) constructs in vivo, we investigated effects of a Cc2d1a/Freud-1 knockdown in the hippocampus of C57BL/6J mice on behavior, the brain 5-HT system, and brain-derived neurotrophic factor (BDNF). AAV particles carrying the pAAV_H1-2_shRNA-Freud-1_Syn_EGFP plasmid encoding a short-hairpin RNA targeting mouse Cc2d1a/Freud-1 mRNA had an antidepressant effect in the forced swim test 5 weeks after virus injection. The knockdown impaired spatiotemporal memory as assessed in the Morris water maze. pAAV_H1-2_shRNA-Freud-1_Syn_EGFP decreased Cc2d1a/Freud-1 mRNA and protein levels. Furthermore, the Cc2d1a/Freud-1 knockdown upregulated 5-HT and its metabolite 5-hydroxyindoleacetic acid but not their ratio. The Cc2d1a/Freud-1 knockdown failed to increase mRNA and protein levels of Htr1a but diminished a 5-HT1A receptor functional response. Meanwhile, the Cc2d1a/Freud-1 knockdown reduced Creb mRNA expression and CREB phosphorylation and upregulated cFos mRNA. The knockdown enhanced the expression of a BDNF precursor (proBDNF protein), which is known to play a crucial part in neuroplasticity. Our data indicate that transcription factor Cc2d1a/Freud-1 is implicated in the pathogenesis of depressive disorders not only via the 5-HT1A receptor and transcription factor CREB but also through an influence on BDNF.
Collapse
|
5
|
Effect of Central Administration of Brain-Derived Neurotrophic Factor (BDNF) on Behavior and Brain Monoamine Metabolism in New Recombinant Mouse Lines Differing by 5-HT 1A Receptor Functionality. Int J Mol Sci 2021; 22:ijms222111987. [PMID: 34769417 PMCID: PMC8584822 DOI: 10.3390/ijms222111987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
Experiments were carried out on recombinant B6.CBA-D13Mit76C (B6-M76C) and B6.CBA-D13Mit76B (B6-M76B) mouse lines created by transferring a 102.73–118.83 Mbp fragment of chromosome 13, containing the 5-HT1A receptor gene, from CBA or C57BL/6 strains to a C57BL/6 genetic background, correspondingly. We have recently shown different levels of 5-HT1A receptor functionality in these mouse lines. The administration of BDNF (300 ng/mouse, i.c.v.) increased the levels of exploratory activity and intermale aggression only in B6-M76B mice, without affecting depressive-like behavior in both lines. In B6-M76B mice the behavioral alterations were accompanied by a decrease in the 5-HT2A receptor functional activity and the augmentation of levels of serotonin and its main metabolite, 5-HIAA (5-hydroxyindoleacetic acid), in the midbrain. Moreover, the levels of dopamine and its main metabolites, HVA (homovanillic acid) and DOPAC (3,4-dihydroxyphenylacetic acid), were also elevated in the striatum of B6-M76B mice after BDNF treatment. In B6-M76C mice, central BDNF administration led only to a reduction in the functional activity of the 5-HT1A receptor and a rise in DOPAC levels in the midbrain. The obtained data suggest the importance of the 102.73–118.83 Mbp fragment of mouse chromosome 13, which contains the 5-HT1A receptor gene, for BDNF-induced alterations in behavior and the brain monoamine system.
Collapse
|
6
|
Yu JZ, Wang J, Sheridan SD, Perlis RH, Rasenick MM. N-3 polyunsaturated fatty acids promote astrocyte differentiation and neurotrophin production independent of cAMP in patient-derived neural stem cells. Mol Psychiatry 2021; 26:4605-4615. [PMID: 32504049 PMCID: PMC10034857 DOI: 10.1038/s41380-020-0786-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022]
Abstract
Evidence from epidemiological and laboratory studies, as well as randomized placebo-controlled trials, suggests supplementation with n-3 polyunsaturated fatty acids (PUFAs) may be efficacious for treatment of major depressive disorder (MDD). The mechanisms underlying n-3 PUFAs potential therapeutic properties remain unknown. There are suggestions in the literature that glial hypofunction is associated with depressive symptoms and that antidepressants may normalize glial function. In this study, induced pluripotent stem cells (iPSC)-derived neuronal stem cell lines were generated from individuals with MDD. Astrocytes differentiated from patient-derived neuronal stem cells (iNSCs) were verified by GFAP. Cells were treated with eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or stearic acid (SA). During astrocyte differentiation, we found that n-3 PUFAs increased GFAP expression and GFAP positive cell formation. BDNF and GDNF production were increased in the astrocytes derived from patients subsequent to n-3 PUFA treatment. Stearic Acid (SA) treatment did not have this effect. CREB activity (phosphorylated CREB) was also increased by DHA and EPA but not by SA. Furthermore, when these astrocytes were treated with n-3 PUFAs, the cAMP antagonist, RP-cAMPs did not block n-3 PUFA CREB activation. However, the CREB specific inhibitor (666-15) diminished BDNF and GDNF production induced by n-3 PUFA, suggesting CREB dependence. Together, these results suggested that n-3 PUFAs facilitate astrocyte differentiation, and may mimic effects of some antidepressants by increasing production of neurotrophic factors. The CREB-dependence and cAMP independence of this process suggests a manner in which n-3 PUFA could augment antidepressant effects. These data also suggest a role for astrocytes in both MDD and antidepressant action.
Collapse
Affiliation(s)
- Jiang-Zhou Yu
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Jennifer Wang
- Center for Experimental Drugs and Diagnostics and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Steven D Sheridan
- Center for Experimental Drugs and Diagnostics and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Roy H Perlis
- Center for Experimental Drugs and Diagnostics and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Division of Clinical Research, Massachusetts General Hospital, Boston, 02114, USA
| | - Mark M Rasenick
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
- Pax Neuroscience, Glenview, IL, 60025, USA.
| |
Collapse
|
7
|
Homer1a Undergoes Bimodal Transcriptional Regulation by CREB and the Circadian Clock. Neuroscience 2020; 434:161-170. [DOI: 10.1016/j.neuroscience.2020.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
|
8
|
Duarte-Silva E, Filho AJMC, Barichello T, Quevedo J, Macedo D, Peixoto C. Phosphodiesterase-5 inhibitors: Shedding new light on the darkness of depression? J Affect Disord 2020; 264:138-149. [PMID: 32056743 DOI: 10.1016/j.jad.2019.11.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Phosphodiesterase-5 inhibitors (PDE5Is) are used to treat erectile dysfunction (ED). Recently, the antidepressant-like effect of PDE5Is was demonstrated in animal models of depression. In clinical settings, PDE5Is were studied only for ED associated depression. Hence, there are no studies evaluating the effects of PDE5Is for the treatment of major depressive disorder (MDD) without ED. In this review article, we aimed to discuss the use of PDE5Is in the context of MDD, highlighting the roles of PDE genes in the development of MDD, the potential mechanisms by which PDE5Is can be beneficial for MDD and the potentials and limitations of PDE5Is repurposing to treat MDD. METHODS We used PubMed (MEDLINE) database to collect the studies cited in this review. Papers written in English language regardless the year of publication were selected. RESULTS A few preclinical studies support the antidepressant-like activity of PDE5Is. Clinical studies in men with ED and depression suggest that PDE5Is improve depressive symptoms. No clinical studies were conducted in subjects suffering from depression without ED. Antidepressant effect of PDE5Is may be explained by multiple mechanisms including inhibition of brain inflammation and modulation of neuroplasticity. LIMITATIONS The low number of preclinical and absence of clinical studies to support the antidepressant effect of PDE5Is. CONCLUSIONS No clinical trial was conducted to date evaluating PDE5Is in depressed patients without ED. PDE5Is' anti-inflammatory and neuroplasticity mechanisms may justify the potential antidepressant effect of these drugs. Despite this, clinical trials evaluating their efficacy in depressed patients need to be conducted.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, PE, Brazil; Graduate Program in Biosciences and Biotechnology for Health (PPGBBS), Aggeu Magalhães Institute (IAM), Recife, PE, Brazil.
| | - Adriano José Maia Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Tatiana Barichello
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX 77054, United States; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| | - João Quevedo
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX 77054, United States; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| | - Danielle Macedo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Christina Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Abstract
Lipid microenvironments in the plasma membrane are known to influence many signal transduction pathways. Several of those pathways are critical for both the etiology and treatment of depression. Further, several signaling proteins are modified, covalently, by lipids, a process that alters their interface with the microenvironments mentioned above. This review presents a brief discussion of the interface of the above elements as well as a discussion about the participation of lipids and lipid moieties in the action of antidepressants.
Collapse
Affiliation(s)
- Nathan H Wray
- University of Illinois College of Medicine, Department of Physiology & Biophysics, Chicago, IL, United States; The Graduate Program in Neuroscience, Chicago, IL, United States
| | - Mark M Rasenick
- University of Illinois College of Medicine, Department of Physiology & Biophysics, Chicago, IL, United States; The Graduate Program in Neuroscience, Chicago, IL, United States; Department of Psychiatry, Chicago, IL, United States; The Jesse Brown VAMC, Chicago, IL, United States.
| |
Collapse
|
10
|
Cardinale A, Fusco FR. Inhibition of phosphodiesterases as a strategy to achieve neuroprotection in Huntington's disease. CNS Neurosci Ther 2018; 24:319-328. [PMID: 29500937 DOI: 10.1111/cns.12834] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative condition, due to a mutation in the IT15 gene encoding for huntingtin. Currently, disease-modifying therapy is not available for HD, and only symptomatic drugs are administered for the management of symptoms. In the last few years, preclinical and clinical studies have indicated that pharmacological strategies aimed at inhibiting cyclic nucleotide phosphodiesterase (PDEs) may develop into a novel therapeutic approach in neurodegenerative disorders. PDEs are a family of enzymes that hydrolyze cyclic nucleotides into monophosphate isoforms. Cyclic nucleotides are second messengers that transduce the signal of hormones and neurotransmitters in many physiological processes, such as protein kinase cascades and synaptic transmission. An alteration in their balance results in the dysregulation of different biological mechanisms (transcriptional dysregulation, immune cell activation, inflammatory mechanisms, and regeneration) that are involved in neurological diseases. In this review, we discuss the action of phosphodiesterase inhibitors and their role as therapeutic agents in HD.
Collapse
Affiliation(s)
| | - Francesca R Fusco
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
11
|
Antidepressant administration modulates stress-induced DNA methylation and DNA methyltransferase expression in rat prefrontal cortex and hippocampus. Behav Brain Res 2018; 343:8-15. [PMID: 29378290 DOI: 10.1016/j.bbr.2018.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/23/2022]
Abstract
Stress and antidepressant treatment can modulate DNA methylation in promoter region of genes related to neuroplasticity and mood regulation, thus implicating this epigenetic mechanism in depression neurobiology and treatment. Accordingly, systemic administration of DNA methyltransferase (DNMT) inhibitors induces antidepressant-like effects in rodents. DNA methylation is conveyed by DNMT 1, 3a and 3b isoforms, which are differentially expressed in the brain. In order to investigate if the behavioral effects of antidepressants could be associated with changes in DNA methylation and DNMT expression, we investigated the effects induced by acute and repeated antidepressant treatment on DNA methylation and DNMT expression (1, 3a and 3b isoforms) in different brain regions of rats exposed to a stress model of depression, the learned helplessness (LH). Therefore, rats were exposed to pretest and treated with one or seven injections of vehicle or imipramine (15 mg kg-1), with test session performed one hour after the last injection. Chronic, but not acute, imipramine administration attenuated escape failures during the test, a well described antidepressant-like effect in this model. DNA methylation and DNMT (1, 3a and 3b) levels were measured in the dorsal and ventral hippocampus (dHPC, vHPC) and in the prefrontal cortex (PFC) of rats exposed to stress and treatment. Stress increased DNA methylation, DNMT3a and DNMT3b expression in the dHPC and PFC. Chronic, but not acute, imipramine administration attenuated stress effects only in the PFC. These results suggest the regulation of DNA methylation in the PFC may be an important mechanism for antidepressant-like effects in the LH model.
Collapse
|
12
|
Wang C, Guo J, Guo R. Effect of XingPiJieYu decoction on spatial learning and memory and cAMP-PKA-CREB-BDNF pathway in rat model of depression through chronic unpredictable stress. Altern Ther Health Med 2017; 17:73. [PMID: 28118829 PMCID: PMC5260079 DOI: 10.1186/s12906-016-1543-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/22/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Depression is a mental disorder characterized by a pervasive low mood and loss of pleasure or interest in usual activities, and often results in cognitive dysfunction. The disturbance of cognitive processes associated with depression, especially the impairment of learning and memory, exacerbates illness and increases recurrence of depression. XingPiJieYu (XPJY) is one of the most widely clinical formulas of traditional Chinese medicine (TCM) and can improve the symptoms of depression, including learning and memory. However, its regulatory effects haven't been comprehensively studied so far. Recently, some animal tests have indicated that the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-cAMP response element-binding protein (CREB)-brain derived neurotrophic factor (BDNF) signaling pathway in hippocampus is closely related to depression and the pathogenesis of cognitive function impairments. The present study was performed to investigate the effect and mechanism of XPJY on depression and learning and memory in animal model. MATERIALS The rat model of depression was established by chronic unpredictable stress (CUS) for 21 days. The rats were randomly divided into six groups: control group, CUS group, CUS + XPJY (1.4 g/kg, 0.7 g/kg and 0.35 g/kg) groups, and CUS + sertraline (10 mg/kg) group. The sucrose preference, open field exploration and Morris water maze (MWM) were tested. The expression of cAMP, CREB, PKA and BDNF protein in hippocampus was examined with Elisa and Western Blot. The mRNA level of CREB and BDNF in hippocampus was measured with PCR. RESULTS The results demonstrated that rats subjected to CUS exhibited decreases in sucrose preference, total ambulation, percentage of central ambulation, rearing in the open field test and spatial performance in the MWM. CUS reduced the expression of cAMP, PKA, CREB and BDNF in hippocampus of model rats. These effects could be reversed by XPJY. CONCLUSION The results indicated that XPJY can improve depression and related learning and memory and the effect of XPJY is partly exerted through the cAMP-PKA-CREB-BDNF signaling pathway.
Collapse
|
13
|
Fusco FR, Paldino E. Role of Phosphodiesterases in Huntington’s Disease. ADVANCES IN NEUROBIOLOGY 2017; 17:285-304. [DOI: 10.1007/978-3-319-58811-7_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Effect of co-administration of memantine and sertraline on the antidepressant-like activity and brain-derived neurotrophic factor (BDNF) levels in the rat brain. Brain Res Bull 2016; 128:29-33. [PMID: 27825855 DOI: 10.1016/j.brainresbull.2016.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022]
Abstract
A developing body of data has drawn attention to the N-methyl-d-aspartate (NMDA) receptor antagonists as potential drugs for the treatment of major depressive disorder (MDD). We investigated the possibility of synergistic interactions between the antidepressant sertraline with the uncompetitive NMDA receptor antagonist, memantine. The present study was aimed to evaluate behavioural and molecular effects of the chronic treatment with memantine and sertraline alone or in combination in rats. To this aim, rats were chronically treated with memantine (2.5 and 5mg/kg) and sertraline (5mg/kg) for 14days once a day, and then exposed to the forced swimming test. The brain-derived neurotrophic factor (BDNF) levels were assessed in the hippocampus and prefrontal cortex in all groups by ELISA sandwich assay. Sertraline and memantine (2.5mg/kg) alone did not have effect on the immobility time; however, the effect of sertraline was enhanced by both doses of memantine. Combined treatment with memantine and sertraline produced stronger increases in the BDNF protein levels in the hippocampus and prefrontal cortex. Our results indicate that co-administration of antidepressant memantine with sertraline may induce a more pronounced antidepressant activity than treatment with each antidepressant alone. Antidepressant properties using the combination of memantine and sertraline could be attributed to increased levels of BDNF. This finding may be of particular importance in the case of drug-resistant patients and could suggest a method of obtaining significant antidepressant actions whereas limiting side effects.
Collapse
|
15
|
Ooms M, Attili B, Celen S, Koole M, Verbruggen A, Van Laere K, Bormans G. [18F]JNJ42259152 binding to phosphodiesterase 10A, a key regulator of medium spiny neuron excitability, is altered in the presence of cyclic AMP. J Neurochem 2016; 139:897-906. [DOI: 10.1111/jnc.13855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/29/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Maarten Ooms
- Laboratory for Radiopharmacy; Department of Pharmaceutical and Pharmacological Sciences KU Leuven; Leuven Belgium
| | - Bala Attili
- Laboratory for Radiopharmacy; Department of Pharmaceutical and Pharmacological Sciences KU Leuven; Leuven Belgium
| | - Sofie Celen
- Laboratory for Radiopharmacy; Department of Pharmaceutical and Pharmacological Sciences KU Leuven; Leuven Belgium
| | - Michel Koole
- Division of Nuclear Medicine; KU Leuven and University Hospital Leuven; Leuven Belgium
| | - Alfons Verbruggen
- Laboratory for Radiopharmacy; Department of Pharmaceutical and Pharmacological Sciences KU Leuven; Leuven Belgium
| | - Koen Van Laere
- Division of Nuclear Medicine; KU Leuven and University Hospital Leuven; Leuven Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy; Department of Pharmaceutical and Pharmacological Sciences KU Leuven; Leuven Belgium
| |
Collapse
|
16
|
Harris NM, Ritzel R, Mancini NS, Jiang Y, Yi X, Manickam DS, Banks WA, Kabanov AV, McCullough LD, Verma R. Nano-particle delivery of brain derived neurotrophic factor after focal cerebral ischemia reduces tissue injury and enhances behavioral recovery. Pharmacol Biochem Behav 2016; 150-151:48-56. [PMID: 27619636 PMCID: PMC5145740 DOI: 10.1016/j.pbb.2016.09.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/25/2016] [Accepted: 09/08/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Low levels of brain-derived neurotrophic factor (BDNF) are linked to delayed neurological recovery, depression, and cognitive impairment following stroke. Supplementation with BDNF reverses these effects. Unfortunately, systemically administered BDNF in its native form has minimal therapeutic value due to its poor blood brain barrier permeability and short serum half-life. In this study, a novel nano-particle polyion complex formulation of BDNF (nano-BDNF) was administered to mice after experimental ischemic stroke. METHODS Male C57BL/6J (8-10weeks) mice were randomly assigned to receive nano-BDNF, native-BDNF, or saline treatment after being subjected to 60min of reversible middle cerebral artery occlusion (MCAo). Mice received the first dose at 3 (early treatment), 6 (intermediate treatment), or 12h (delayed treatment) following stroke onset; a second dose was given in all cohorts at 24h after stroke onset. Post-stroke outcome was evaluated by behavioral, histological, and molecular analysis for 15days after stroke. RESULTS Early and intermediate nano-BDNF treatment led to a significant reduction in cerebral tissue loss. Delayed treatment led to improved memory/cognition, reduced post-stroke depressive phenotypes, and maintained myelin basic protein and brain BDNF levels, but had no effect on tissue atrophy. CONCLUSIONS The results indicate that administration of a novel nano-particle formulation of BDNF leads to both neuroprotective and neuro-restorative effects after stroke.
Collapse
Affiliation(s)
- Nia M Harris
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Rodney Ritzel
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Nickolas S Mancini
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Yuhang Jiang
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill,, Chapel Hill, NC 27599-7362, USA
| | - Xiang Yi
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill,, Chapel Hill, NC 27599-7362, USA
| | - Devika S Manickam
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill,, Chapel Hill, NC 27599-7362, USA
| | - William A Banks
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98108, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill,, Chapel Hill, NC 27599-7362, USA
| | - Louise D McCullough
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06032, USA; Department of Neurology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Rajkumar Verma
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06032, USA.
| |
Collapse
|
17
|
Kushwah N, Jain V, Deep S, Prasad D, Singh SB, Khan N. Neuroprotective Role of Intermittent Hypobaric Hypoxia in Unpredictable Chronic Mild Stress Induced Depression in Rats. PLoS One 2016; 11:e0149309. [PMID: 26901349 PMCID: PMC4763568 DOI: 10.1371/journal.pone.0149309] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 01/30/2016] [Indexed: 11/19/2022] Open
Abstract
Hypoxic exposure results in several pathophysiological conditions associated with nervous system, these include acute and chronic mountain sickness, loss of memory, and high altitude cerebral edema. Previous reports have also suggested the role of hypoxia in pathogenesis of depression and related psychological conditions. On the other hand, sub lethal intermittent hypoxic exposure induces protection against future lethal hypoxia and may have beneficial effect. Therefore, the present study was designed to explore the neuroprotective role of intermittent hypobaric hypoxia (IHH) in Unpredictable Chronic Mild Stress (UCMS) induced depression like behaviour in rats. The IHH refers to the periodic exposures to hypoxic conditions interrupted by the normoxic or lesser hypoxic conditions. The current study examines the effect of IHH against UCMS induced depression, using elevated plus maze (EPM), open field test (OFT), force swim test (FST), as behavioural paradigm and related histological and molecular approaches. The data indicated the UCMS induced depression like behaviour as evident from decreased exploration activity in OFT with increased anxiety levels in EPM, and increased immobility time in the FST; whereas on providing the IHH (5000m altitude, 4hrs/day for two weeks) these behavioural changes were ameliorated. The morphological and molecular studies also validated the neuroprotective effect of IHH against UCMS induced neuronal loss and decreased neurogenesis. Here, we also explored the role of Brain-Derived Neurotrophic Factor (BDNF) in anticipatory action of IHH against detrimental effect of UCMS as upon blocking of BDNF-TrkB signalling the beneficial effect of IHH was nullified. Taken together, the findings of our study demonstrate that the intermittent hypoxia has a therapeutic potential similar to an antidepressant in animal model of depression and could be developed as a preventive therapeutic option against this pathophysiological state.
Collapse
Affiliation(s)
- Neetu Kushwah
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| | - Vishal Jain
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| | - Satayanarayan Deep
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| | - Dipti Prasad
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| | - Shashi Bala Singh
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| | - Nilofar Khan
- Neurobiology Division, Defence Institute of Physiology & Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi-110054, India
| |
Collapse
|
18
|
Rodríguez-Seoane C, Ramos A, Korth C, Requena JR. DISC1 regulates expression of the neurotrophin VGF through the PI3K/AKT/CREB pathway. J Neurochem 2015. [DOI: 10.1111/jnc.13258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Carmen Rodríguez-Seoane
- CIMUS Biomedical Research Institute & Department of Medicine; University of Santiago de Compostela-IDIS; Santiago de Compostela Spain
| | - Adriana Ramos
- CIMUS Biomedical Research Institute & Department of Medicine; University of Santiago de Compostela-IDIS; Santiago de Compostela Spain
- Department of Psychiatry and Behavioral Sciences; The Johns Hopkins University School of Medicine; Baltimore Maryland USA
| | - Carsten Korth
- Department of Neuropathology; Heinrich Heine University; Medical School; Düsseldorf Germany
| | - Jesús R. Requena
- CIMUS Biomedical Research Institute & Department of Medicine; University of Santiago de Compostela-IDIS; Santiago de Compostela Spain
| |
Collapse
|
19
|
Vila N, Besada P, Costas T, Costas-Lago MC, Terán C. Phthalazin-1(2H)-one as a remarkable scaffold in drug discovery. Eur J Med Chem 2015; 97:462-82. [DOI: 10.1016/j.ejmech.2014.11.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
|
20
|
Ilchibaeva TV, Kondaurova EM, Tsybko AS, Kozhemyakina RV, Popova NK, Naumenko VS. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression. Behav Brain Res 2015; 290:45-50. [PMID: 25934485 DOI: 10.1016/j.bbr.2015.04.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
Abstract
The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype.
Collapse
Affiliation(s)
- Tatiana V Ilchibaeva
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Elena M Kondaurova
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Anton S Tsybko
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Rimma V Kozhemyakina
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Nina K Popova
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
21
|
Fajemiroye JO, Galdino PM, Florentino IF, Da Rocha FF, Ghedini PC, Polepally PR, Zjawiony JK, Costa EA. Plurality of anxiety and depression alteration mechanism by oleanolic acid. J Psychopharmacol 2014; 28:923-34. [PMID: 24920136 DOI: 10.1177/0269881114536789] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our study sought to evaluate the anxiolytic and antidepressant activities of oleanolic acid as well as the neural mechanisms involved. Animal models such as barbiturate sleep-induction, light-dark box, elevated plus maze, forced swimming test, tail suspension test and open field test were conducted. Male Albino Swiss mice were treated orally with vehicle 10 mL/kg, fluoxetine 20 mg/kg, imipramine 15 mg/kg, diazepam 1 mg/kg or oleanolic acid 5-40 mg/kg. Pretreatment (intraperitoneal) of animals with pentylenetetrazole (PTZ) 20 mg/kg, 1-(2-methoxyphenyl)-4-[4- (2-phthalimido) butyl]piperazine hydrobromide (NAN-190) 0.5 mg/kg, p-chlorophenylalanine methyl ester (PCPA) 100 mg/kg or α-methyl-p-tyrosine (AMPT) 100 mg/kg, WAY100635 (WAY) 0.3 mg/kg, prazosin (PRAZ) 1 mg/kg, yohimbine 2 mg/kg as well as monoamine oxidase assay and hippocampal brain-derived neurotrophic factor (BDNF) quantification were carried out. Oleanolic acid potentiated the hypnotic effect of barbiturate and demonstrated an anxiolytic effect in both the light-dark box and elevated plus maze. This effect was not reversed by PTZ. Acute and/or chronic oral treatment of mice with oleanolic acid (5-20 mg/kg) elicited an antidepressant effect in the forced swimming test and the tail suspension test without interfering with the locomotor activity. The antidepressant effect of oleanolic acid was attenuated by NAN-190, AMPT, PCPA, WAY and PRAZ. Although monoamine oxidase activity remained unaltered by oleanolic acid, chronic administration of oleanolic acid augmented hippocampal BDNF level. These findings demonstrate multiple mechanisms of the anxiolytic and antidepressant effect of oleanolic acid.
Collapse
Affiliation(s)
- James O Fajemiroye
- Department of Physiological Sciences, Federal University of Goiás, Goiânia-GO, Brazil
| | - Pablinny M Galdino
- Department of Physiological Sciences, Federal University of Goiás, Goiânia-GO, Brazil
| | - Iziara F Florentino
- Department of Physiological Sciences, Federal University of Goiás, Goiânia-GO, Brazil
| | - Fabio F Da Rocha
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo C Ghedini
- Department of Physiological Sciences, Federal University of Goiás, Goiânia-GO, Brazil
| | - Prabhakar R Polepally
- Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Jordan K Zjawiony
- Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Elson A Costa
- Department of Physiological Sciences, Federal University of Goiás, Goiânia-GO, Brazil
| |
Collapse
|
22
|
Naumenko VS, Kondaurova EM, Bazovkina DV, Tsybko AS, Il'chibaeva TV, Popova NK. On the role of 5-HT1Areceptor gene in behavioral effect of brain-derived neurotrophic factor. J Neurosci Res 2014; 92:1035-43. [DOI: 10.1002/jnr.23381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/31/2014] [Accepted: 02/19/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Vladimir S. Naumenko
- Department of Behavioral Neurogenomics; Institute of Cytology and Genetics; Siberian Division of the Russian Academy of Science; Novosibirsk Russia
| | - Elena M. Kondaurova
- Department of Behavioral Neurogenomics; Institute of Cytology and Genetics; Siberian Division of the Russian Academy of Science; Novosibirsk Russia
| | - Daria V. Bazovkina
- Department of Behavioral Neurogenomics; Institute of Cytology and Genetics; Siberian Division of the Russian Academy of Science; Novosibirsk Russia
| | - Anton S. Tsybko
- Department of Behavioral Neurogenomics; Institute of Cytology and Genetics; Siberian Division of the Russian Academy of Science; Novosibirsk Russia
| | - Tatyana V. Il'chibaeva
- Department of Behavioral Neurogenomics; Institute of Cytology and Genetics; Siberian Division of the Russian Academy of Science; Novosibirsk Russia
| | - Nina K. Popova
- Department of Behavioral Neurogenomics; Institute of Cytology and Genetics; Siberian Division of the Russian Academy of Science; Novosibirsk Russia
| |
Collapse
|
23
|
Zhang MZ, Zhou ZZ, Yuan X, Cheng YF, Bi BT, Gong MF, Chen YP, Xu JP. Chlorbipram: A novel PDE4 inhibitor with improved safety as a potential antidepressant and cognitive enhancer. Eur J Pharmacol 2013; 721:56-63. [DOI: 10.1016/j.ejphar.2013.09.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 12/23/2022]
|
24
|
Second messenger/signal transduction pathways in major mood disorders: moving from membrane to mechanism of action, part I: major depressive disorder. CNS Spectr 2013; 18:231-41. [PMID: 23462230 PMCID: PMC4955397 DOI: 10.1017/s1092852913000059] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The etiopathogenesis and treatment of major mood disorders have historically focused on modulation of monoaminergic (serotonin, norepinephrine, dopamine) and amino acid [γ-aminobutyric acid (GABA), glutamate] receptors at the plasma membrane. Although the activation and inhibition of these receptors acutely alter local neurotransmitter levels, their neuropsychiatric effects are not immediately observed. This time lag implicates intracellular neuroplasticity as primary in the mechanism of action of antidepressants and mood stabilizers. The modulation of intracellular second messenger/signal transduction cascades affects neurotrophic pathways that are both necessary and sufficient for monoaminergic and amino acid-based treatments. In this review, we will discuss the evidence in support of intracellular mediators in the pathophysiology and treatment of preclinical models of despair and major depressive disorder (MDD). More specifically, we will focus on the following pathways: cAMP/PKA/CREB, neurotrophin-mediated (MAPK and others), p11, Wnt/Fz/Dvl/GSK3β, and NFκB/ΔFosB. We will also discuss recent discoveries with rapidly acting antidepressants, which activate the mammalian target of rapamycin (mTOR) and release of inhibition on local translation via elongation factor stimulation. Throughout this discourse, we will highlight potential intracellular targets for therapeutic intervention. Finally, future clinical implications are discussed.
Collapse
|
25
|
Wang ZZ, Zhang Y, Liu YQ, Zhao N, Zhang YZ, Yuan L, An L, Li J, Wang XY, Qin JJ, Wilson SP, O'Donnell JM, Zhang HT, Li YF. RNA interference-mediated phosphodiesterase 4D splice variants knock-down in the prefrontal cortex produces antidepressant-like and cognition-enhancing effects. Br J Pharmacol 2013; 168:1001-14. [PMID: 23003922 DOI: 10.1111/j.1476-5381.2012.02225.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/23/2012] [Accepted: 09/11/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Phosphodiesterase 4 (PDE4) inhibitors produce potent antidepressant-like and cognition-enhancing effects. However, their clinical utility is limited by the major side effect of emesis, which appears to be PDE4 isoform-specific. Although PDE4D subtype plays the pivotal role in these therapeutic profiles, it is also the primary subtype responsible for emesis. Therefore, the aim of present research was to investigate whether long-form PDE4D variants mediate antidepressant-like and cognition-enhancing effects, but are irrespective with emesis. EXPERIMENTAL APPROACH In mice microinfused with lentiviral vectors that contained shRNA-mir hairpin structure targeting long-form PDE4Ds into bilateral prefrontal cortices, the tail-suspension and forced-swim tests were used to measure antidepressant-like effects; novel object recognition and Morris water-maze tasks were used to determine cognition-enhancing effects. The emetic potential was assessed by alpha2 adrenergic receptor-mediated anaesthesia, a surrogate measure of emesis. Intracellular cAMP signalling was analysed by time-resolved FRET immunoassay and Western-blot. Dendritic complexity was assessed by Golgi staining. KEY RESULTS Microinfusions of lentiviral PDE4D-shRNA down-regulated PDE4D4 and PDE4D5, and imitated the antidepressant-like and cognition-enhancing effects of the prototypical PDE4 inhibitor rolipram. The behavioural effects were related to dendritic complexity and mediated by the increased cAMP signalling. In addition, these effects were not enhanced in the presence of rolipram. Finally, while rolipram shortened the duration of combined anaesthesia, RNA interference-mediated PDE4D knock-down in the prefrontal cortex did not. CONCLUSION AND IMPLICATIONS These data suggest that long-form PDE4Ds, at least PDE4D4 and PDE4D5, may be the promising targets for the development of PDE4 variant-selective inhibitors as the new pharmacotherapies for depressive disorders and neurodegenerative diseases involving memory deficits.
Collapse
Affiliation(s)
- Zhen-Zhen Wang
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Response to drug treatment of major depression is variable and biomarkers of response are needed. Cyclic AMP response element binding protein (CREB) is considered a key mediator of antidepressant drug effect. We studied CREB in T-lymphocytes as a potential predictor of response to a selective serotonin reuptake inhibitor (SSRI) in 69 Korean depressed patients. We determined total CREB (tCREB), phosphorylated CREB (pCREB) and CRE-DNA binding using immunoblot and electrophoretic mobility shift assays, at baseline and after 6 wk treatment. Thirty-four healthy controls were also studied. The rate of response was 36 of 69 cases (52%). Baseline levels of tCREB and pCREB were lower in the total depressed group compared to controls (p = 0.044 and p<0.001, respectively). Baseline tCREB values in responders were significantly reduced in comparison to non-responders and to controls. After 6 wk treatment, median values of change of all CREB measures were greater in responders (36) than in non-responders (33; p<0.001 for tCREB, p = 0.003 for pCREB, and p=0.072 for CRE-DNA binding). Similar but less robust changes in CREB variables distinguished remitters from non-remitters. The optimum value of baseline tCREB predicted response with a positive predicted value of 0.778 [21/27; 95% confidence intervals (CI) 0.621-0.935], negative predictive value of 0.643 (27/42; 95% CI 0.498-0.788) and accuracy of 0.695 (48/69; 95% CI 0.586-0.804). Patients with low baseline tCREB had a significantly greater rate of response (78%) than patients with high baseline tCREB (36%), p < 0.001. Moreover, the greatest changes in tCREB with treatment were observed in subjects who did respond. This preliminary study suggests that T-lymphocytic CREB biomarkers are reduced in depressed patients and may assist in the prediction of response to SSRI drugs in depression.
Collapse
|
27
|
Stoll P, Wuertemberger U, Bratke K, Zingler C, Virchow JC, Lommatzsch M. Stage-dependent association of BDNF and TGF-β1 with lung function in stable COPD. Respir Res 2012; 13:116. [PMID: 23245944 PMCID: PMC3561140 DOI: 10.1186/1465-9921-13-116] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/06/2012] [Indexed: 01/11/2023] Open
Abstract
Background Chronic Obstructive Pulmonary Disease (COPD) is characterised by complex inflammatory, neuronal and fibrotic changes. Brain-derived Neurotrophic Factor (BDNF) is a key regulator of neuronal plasticity, whereas Transforming Growth Factor-β1 (TGF-β1) plays a crucial role in tissue repair and emphysema pathogenesis. Both mediators are stored in platelets and released from platelets in inflammatory conditions and during serum preparation. In patients with asthma, it was previously shown that elevated serum BDNF concentrations correlate with disease severity, whereas TGF-β1 concentrations were normal. Methods In the present study, 63 patients with stable COPD (spirometric GOLD stages 2–4) and 17 age- and comorbidity-matched controls were studied. Lung function, smoking history, medication, platelet concentrations in peripheral blood and serum concentrations of BDNF, TGF-β1 and Serotonin (5-HT) were assessed in all participants. Results Serum levels of both BDNF and TGF-β1 (but not concentrations of platelets in peripheral blood) were significantly elevated in all stages of COPD as compared to controls. Highest BDNF concentrations were found in spirometric GOLD stage 3, whereas highest TGF-β1 serum levels were found in spirometric GOLD stage 4. There were specific, stage-dependent correlations of these mediators with lung function parameters of the patients. Conclusions Taken together, we show that, in contrast to asthma, COPD is characterised by elevated concentrations of both BDNF and TGF-β1 in serum. The stage-dependent association with lung function supports the hypothesis that these platelet mediators may play a role in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Paul Stoll
- Department of Pneumology and Critical Care Medicine, University of Rostock, Ernst Heydemann Strasse 6, 18057, Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Shalaby AM, Kamal SM. Effect of rolipram, a phosphodiesterase enzyme type-4 inhibitor, on γ-amino butyric acid content of the frontal cortex in mice exposed to chronic mild stress. J Pharmacol Pharmacother 2012; 3:132-7. [PMID: 22629087 PMCID: PMC3356953 DOI: 10.4103/0976-500x.95509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To investigate the alterations in GABA levels by rolipram in the model of depression. MATERIALS AND METHODS The alteration of GABA content by rolipram as a phosphodiesterase enzyme type-4 inhibitor in the frontal cortex (FCx; as a brain region crucial for the control of emotion and cognition) obtained from male mice exposed to chronic mild stress (CMS)-induced anhedonia (the loss of pleasure or lack of sensitivity to pleasure stimuli) was recorded. RESULTS The results demonstrated the reversal of CMS-induced anhedonia after 3 weeks per os of rolipram in a dose of 0.1 mg/kg/day dissolved in distilled water. Furthermore, rolipram showed a significant reduction in duration of immobility in long-term behavioral changes recorded by the FST. Additionally, there was a significant increase in the GABA content of the FCx of rolipram-treated mice exposed to CMS-induced anhedonia. CONCLUSIONS The present study suggested that GABA levels may be decreased in an animal model of depression and its reversal together with the behaviour improvement by rolipram could support the hypothesis that modification in GABAergic activity has a role in mood disorders. These effects may complement the antidepressant effect of rolipram that is originally mediated via inhibition of phosphodiesterase enzyme type-4 [PDE4] that increases cyclic adenosine monophosphate signalling the pharmacotherapy of depression.
Collapse
Affiliation(s)
- Amany Mohamed Shalaby
- Clinical Pharmacology, Department Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
29
|
Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains. Neuroscience 2012; 214:59-67. [DOI: 10.1016/j.neuroscience.2012.04.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/04/2012] [Accepted: 04/07/2012] [Indexed: 11/20/2022]
|
30
|
Patel DS, Anand IS, Bhatt PA. Evaluation of antidepressant and anxiolytic activity of phosphodiesterase 3 inhibitor - cilostazol. Indian J Psychol Med 2012; 34:124-8. [PMID: 23162186 PMCID: PMC3498773 DOI: 10.4103/0253-7176.101776] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Cyclic nucleotide Phosphodiesterases (PDEs) are ubiquitously distributed in mammalian tissues and play a major role in cell signaling by hydrolyzing cyclic Adenosine Monophosphate (cAMP) and cyclic Guanosine Monophosphate (cGMP). Impairments in signal transduction have been implicated as possible mechanism of reduced plasticity and neuronal survival in major depressive disorders. PDE inhibitors possess a potentially powerful means to manipulate secondary messengers involved in learning, memory and mood. Cilostazol is an antiplatelet agent indicated for the treatment of intermittent claudication with peripheral artery occlusion and for the prevention of ischemic stroke worldwide. Various animal studies have reported neuroprotective, anti apoptotic, cognition and cerebral blood flow improvement properties of cilostazol. MATERIALS AND METHODS In this study, the antidepressant and anxiolytic effects of cilostazol were evaluated in mice using behavioral tests sensitive to clinically effective antidepressant compound. RESULTS Cilostazol, administered intraperitoneally (20 mg/kg), decreased immobility time of mice when subjected to forced swim test and tail suspension test as compared to standard fluoxetine (20 mg/kg). Cilostazol also produced significant decrease in the number of marbles buried as compared to fluoxetine in marble burying model. CONCLUSION The present study suggests that cilostazol possesses potential antidepressant and anxiolytic activity, which could be of therapeutic interest for use in patients with depressive disorders.
Collapse
Affiliation(s)
- Dipesh S Patel
- Department of Clinical Pharmacy, Shri Sarvajanik Pharmacy College, Mehsana, Gujarat, India
| | | | | |
Collapse
|
31
|
Hauser SR, Getachew B, Taylor RE, Tizabi Y. Alcohol induced depressive-like behavior is associated with a reduction in hippocampal BDNF. Pharmacol Biochem Behav 2011; 100:253-8. [PMID: 21930150 DOI: 10.1016/j.pbb.2011.08.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/10/2011] [Accepted: 08/13/2011] [Indexed: 12/17/2022]
Abstract
Strong positive correlation between depression and alcoholism is evident in epidemiological reports. However, a causal relationship for this co-morbidity has not been established. We have observed that chronic daily exposure to a relatively high dose of alcohol can induce depressive-like behavior in rats and that pretreatment with nomifensine or imipramine can block the "depressogenic" effects of alcohol. Since brain derived neurotrophic factor (BDNF) is considered to play an important role in depressive-like behaviors and its elevation, particularly in the hippocampus, appears to be critical for the action of many antidepressants, we hypothesized that: 1. WKY rats, a putative animal model of depression, will show a lower hippocampal BDNF compared to their control Wistar rats, 2. Alcohol-induced depressive like behavior will be associated with a significant decrease in hippocampal BDNF and 3. Treatments with antidepressants will normalize hippocampal BDNF. These postulates were verified by measuring hippocampal BDNF in Wistar and WKY rats at baseline, following chronic (10 day) treatment with alcohol and combination of alcohol with nomifensine or imipramine. Alcohol was administered via inhalation chamber (3 h/day) such that a blood alcohol level of approximately 150 mg% was achieved. Nomifensine (10 mg/kg) or imipramine (10 mg/kg) was administered i.p. daily immediately after alcohol exposure. BDNF was measured by standard ELISA kit. The results support a role for central BDNF in depressogenic effects of alcohol and antidepressant effects of nomifensine and imipramine. Moreover, depression per se as manifested in WKY rats may be associated with a reduction in hippocampal BDNF.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, United States
| | | | | | | |
Collapse
|
32
|
Phosphodiesterases in the central nervous system: implications in mood and cognitive disorders. Handb Exp Pharmacol 2011:447-85. [PMID: 21695652 DOI: 10.1007/978-3-642-17969-3_19] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes that are involved in the regulation of the intracellular second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) by controlling their rates of hydrolysis. There are 11 different PDE families and each family typically has multiple isoforms and splice variants. The PDEs differ in their structures, distribution, modes of regulation, and sensitivity to inhibitors. Since PDEs have been shown to play distinct roles in processes of emotion and related learning and memory processes, selective PDE inhibitors, by preventing the breakdown of cAMP and/or cGMP, modulate mood and related cognitive activity. This review discusses the current state and future development in the burgeoning field of PDEs in the central nervous system. It is becoming increasingly clear that PDE inhibitors have therapeutic potential for the treatment of neuropsychiatric disorders involving disturbances of mood, emotion, and cognition.
Collapse
|
33
|
Rong H, Wang G, Liu T, Wang H, Wan Q, Weng S. Chronic mild stress induces fluoxetine-reversible decreases in hippocampal and cerebrospinal fluid levels of the neurotrophic factor S100B and its specific receptor. Int J Mol Sci 2010; 11:5310-22. [PMID: 21614209 PMCID: PMC3100818 DOI: 10.3390/ijms11125310] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/03/2010] [Accepted: 12/18/2010] [Indexed: 01/26/2023] Open
Abstract
Chronic mild stress (CMS) affects the hippocampal structure and function in the rat. S100B, a calcium-binding protein secreted by astrocytes, has been shown to be increased in serum of patients with depression and associated with good therapeutic response and clinical outcome. This work aimed to study the impact of CMS and fluoxetine on depressive-like behaviors in rats, as well as the concomitant expression of the astroglial protein S100B and of its receptor RAGE (receptor for advanced glycation end products) in the hippocampus and Cerebrospinal fluid of the same group of animals. S100B and sRAGE (circulating soluble form of RAGE) were measured in CSF by ELISA, and S100B and RAGE were measured in hippocampal slices by Western blot. Our study has demonstrated that stress and depression decrease S100B and RAGE/SRAGE expression and antidepressant treatment reverses or blocks these effects. This result suggested that S100B/RAGE interactions may be involved in the development and maintenance of depression and may play an important role in the mechanism of antidepressants’ therapeutic action.
Collapse
Affiliation(s)
- Han Rong
- Department of Psychiatry, Renmin Hospital, Wuhan University, Jiefang Road 238#, Wuhan 430060, China; E-Mails: (H.R.); (H.W.); (Q.W.); (S.W.)
- Department of Biological Psychiatry, Shenzhen Institute of Mental Health, Shenzhen Kangning Hospital, Cuizhu Road 1080#, Shenzhen, 518020, China; E-Mail:
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital, Wuhan University, Jiefang Road 238#, Wuhan 430060, China; E-Mails: (H.R.); (H.W.); (Q.W.); (S.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-27-88041911(8320); Fax: +86-27-88072022
| | - Tiebang Liu
- Department of Biological Psychiatry, Shenzhen Institute of Mental Health, Shenzhen Kangning Hospital, Cuizhu Road 1080#, Shenzhen, 518020, China; E-Mail:
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital, Wuhan University, Jiefang Road 238#, Wuhan 430060, China; E-Mails: (H.R.); (H.W.); (Q.W.); (S.W.)
| | - Qirong Wan
- Department of Psychiatry, Renmin Hospital, Wuhan University, Jiefang Road 238#, Wuhan 430060, China; E-Mails: (H.R.); (H.W.); (Q.W.); (S.W.)
| | - Senghong Weng
- Department of Psychiatry, Renmin Hospital, Wuhan University, Jiefang Road 238#, Wuhan 430060, China; E-Mails: (H.R.); (H.W.); (Q.W.); (S.W.)
| |
Collapse
|
34
|
Li N, He X, Qi X, Zhang Y, He S. The mood stabilizer lamotrigine produces antidepressant behavioral effects in rats: role of brain-derived neurotrophic factor. J Psychopharmacol 2010; 24:1772-8. [PMID: 20123938 DOI: 10.1177/0269881109359102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The anticonvulsant drug lamotrigine has been shown to produce strong antidepressant effects in the treatment of patients with bipolar disorder. However, to date there are few preclinical reports on its behavioral actions in animal models of depression or its underlying molecular mechanisms. The current study investigated the effects of lamotrigine in the forced swimming test and the learned helplessness test. The results demonstrate that both 15 and 30 mg/kg acute treatment of lamotrigine significantly reduced immobility in the forced swimming test without affecting locomotor activity. Sub-chronic twice daily injections of 30 mg/kg lamotrigine robustly decreased escape failures in animals that had developed learned helplessness symptoms. In parallel, the sub-chronic lamotrigine treatment also up-regulated frontal and hippocampal brain-derived neurotrophic factor expression in both naive and stressed animals and restored the stress-induced down-regulation of brain-derived neurotrophic factor expression. This study provides further evidence for the use of lamotrigine as a novel antidepressant in the treatment of bipolar disorders.
Collapse
Affiliation(s)
- Nanxin Li
- Division of Molecular Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA.
| | | | | | | | | |
Collapse
|
35
|
Marchetti C, Tafi E, Middei S, Rubinacci MA, Restivo L, Ammassari-Teule M, Marie H. Synaptic adaptations of CA1 pyramidal neurons induced by a highly effective combinational antidepressant therapy. Biol Psychiatry 2010; 67:146-54. [PMID: 19892321 DOI: 10.1016/j.biopsych.2009.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 08/26/2009] [Accepted: 09/11/2009] [Indexed: 01/09/2023]
Abstract
BACKGROUND Antidepressants (AD) need to be chronically administered (weeks to months) to provide beneficial effects. Evidence suggests that combined administration of inhibitors of monoamine reuptake and phosphodiesterase type 4 allows a highly effective therapeutic action. Also, this coadministration more rapidly boosts the cyclic adenosine monophosphate (cAMP) pathway, which is normally activated during chronic treatment of single compounds. Little is known, however, about how this augmentation therapy affects the core mechanism of glutamatergic plasticity. We therefore investigated how in vivo combinational subchronic rolipram and imipramine (scRI) treatment affects depressive behavior, cAMP-dependent transcription, and glutamatergic transmission in the hippocampus, a region critically implicated in depression. METHODS Antidepressant properties of scRI were investigated through the forced swim test. Changes in cAMP-dependent transcription and synaptic transmission of CA1 pyramidal cells were explored with green fluorescent protein, enzyme-linked immunosorbent assay, electrophysiology recordings, and Golgi-Cox staining. RESULTS We demonstrate that scRI displays robust antidepressant properties compared with single-drug treatments and increases hippocampal c-Fos expression and brain-derived neurotrophic factor protein levels. These effects are accompanied by a specific increase in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in already existing synapses. Finally, both acute and subchronic treatments led to enhancement of long-term potentiation but differently affected spine density and morphology, with scRI administration specifically resulting in a large increase in stubby spines. CONCLUSIONS We conclude that scRI is highly effective in providing antidepressive effects, including the hippocampal transcriptional alterations normally observed with longer single-drug treatments. Furthermore, we identified scRI-induced modifications in glutamatergic transmission that probably underlie the beneficial action of this combinational therapy.
Collapse
|
36
|
Vitale G, Ruggieri V, Filaferro M, Frigeri C, Alboni S, Tascedda F, Brunello N, Guerrini R, Cifani C, Massi M. Chronic treatment with the selective NOP receptor antagonist [Nphe 1, Arg 14, Lys 15]N/OFQ-NH 2 (UFP-101) reverses the behavioural and biochemical effects of unpredictable chronic mild stress in rats. Psychopharmacology (Berl) 2009; 207:173-89. [PMID: 19711054 DOI: 10.1007/s00213-009-1646-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 08/10/2009] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The present study was designed to assess the antidepressant effects of UFP-101, a selective nociceptin/orphanin FQ peptide (NOP) receptor antagonist, in a validated animal model of depression: the chronic mild stress (CMS). MATERIALS AND METHODS AND RESULTS UFP-101 (5, 10 and 20 nmol/rat; i.c.v., once a day for 21 days) dose- and time-dependently reinstated sucrose consumption in stressed animals without affecting the same parameter in non-stressed ones. In the forced swimming test, UFP-101 reduced immobility of stressed rats from day 8 of treatment. After a 3-week treatment, rats were killed for biochemical evaluations. UFP-101 abolished increase in serum corticosterone induced by CMS and reverted changes in central 5-HT/5-HIAA ratio. The behavioural and biochemical effects of UFP-101 mimicked those of imipramine, the reference antidepressant drug, administered at the dose of 15 mg/kg (i.p.). Co-administration of nociceptin/orphanin FQ (5 nmol/rat, from day 12 to 21) prevented the effects of UFP-101. Brain-derived neurotrophic factor mRNA and protein in hippocampus were not reduced by CMS nor did UFP-101 modify these parameters. DISCUSSION AND CONCLUSION This study demonstrated that chronic treatment with UFP-101 produces antidepressant-like effects in rats subjected to CMS supporting the proposal that NOP receptors represent a candidate target for the development of innovative antidepressant drugs.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Biomedical Sciences, Section of Pharmacology, University of Modena and Reggio Emilia, 41100, Modena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Réus GZ, Stringari RB, Kirsch TR, Fries GR, Kapczinski F, Roesler R, Quevedo J. Neurochemical and behavioural effects of acute and chronic memantine administration in rats: Further support for NMDA as a new pharmacological target for the treatment of depression? Brain Res Bull 2009; 81:585-9. [PMID: 19954760 DOI: 10.1016/j.brainresbull.2009.11.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/23/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
Abstract
A growing body of evidence has pointed to the NMDA receptor antagonists as a potential therapeutic target for the treatment of major depression. The present study was aimed to evaluate behavioural and molecular effects of the acute and chronic treatment with memantine and imipramine in rats. To this aim, rats were acutely or chronically for 14 days once a day treated with memantine (5, 10 and 20 mg/kg) and imipramine (10, 20 and 30 mg/kg) and then subjected to the forced swimming and open-field tests. The acute treatment with memantine at all doses and imipramine at doses (20 and 30 mg/kg) reduced immobility time of rats compared to the saline group (p < 0.05), without affecting spontaneous locomotor activity and chronic treatment with memantine and imipramine, at all doses tested, reduced immobility time of rats compared to the saline group (p < 0.05), without affecting spontaneous locomotor activity. Brain-derived neurotrophic factor (BDNF) hippocampal levels were assessed in imipramine- and memantine-treated rats by ELISA sandwich assay. Interesting enough, acute administration, but not chronic administration of memantine at higher dose (20 mg/kg) increased BDNF protein levels in the rat hippocampus (p < 0.05). Finally, these findings further support the hypothesis that NMDA receptor could be a new pharmacological target for the treatment of depression.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | | | | | | | | | | | | |
Collapse
|
38
|
Reierson GW, Mastronardi CA, Licinio J, Wong ML. Chronic fluoxetine treatment increases daytime melatonin synthesis in the rodent. Clin Pharmacol 2009; 1:1-6. [PMID: 22291481 PMCID: PMC3262357 DOI: 10.2147/cpaa.s7157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Circadian rhythm disturbances can occur as part of the clinical symptoms of major depressive disorder and have been found to resolve with antidepressant therapy. The pineal gland is relevant to circadian rhythms as it secretes the hormone melatonin following activation of the cyclic adenosine monophosphate (cAMP) signaling cascade and of arylalkylamine N-acetyltransferase (AA-NAT), the rate-limiting enzyme for its synthesis. Cyclic AMP is synthesized by adenylate cyclases (AC) and degraded by phosphodiesterases (PDEs). Little is known about the contribution of the PDE system to antidepressant-induced alterations in pineal cAMP signaling and melatonin synthesis. In the present study we used enzyme immunoassay to measure plasma melatonin levels and pineal cAMP levels and as well as quantitative real-time polymerase chain reaction to measure pineal expression of PDE, AC, and AA-NAT genes in rats chronically treated with the prototypic antidepressant fluoxetine. We found elevated melatonin synthesis with increased pineal AA-NAT gene expression and daytime plasma melatonin levels and downregulated cAMP signaling with increased PDE and unchanged AC pineal gene expression, and decreased content of pineal cAMP. We conclude that chronic fluoxetine treatment increases daytime plasma melatonin and pineal AA-NAT gene expression despite downregulated pineal cAMP signaling in the rodent.
Collapse
Affiliation(s)
- Gillian W Reierson
- Center on Pharmacogenomics, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | |
Collapse
|
39
|
Girgenti MJ, Hunsberger J, Duman CH, Sathyanesan M, Terwilliger R, Newton SS. Erythropoietin induction by electroconvulsive seizure, gene regulation, and antidepressant-like behavioral effects. Biol Psychiatry 2009; 66:267-74. [PMID: 19185286 DOI: 10.1016/j.biopsych.2008.12.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 12/03/2008] [Accepted: 12/03/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND The neuroprotective and trophic actions of erythropoietin (EPO) have been tested in several animal models of insult, injury, and neurodegeneration. Recent studies in human volunteers demonstrated that EPO improves cognition and also elicits antidepressant effects. It is believed that the behavioral effects are mediated by EPO's trophic effect on neuronal systems. We therefore tested whether EPO is able to alter behavior and brain gene expression in rats. METHODS The expression of EPO and EPO receptor (EPOR) in multiple brain regions was examined by quantitative polymerase chain reaction, in situ hybridization, and immunohistochemistry. The regulation of EPO and the transcription factor hypoxia-induced factor-alpha (HIF1alpha) after electroconvulsive seizure (ECS) was investigated. Behavioral effects of EPO were tested in the rodent forced swimming and novelty-induced hypophagia (NIH) models. EPO gene profiles were obtained by microarray analysis of the hippocampus after intracerebroventricular infusion. RESULTS EPO and EPOR were widely expressed in the brain albeit at low levels. Highest level of EPO and EPOR were in the choroid plexus and striatum, respectively. Peripheral administration of EPO was sufficient to produce a robust antidepressant-like effect in the forced swim and NIH tests. Gene expression profiles revealed that EPO induces the expression of neurotrophic genes such as brain-derived neurotrophic factor, VGF (nonacronymic), and neuritin. CONCLUSIONS EPO is induced by ECS and independently exhibits antidepressant-like efficacy in the forced swim and NIH tests. EPO regulates the expression of genes implicated in antidepressant action and appears to be a candidate molecule for further testing in neuropsychiatry.
Collapse
Affiliation(s)
- Matthew J Girgenti
- Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Kurata A, Morinobu S, Fuchikami M, Yamamoto S, Yamawaki S. Maternal postpartum learned helplessness (LH) affects maternal care by dams and responses to the LH test in adolescent offspring. Horm Behav 2009; 56:112-20. [PMID: 19341740 DOI: 10.1016/j.yhbeh.2009.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 03/17/2009] [Accepted: 03/19/2009] [Indexed: 12/26/2022]
Abstract
It is known that the early environment affects the mental development of rodent and human offspring. However, it is not known specifically whether a postpartum depressive state influences the depressive state in offspring. Using learned helplessness (LH) in rats as an animal model of depression, we examined the influence of maternal postpartum LH on responses to the LH test of offspring. Dam rats were judged as LH or non-helpless (nLH) on postnatal days (PN) 2-3, and maternal behavior was recorded during PN2-14. On PN 45-46, offspring were subjected to the LH test. Plasma corticosterone (CORT) levels, hippocampal levels of glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF) mRNA were measured before and after the LH test in offspring. Active nursing in LH dams was significantly lower than that in nLH dams. Susceptibility to LH in the offspring of LH dams was significantly higher than in those of nLH dams, and was negatively correlated with active nursing by LH dams. The GR mRNA levels before and after the LH test were lower in the offspring of LH dams than in those of nLH dams, and the reduced basal GR mRNA and protein might have resulted in the higher CORT response after the LH test. There was no significant difference in BDNF mRNA in the offspring of LH and nLH dams. These findings suggest that early postpartum LH decreased active nursing and increased depression-like behavior in the adolescent offspring via dysfunction of the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Akiko Kurata
- Department of Psychiatry and Neurosciences, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
42
|
Cashman JR, Voelker T, Zhang HT, O'Donnell JM. Dual inhibitors of phosphodiesterase-4 and serotonin reuptake. J Med Chem 2009; 52:1530-9. [PMID: 19256502 DOI: 10.1021/jm8010993] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new class of multitarget compounds was synthesized by linking a novel selective serotonin reuptake inhibitor (SSRI) to a PDE4 inhibitor. The new dual PDE4 inhibitor/SSRI showed antidepressant-like activity in the forced swim test in mice The SSRIs 2-{5-[3-(5-fluoro-2-methoxy-phenyl)-ethyl]-tetrahydro-furan-2-yl}-ethylamine (14) and 2-{5-[3-(5-fluoro-2-methoxy-phenyl)-propyl]-tetrahydro-furan-2-yl}-ethylamine (15) were both individually linked to the PDE4 inhibitor 4-(3,4-dimethoxy-phenyl)-4a,5,8,8a-tetrahydro-2H-phthalazin-1-one (19), via a five-carbon chain. The dual PDE4 inhibitor/SSRI 2-{5-[3-(5-fluoro-2-methoxy-phenyl)-ethyl]-tetrahydro-furan-2-yl}-ethylamine)-pentyl]-4,5,8,8a-tetrahydro-2H-phthalazin-1-one (21) showed potent and selective serotonin reuptake inhibition (IC(50) value of 127 nM). The dual PDE4 inhibitor/SSRI 21 also inhibited PDE4D3 with a K(i) value of 2.0 nM. The dual PDE4 inhibitor/SSRI was significantly more effective than the individual SSRI alone or fluoxetine in the forced swim test at standard doses. On a molar basis, the antidepressant-like effect of the dual PDE4 inhibitor/SSRI 21 showed a 129-fold increase in in vivo efficacy compared to fluoxetine.
Collapse
Affiliation(s)
- John R Cashman
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, California 92121, USA.
| | | | | | | |
Collapse
|
43
|
Abstract
Recent studies have suggested that currently available antipsychotic medications, while useful in treating some aspects of schizophrenia, still possess considerable limitations. Improving the treatment of negative symptoms and cognitive dysfunction, and decreasing adverse effects remain significant challenges. Many new drug strategies have been proposed in recent years and increasing evidence suggests that members of the phosphodiesterase (PDE) gene family may play a role in the aetiology or treatment of schizophrenia. PDEs are key enzymes responsible for the degradation of the second messengers cAMP (3',5'-cyclic adenosine monophosphate) and cGMP (3',5'-cyclic guanosine monophosphate). Mammalian PDEs are composed of 21 genes and are categorized into 11 families based on sequence homology, enzymatic properties and sensitivity to pharmacological inhibitors. Representatives from most families have been identified in the brain by the presence of protein or RNA, and numerous studies suggest that PDEs play an important role in the regulation of intracellular signalling downstream of receptor activation in neurons. Insights into the multiple brain processes to which PDEs contribute are emerging from the phenotype of genetically engineered mice that lack activity of specific PDEs (knockout mice), as well as from in vitro and in vivo studies with PDE inhibitors.This article provides a brief overview of recent studies implicating PDE inhibition, focusing on PDE4 and PDE10, as targets for treating the positive, negative or cognitive symptoms associated with schizophrenia.
Collapse
Affiliation(s)
- Judith A Siuciak
- Neuroscience Department, Bristol-Myers Squibb Co., Wallingford, Connecticut 06492, USA.
| |
Collapse
|
44
|
Garcia LS, Comim CM, Valvassori SS, Réus GZ, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J. Chronic administration of ketamine elicits antidepressant-like effects in rats without affecting hippocampal brain-derived neurotrophic factor protein levels. Basic Clin Pharmacol Toxicol 2009; 103:502-6. [PMID: 19067677 DOI: 10.1111/j.1742-7843.2008.00210.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A growing body of evidence has pointed to the blockade of the N-methyl-d-aspartate (NMDA) receptor signaling as a potential therapeutic target for the treatment of major depression. The present study was aimed to evaluate behavioural and molecular effects of the chronic treatment with ketamine and imipramine in rats. To this aim, rats were 14 days treated once a day with ketamine (5, 10 and 15 mg/kg) and imipramine (10, 20 and 30 mg/kg) and then subjected to the forced swimming and open-field tests. Ketamine and imipramine, at the all doses tested, reduced immobility time, and increased both climbing and swimming time of rats compared to the saline group, without affecting spontaneous locomotor activity. Brain-derived neurotrophic factor (BDNF) hippocampal levels were assessed in imipramine- and ketamine-treated rats by ELISA sandwich assay. Chronic administration of both drugs, ketamine and imipramine, did not modify BDNF protein levels in the rat hippocampus. In conclusion, our findings demonstrate for the first time that chronic administration of acute inactive doses of ketamine (5 mg/kg) becomes active after chronic treatment, while no signs of tolerance to the behavioural effects of ketamine were observed after chronic administration of acute active doses (10 and 15 mg/kg). Finally, these findings further support the hypothesis that NMDA receptor could be a new pharmacological target for the treatment of mood disorders.
Collapse
Affiliation(s)
- Lêda S Garcia
- Laboratory of Neurosciences, Postgraduate Program in Health Sciences, University of the Far South Catarinense, Criciuma, SC, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Quevedo J, Comim CM, Gavioli EC. Ketamine induces rapid onset of antidepressant action: neurophysiological biomarkers as predictors of effect. Biomark Med 2009; 3:5-8. [DOI: 10.2217/17520363.3.1.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806–88000 Criciúma, SC, Brazil
| | | | | |
Collapse
|
46
|
Esposito K, Reierson GW, Luo HR, Wu GS, Licinio J, Wong ML. Phosphodiesterase genes and antidepressant treatment response: a review. Ann Med 2009; 41:177-85. [PMID: 18932104 DOI: 10.1080/07853890802441169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Depression results in a tremendous burden to individuals suffering from the disorder and to the global health economy. Available pharmacologic treatments for depression target monoamine levels and monoamine receptors. However, delayed onset of effect, partial or inadequate treatment response, and side-effects are significant limitations of current therapies. The search for a better understanding of mechanisms of depression and for new treatment targets has turned attention to intracellular mediators. Phosphodiesterases (PDEs) are enzymes that break down the intracellular second messenger mononucleotides cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Recent data from animal and human studies indicate that PDEs may play a role in depression and in related stress conditions. PDE genes have been linked directly to depression and to other genes associated with psychiatric disorders.
Collapse
Affiliation(s)
- Karin Esposito
- Center on Pharmacogenomics, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
47
|
Caldwell KK, Sheema S, Paz RD, Samudio-Ruiz SL, Laughlin MH, Spence NE, Roehlk MJ, Alcon SN, Allan AM. Fetal alcohol spectrum disorder-associated depression: evidence for reductions in the levels of brain-derived neurotrophic factor in a mouse model. Pharmacol Biochem Behav 2008; 90:614-24. [PMID: 18558427 DOI: 10.1016/j.pbb.2008.05.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 05/05/2008] [Accepted: 05/09/2008] [Indexed: 01/06/2023]
Abstract
Prenatal ethanol exposure is associated with an increased incidence of depressive disorders in patient populations. However, the mechanisms that link prenatal ethanol exposure and depression are unknown. Several recent studies have implicated reduced brain-derived neurotrophic factor (BDNF) levels in the hippocampal formation and frontal cortex as important contributors to the etiology of depression. In the present studies, we sought to determine whether prenatal ethanol exposure is associated with behaviors that model depression, as well as with reduced BDNF levels in the hippocampal formation and/or medial frontal cortex, in a mouse model of fetal alcohol spectrum disorder (FASD). Compared to control adult mice, prenatal ethanol-exposed adult mice displayed increased learned helplessness behavior and increased immobility in the Porsolt forced swim test. Prenatal ethanol exposure was associated with decreased BDNF protein levels in the medial frontal cortex, but not the hippocampal formation, while total BDNF mRNA and BDNF transcripts containing exons III, IV or VI were reduced in both the medial frontal cortex and the hippocampal formation of prenatal ethanol-exposed mice. These results identify reduced BDNF levels in the medial frontal cortex and hippocampal formation as potential mediators of depressive disorders associated with FASD.
Collapse
Affiliation(s)
- Kevin K Caldwell
- Department of Neurosciences, MSC 08 4740, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
BAG1 plays a critical role in regulating recovery from both manic-like and depression-like behavioral impairments. Proc Natl Acad Sci U S A 2008; 105:8766-71. [PMID: 18562287 DOI: 10.1073/pnas.0803736105] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recent microarray studies with stringent validating criteria identified Bcl-2-associated athanogene (BAG1) as a target for the actions of medications that are mainstays in the treatment of bipolar disorder (BPD). BAG1 is a Hsp70/Hsc70-regulating cochaperone that also interacts with glucocorticoid receptors (GRs) and attenuates their nuclear trafficking and function. Notably, glucocorticoids are one of the few agents capable of triggering both depressive and manic episodes in patients with BPD. As a nexus for the actions of glucocorticoids and bipolar medications, we hypothesized that the level of BAG1 expression would play a pivotal role in regulating affective-like behaviors. This hypothesis was investigated in neuron-selective BAG1 transgenic (TG) mice and BAG1 heterozygous knockout (+/-) mice. On mania-related tests, BAG1 TG mice recovered much faster than wild-type (WT) mice in the amphetamine-induced hyperlocomotion test and displayed a clear resistance to cocaine-induced behavioral sensitization. In contrast, BAG1+/- mice displayed an enhanced response to cocaine-induced behavioral sensitization. The BAG1 TG mice showed less anxious-like behavior on the elevated plus maze test and had higher spontaneous recovery rates from helplessness behavior compared with WT mice. In contrast, fewer BAG1+/- mice recovered from helplessness behavior compared with their WT controls. BAG1 TG mice also exhibited specific alterations of hippocampal proteins known to regulate GR function, including Hsp70 and FKBP51. These data suggest that BAG1 plays a key role in affective resilience and in regulating recovery from both manic-like and depression-like behavioral impairments.
Collapse
|
49
|
Rantamäki T, Castrén E. Targeting TrkB neurotrophin receptor to treat depression. Expert Opin Ther Targets 2008; 12:705-15. [DOI: 10.1517/14728222.12.6.705] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Mannari C, Origlia N, Scatena A, Del Debbio A, Catena M, Dell'agnello G, Barraco A, Giovannini L, Dell'osso L, Domenici L, Piccinni A. BDNF level in the rat prefrontal cortex increases following chronic but not acute treatment with duloxetine, a dual acting inhibitor of noradrenaline and serotonin re-uptake. Cell Mol Neurobiol 2008; 28:457-68. [PMID: 18172756 DOI: 10.1007/s10571-007-9254-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 12/11/2007] [Indexed: 01/28/2023]
Abstract
AIMS Brain-Derived Neurotrophic Factor (BDNF) has a central role in neuronal survival, differentiation, and plasticity. The brain level of BDNF is changed by several mood stabilizers and antidepressant drugs acting on neurotransmitters such as noradrenaline and serotonin. We investigated the effects of acute and chronic treatment with Duloxetine, a new drug blocking the re-uptake of serotonin and noradrenaline (SNRI), on BDNF level in the prefrontal cortex, cerebrospinal fluid, plasma, and serum. METHODS Wistar male rats were treated with acute (single treatment) and chronic oral administration (14 days) of different concentrations of Duloxetine (10, 30, and 100 mg/kg/day). At the end of the treatment periods, samples of blood, CSF and the prefrontal cortex were collected. BDNF levels were measured by ELISA. Levels of mature and precursor form of BDNF were measured by Western blot analysis. RESULTS Animals treated with the Duloxetine at all concentrations and examined after 1 and 24 h (single treatment) did not reveal a significant change in the total BDNF level. In animals treated for 14 days with Duloxetine at 30 and 100 mg/kg, the total BDNF level increased significantly in the prefrontal cortex and CSF, but not in the plasma and serum. Using a specific antibody and Western blot we showed that the mature, but not the precursor, form of BDNF was significantly increased in the prefrontal cortex of rats treated for 14 days with Duloxetine at 30 mg/kg/day. CONCLUSIONS Our results show a major finding that repeated, but not single, Duloxetine treatment increases the level of BDNF in the prefrontal cortex.
Collapse
Affiliation(s)
- Claudio Mannari
- Department of Neuroscience, Sect. Pharmacology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|