1
|
Ikeda M, Nakada A, Abukawa H, Yamazaki T, Maruyama I. Vibegron inhibits enhanced spontaneous contractions induced by anoxia/reoxygenation in isolated whole bladder from rats. Eur J Pharmacol 2022; 926:175017. [PMID: 35588870 DOI: 10.1016/j.ejphar.2022.175017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022]
Abstract
It has been recently proposed that repeated bladder ischemia/reperfusion induced by chronic pelvic ischemia may lead to detrusor overactivity, followed by lower urinary tract symptoms. Vibegron is a selective β3-adrenoceptor agonist approved for the treatment of overactive bladder. Several studies have tested β3-adrenoceptor agonists using animal models with detrusor overactivity related to bladder ischemia/reperfusion. However, whether β3-adrenoceptor agonists directly affect ischemia/reperfusion-evoked detrusor overactivity is unclear. Therefore, we examined whether bladder anoxia/reoxygenation could enhance spontaneous bladder contractions (SBCs) and investigated the effect of vibegron on enhanced SBCs. Isolated whole bladders from rats were incubated with Krebs solution aerated with 95% N2 + 5% CO2 for 5 h (anoxia). Subsequently, the bathing solution was replaced with an oxygen-saturated solution (reoxygenation). Anoxia/reoxygenation caused enhancement of the amplitude but not the frequency of SBC compared with that before reoxygenation. Vibegron (0.3-30 μM) inhibited this increase in SBC amplitude, but not the frequency, in a dose-dependent manner. The inhibitory effect of vibegron was not affected by pretreatment with the adenylyl cyclase inhibitor SQ22536 (100 μM) or protein kinase A inhibitor KT5720 (1 μM) and was not accompanied by considerable changes in cyclic adenosine monophosphate (cAMP) content in the bladder. In contrast, the large conductance potassium channel inhibitor iberiotoxin (100 nM) suppressed the inhibitory effect of vibegron. These results suggest that bladder ischemia/reperfusion induces SBC enhancement and vibegron directly inhibits detrusor overactivity via the large conductance potassium channel, which involves β3-adrenoceptor, rather than the cAMP signaling pathway.
Collapse
Affiliation(s)
- Makoto Ikeda
- Watarase Research Center, Kyorin Pharmaceutical Co, Ltd, 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi, 329-0114, Japan
| | - Akihiro Nakada
- Watarase Research Center, Kyorin Pharmaceutical Co, Ltd, 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi, 329-0114, Japan.
| | - Hayato Abukawa
- Watarase Research Center, Kyorin Pharmaceutical Co, Ltd, 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi, 329-0114, Japan.
| | - Takanobu Yamazaki
- Watarase Research Center, Kyorin Pharmaceutical Co, Ltd, 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi, 329-0114, Japan.
| | - Itaru Maruyama
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd, 4365-1, Kashiwabara, Hotaka, Azumino-city, Nagano, 399-8304, Japan.
| |
Collapse
|
2
|
Fernandes VS, López-Oliva ME, Martínez MP, Agis-Torres Á, Recio P, Navarro-Dorado J, Barahona MV, Benedito S, Prieto D, Climent B, Hernández M. In vitro inhibition of phosphodiesterase type 4 enhances rat corpus cavernosum nerve-mediated relaxation induced by gasotransmitters. Life Sci 2022; 296:120432. [PMID: 35219697 DOI: 10.1016/j.lfs.2022.120432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/15/2022]
Abstract
AIMS Nitric oxide (NO) and hydrogen sulfide (H2S) are involved in nerve-mediated corpus cavernosum (CC) relaxation. Expression of phosphodiesterase type 5 (PDE5) and type 4 (PDE4), cyclic guanosine monophosphate (cGMP)- and cyclic adenosine monophosphate (cAMP)-specific, respectively, has been described and PDE5- and PDE4-inhibitors induce cavernous smooth muscle relaxation. Whereas the NO/cGMP signaling pathway is well established in penile erection, the cAMP-mediated mechanism is not fully elucidated. The aim of this study is to investigate the localization and the functional significance of PDE4 in rat CC tone regulation. MAIN METHODS We performed immunohistochemistry for the detection of the PDE4A isoenzyme. Isometric tension recordings for roflumilast and tadalafil, PDE4 and PDE5 inhibitors, respectively, electrical field stimulation (EFS) and β-adrenoceptor agonist isoproterenol and endogenous H2S production measurement. KEY FINDINGS A marked PDE4A expression was detected mainly localized in the nerve cells of the cavernous smooth muscle. Furthermore, roflumilast and tadalafil exhibited strong corpus cavernous relaxations. Endogenous H2S production was decreased by NO and H2S synthase inhibitors and increased by roflumilast. Isoproterenol- and EFS-induced relaxations were increased by roflumilast. SIGNIFICANCE These results indicate that PDE4A is mainly expressed within the nerves cells of the rat CC, where roflumilast induces a potent corpus cavernous relaxation per se and potentiates the response induced by β-adrenoceptor activation. The fact that roflumilast enhances H2S production, as well as EFS-elicited responses suggests that PDE4 inhibitors modulate, in a positive feedback fashion, nerve-mediated relaxation induced by gasotransmitters, thus indicating a key role for neuronal PDE4 in penile erection.
Collapse
Affiliation(s)
- Vítor S Fernandes
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Elvira López-Oliva
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Pilar Martínez
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ángel Agis-Torres
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Paz Recio
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge Navarro-Dorado
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Victoria Barahona
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Sara Benedito
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
3
|
Mirabegron improves erectile function in men with overactive bladder and erectile dysfunction: a 12-week pilot study. Int J Impot Res 2021; 34:588-592. [PMID: 34215861 DOI: 10.1038/s41443-021-00455-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 01/17/2023]
Abstract
Phosphodiesterase type 5 inhibitors (PDE5i) is the only approved oral treatment for erectile dysfunction (ED) in the US, and alternative management remains necessary when this treatment fails or is contraindicated. Targeting other pathways than the NO-cGMP pathway and/or combining this approach with PDE5i may introduce new treatments for men who are unresponsive to PDE5i. This study aims to evaluate whether Mirabegron improves erectile function in men with concurrent overactive bladder and mild to moderate ED. Twenty subjects, 40-70 years old, registering International Index of Erectile Function (IIEF) score 11-25 and International Prostate Symptom Score 8-20, were treated with Mirabegron therapy for 12 weeks. Study participants were re-administered IIEF and OAB-q questionnaires on weeks 2, 4, 8, and 12 and assessed for adverse events. The primary and secondary endpoints were an increase in the IIEF-5 score of 4 units and a decrease in the Overactive Bladder questionnaire (OAB-q) symptom severity score of 10 units between study time points. Thirteen men completed the 12-week study. Mirabegron treatment improved the IIEF-5 scores in five patients (38.4%) by 4 points or more, whereas IIEF-5 scores were not affected by Mirabegron treatment in eight patients (61.5%). There were no clinically relevant decreases in the IIEF-5 score. Significant improvements were observed in intercourse satisfaction at week eight compared to baseline (p = 0.01). Orgasmic function and sexual desire were not affected by Mirabegron treatment. As expected, Mirabegron treatment reduced OAB symptoms based on OAB-q short form (p = 0.006) and OAB-q total health-related quality of life (HRQL) scores compared to baseline (p = 0.03). Residual bladder volumes were not affected by treatment. No serious side effects were reported during the study period. This study suggests that Mirabegron may improve both EF and OAB-related symptoms in some individuals without causing serious adverse events.
Collapse
|
4
|
ALTUNKAYNAK-CAMCA HO. Effect of Nebivolol on the Isolated Rat Bladder Strips Precontracted with Carbachol or Potassium Chloride. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2020. [DOI: 10.33808/clinexphealthsci.731484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
ALTUNKAYNAK-CAMCA HO. Effect of Nebivolol on the Isolated Rat Bladder Strips Precontracted with Carbachol or Potassium Chloride. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2020. [DOI: 10.33808/marusbed.731484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Mizutani H, Sakakibara F, Sasaki E. TAS-303 Ameliorates Carbachol-Induced Detrusor Overactivity in Rats, Revealing Its Therapeutic Potential for Overactive Bladder. J Pharmacol Exp Ther 2020; 374:84-92. [PMID: 32332112 DOI: 10.1124/jpet.119.264572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/22/2020] [Indexed: 11/22/2022] Open
Abstract
Urinary incontinence is defined as an involuntary leakage of urine and is categorized into three types: stress urinary incontinence (SUI), urge urinary incontinence (UUI), and mixed urinary incontinence, which includes symptoms of SUI and UUI. As the underlying mechanisms of SUI and UUI are different, no drug is approved to treat all three types of urinary incontinence. TAS-303 is a selective norepinephrine reuptake inhibitor and has therapeutic potential for patients with SUI. In this report, we describe newly discovered pharmacological properties of TAS-303 and its effects on bladder function. Radioligand binding studies showed that TAS-303 inhibits M3 muscarinic receptor binding, with a Ki value of 547 nM. TAS-303 at 1, 3, and 10 mg/kg dose-dependently prolonged the intercontraction interval of carbachol-induced detrusor overactivity in rats, exhibiting a maximal effect that was comparable to tolterodine. These effects may result from coordinated regulation of bladder afferent activity via M3 muscarinic inhibition and β3 adrenoreceptor activation by norepinephrine elevation due to norepinephrine transporter inhibition. Moreover, TAS-303 at the effective dose for bladder function did not induce dry mouth or constipation in rats, showing that this compound may have a lower risk of antimuscarinic side effects. Thus, TAS-303 is expected to be a new profile agent with therapeutic potential for all types of urinary incontinence. SIGNIFICANCE STATEMENT: Urinary incontinence is categorized into stress, urge, and mixed urinary incontinence, but because the underlying mechanisms of each differ, no drugs are available that treat all three. TAS-303 has therapeutic potential for stress urinary incontinence. This study describes newly discovered pharmacological properties of TAS-303, which ameliorated bladder afferent activity partly via M3 muscarinic inhibition, indicating improvement in urge urinary incontinence, and highlights the potential of TAS-303 as a new therapeutic agent for all types of urinary incontinence.
Collapse
Affiliation(s)
- Hiroya Mizutani
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Japan
| | - Fukumitsu Sakakibara
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Japan
| | - Eiji Sasaki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Japan
| |
Collapse
|
7
|
Silva I, Magalhães-Cardoso MT, Ferreirinha F, Moreira S, Costa AF, Silva D, Vieira C, Silva-Ramos M, Correia-de-Sá P. β 3 Adrenoceptor-induced cholinergic inhibition in human and rat urinary bladders involves the exchange protein directly activated by cyclic AMP 1 favoring adenosine release. Br J Pharmacol 2020; 177:1589-1608. [PMID: 31721163 DOI: 10.1111/bph.14921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The mechanism by which β3 receptor agonists (e.g. mirabegron) control bladder overactivity may involve adenosine release from human and rat detrusor smooth muscle. Retrograde activation of adenosine A1 receptors reduces ACh release from cholinergic bladder nerves. β3 -Adrenoceptors usually couple to adenylyl cyclase. Here we investigated, which of the cAMP targets, protein kinase A or the exchange protein directly activated by cAMP (EPAC) could be involved in this cholinergic inhibition of the bladder. EXPERIMENTAL APPROACH [3 H]ACh and adenosine release from urothelium-denuded detrusor strips of cadaveric human organ donors and rats were measured by liquid scintillation spectrometry and HPLC, respectively. In vivo cystometry was also performed in urethane-anaesthetized rats. KEY RESULTS The exchange protein directly activated by cAMP (EPAC) inhibitor, ESI-09, prevented mirabegron- and isoprenaline-induced adenosine release from human and rat detrusor strips respectively. ESI-09, but not the PKA inhibitor, H-89, attenuated inhibition of [3 H]ACh release from stimulated (10 Hz) detrusor strips caused by activating β3 -adrenoceptors, AC (forskolin) and EPAC1 (8-CTP-2Me-cAMP). Isoprenaline-induced inhibition of [3 H]ACh release was also prevented by inhibitors of PKC (chelerythrine and Go6976) and of the equilibrative nucleoside transporter 1 (ENT1; dipyridamole and NBTI), but not by PLC inhibition with U73122. Pretreatment with ESI-09, but not with H-89, prevented the reduction of the voiding frequency caused by isoprenaline and forskolin in vivo. CONCLUSION AND IMPLICATIONS Data suggest that β3 -adrenoceptor-induced inhibition of cholinergic neurotransmission in human and rat urinary bladders involves activation of an EPAC1/PKC pathway downstream cAMP production resulting in adenosine outflow via ENT1.
Collapse
Affiliation(s)
- Isabel Silva
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - M Teresa Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Sílvia Moreira
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Filipa Costa
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Diogo Silva
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Cátia Vieira
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Miguel Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Sugaya K, Yamagami H, Nishijima S, Kadekawa K, Hizue M, Ito Y, Yamada S. Effects of combined treatment with fesoterodine and mirabegron in a pelvic congestion rat model: Results from in vitro and in vivo functional studies. Low Urin Tract Symptoms 2019; 12:173-179. [PMID: 31758673 PMCID: PMC7217205 DOI: 10.1111/luts.12296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 12/26/2022]
Abstract
Objectives To examine the effect of combining a nonselective muscarinic receptor antagonist, 5‐hydroxymethyl tolterodine (an active metabolite of fesoterodine), with a β3 adrenoceptor agonist, mirabegron, in a rat model of pelvic congestion. Methods The rat pelvic congestion model used female Sprague‐Dawley rats with their bilateral common iliac and uterine veins ligated. Expressions of M2 and M3 receptor subtypes in the urothelium and detrusor were detected by real‐time polymerase chain reaction assays. The effects of both drugs were investigated on isolated bladder strips contracted by electrical field stimulation. in vivo single cystometry was used to assess the effects of 5‐hydroxymethyl tolterodine and mirabegron independently or in combination on bladder capacity, micturition pressure, and threshold pressure. Results Pelvic congestion rats showed decreased bladder capacity compared with controls, but micturition pressure and threshold pressure were unchanged. Pelvic congestion model rats also demonstrated an approximately two‐fold increase in expression of both M2 and M3 receptor subtypes in the urothelium. Additive relaxant effects of 5‐hydroxymethyl tolterodine and mirabegron were observed in vitro in the electrical field stimulation‐induced contractions of bladder strips from pelvic congestion rats. In vivo, bladder capacity was increased significantly by a combination of 5‐hydroxymethyl tolterodine and mirabegron, with the combined effect exceeding the sum of the effects of monotherapies. Micturition pressure and threshold pressure did not significantly differ between groups. Conclusions The combination of 5‐hydroxymethyl tolterodine with mirabegron suggests the potential of synergistic effects in a rat pelvic congestion model.
Collapse
Affiliation(s)
| | | | | | | | | | - Yoshihiko Ito
- Center for Pharma-Food Research, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Shizuo Yamada
- Center for Pharma-Food Research, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
9
|
de Oliveira MG, Rojas-Moscoso JA, Bertollotto GM, Candido TZ, Kiguti LRDA, Pupo AS, Antunes E, De Nucci G, Mónica FZ. Mirabegron elicits rat corpus cavernosum relaxation and increases in vivo erectile response. Eur J Pharmacol 2019; 858:172447. [PMID: 31228454 DOI: 10.1016/j.ejphar.2019.172447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022]
Abstract
Mirabegron is the first β3-adrenoceptor agonist approved on the market and may offer beneficial pharmacological action in patients with overactive bladder and erectile dysfunction. Here, we further investigate the mechanisms by which mirabegron induces rat corpus cavernosum (CC) relaxation. Adult male Wistar rats were used. The CC were isolated for in vitro functional assays and β-adrenoceptors subtypes mRNA expression evaluation. Animals were treated orally with mirabegron (30 mg/kg, 3 h), tadalafil (10 mg/kg, 3 h) or both for intracavernous pressure (ICP). Intracellular levels of cAMP and cGMP were also determined. The β1-, β2- and β3-adrenoceptors subtypes were expressed in rat CC. Mirabegron produced concentration-dependent CC relaxations that were unaffected by the β1-, β2- or β3-adrenoceptor antagonists atenolol (1 μM), ICI-118,551 (1 μM) and L748,337 (10 μM), respectively. Mirabegron-induced relaxations were not affected by the phosphodiesterase type 4 inhibitor, rolipram, or the adenylyl cyclase selective inhibitor, SQ 22,536. Potassium channel- or calcium influx-blockade are not involved in mirabegron-induced relaxations. In contrast, mirabegron produced rightward shifts in the contractile response induced by the α1-adrenoceptor agonist, phenylephrine. Finally, cavernous nerve stimulation caused frequency-dependent ICP increases, which were significantly increased in rats treated with mirabegron in a similar degree of tadalafil-treated rat, without promoting a significant cAMP or cGMP accumulation. Together, our results demonstrate that mirabegron induced CC relaxation through α1-adrenoceptor blockade. Care should be taken to translate the effect of mirabegron into the clinic, especially when using rat as an animal model of erectile dysfunction.
Collapse
Affiliation(s)
- Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil.
| | | | - Gabriela M Bertollotto
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Tuany Z Candido
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Luiz Ricardo de A Kiguti
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - André S Pupo
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| |
Collapse
|
10
|
Okeke K, Michel-Reher MB, Gravas S, Michel MC. Desensitization of cAMP Accumulation via Human β3-Adrenoceptors Expressed in Human Embryonic Kidney Cells by Full, Partial, and Biased Agonists. Front Pharmacol 2019; 10:596. [PMID: 31263412 PMCID: PMC6590479 DOI: 10.3389/fphar.2019.00596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/09/2019] [Indexed: 01/04/2023] Open
Abstract
β3-Adrenoceptors couple not only to cAMP formation but, at least in some cell types, also to alternative signaling pathways such as phosphorylation of extracellular signal-regulated kinase (ERK). β3-Adrenoceptor agonists are used in long-term symptomatic treatment of the overactive bladder syndrome; it is only poorly understood which signaling pathway mediates the clinical response and whether it undergoes agonist-induced desensitization. Therefore, we used human embryonic kidney cells stably transfected with human β3-adrenoceptors to compare coupling of ligands with various degrees of efficacy, including biased agonists, to cAMP formation and ERK phosphorylation, particularly regarding desensitization. Ligands stimulated cAMP formation with a numerical rank order of isoprenaline ≥ L 755,507 ≥ CL 316,243 > solabegron > SR 59,230 > L 748,337. Except for the weakest agonist, L 748,337, pretreatment with any ligand reduced cAMP responses to freshly added isoprenaline or forskolin to a similar extent. On the other hand, we were unable to detect ERK phosphorylation despite testing a wide variation of conditions. We conclude that a minor degree of efficacy for cAMP formation may be sufficient to induced full desensitization of that response. Transfected human embryonic kidney cells are not suitable to study desensitization of ERK phosphorylation by β3-adrenoceptor stimulation.
Collapse
Affiliation(s)
- Katerina Okeke
- Department of Pharmacology, Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Urology, University of Thessaly, Larissa, Greece
| | | | - Stavros Gravas
- Department of Urology, University of Thessaly, Larissa, Greece
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Fong Z, Griffin CS, Hollywood MA, Thornbury KD, Sergeant GP. β 3-Adrenoceptor agonists inhibit purinergic receptor-mediated contractions of the murine detrusor. Am J Physiol Cell Physiol 2019; 317:C131-C142. [PMID: 31042424 DOI: 10.1152/ajpcell.00488.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
β3-Adrenoceptor (β3-AR) agonists are used to treat overactive bladder syndrome; however, their mechanism of action has not been determined. The aims of this study were to compare the effects of β3-AR agonists on cholinergic versus purinergic receptor-mediated contractions of the detrusor and to examine the mechanisms underlying inhibition of the purinergic responses by β3-AR agonists. Isometric tension recordings were made from strips of murine detrusor and whole cell current recordings were made from freshly isolated detrusor myocytes using the patch-clamp technique. Transcriptional expression of exchange protein directly activated by cAMP (EPAC) subtypes in detrusor strips was assessed using RT-PCR and real-time quantitative PCR. The β3-AR agonists BRL37344 and CL316243 (100 nM) inhibited cholinergic nerve-mediated contractions of the detrusor by 19 and 23%, respectively, but did not reduce contractions induced by the cholinergic agonist carbachol (300 nM). In contrast, BRL37344 and CL316243 inhibited purinergic nerve-mediated responses by 55 and 56%, respectively, and decreased the amplitude of contractions induced by the P2X receptor agonist α,β-methylene ATP by 40 and 45%, respectively. The adenylate cyclase activator forskolin inhibited purinergic responses, and these effects were mimicked by a combination of the PKA activator N6-monobutyryl-cAMP and the EPAC activator 8-pCPT-2'-O-methyl-cAMP-AM (007-AM). Application of ATP (1 μM) evoked reproducible P2X currents in isolated detrusor myocytes voltage-clamped at -60 mV. These responses were reduced in amplitude in the presence of BRL37344 and also by 007-AM. This study demonstrates that β3-AR agonists reduce postjunctional purinergic responses in the detrusor via a pathway involving activation of the cAMP effector EPAC.
Collapse
Affiliation(s)
- Zhihui Fong
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Caoimhín S Griffin
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| |
Collapse
|
12
|
Everything You Always Wanted to Know about β 3-AR * (* But Were Afraid to Ask). Cells 2019; 8:cells8040357. [PMID: 30995798 PMCID: PMC6523418 DOI: 10.3390/cells8040357] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
The beta-3 adrenergic receptor (β3-AR) is by far the least studied isotype of the beta-adrenergic sub-family. Despite its study being long hampered by the lack of suitable animal and cellular models and inter-species differences, a substantial body of literature on the subject has built up in the last three decades and the physiology of β3-AR is unraveling quickly. As will become evident in this work, β3-AR is emerging as an appealing target for novel pharmacological approaches in several clinical areas involving metabolic, cardiovascular, urinary, and ocular disease. In this review, we will discuss the most recent advances regarding β3-AR signaling and function and summarize how these findings translate, or may do so, into current clinical practice highlighting β3-AR’s great potential as a novel therapeutic target in a wide range of human conditions.
Collapse
|
13
|
Michel MC, Charlton SJ. Biased Agonism in Drug Discovery-Is It Too Soon to Choose a Path? Mol Pharmacol 2018; 93:259-265. [PMID: 29326242 DOI: 10.1124/mol.117.110890] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
A single receptor can activate multiple signaling pathways that have distinct or even opposite effects on cell function. Biased agonists stabilize receptor conformations preferentially stimulating one of these pathways, and therefore allow a more targeted modulation of cell function and treatment of disease. Dedicated development of biased agonists has led to promising drug candidates in clinical development, such as the G protein-biased µ opioid receptor agonist oliceridine. However, leveraging the theoretical potential of biased agonism for drug discovery faces several challenges. Some of these challenges are technical, such as techniques for quantitative analysis of bias and development of suitable screening assays; others are more fundamental, such as the need to robustly identify in a very early phase which cell type harbors the cellular target of the drug candidate, which signaling pathway leads to the desired therapeutic effect, and how these pathways may be modulated in the disease to be treated. We conclude that biased agonism has potential mainly in the treatment of conditions with a well-understood pathophysiology; in contrast, it may increase effort and commercial risk under circumstances where the pathophysiology has been less well defined, as is the case with many highly innovative treatments.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom (S.J.C.); and Excellerate Biosciences Ltd., MediCity, Nottingham, United Kingdom (S.J.C.)
| | - Steven J Charlton
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom (S.J.C.); and Excellerate Biosciences Ltd., MediCity, Nottingham, United Kingdom (S.J.C.)
| |
Collapse
|
14
|
Expression of β-adrenergic receptor subtypes in human normal and dilated ureter. Int Urol Nephrol 2017; 49:1771-1778. [DOI: 10.1007/s11255-017-1667-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/21/2017] [Indexed: 11/27/2022]
|
15
|
Silva I, Costa AF, Moreira S, Ferreirinha F, Magalhães-Cardoso MT, Calejo I, Silva-Ramos M, Correia-de-Sá P. Inhibition of cholinergic neurotransmission by β 3-adrenoceptors depends on adenosine release and A 1-receptor activation in human and rat urinary bladders. Am J Physiol Renal Physiol 2017; 313:F388-F403. [PMID: 28446460 DOI: 10.1152/ajprenal.00392.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
The direct detrusor relaxant effect of β3-adrenoceptor agonists as a primary mechanism to improve overactive bladder symptoms has been questioned. Among other targets, activation of β3-adrenoceptors downmodulate nerve-evoked acetylcholine (ACh) release, but there is insufficient evidence for the presence of these receptors on bladder cholinergic nerve terminals. Our hypothesis is that adenosine formed from the catabolism of cyclic AMP in the detrusor may act as a retrograde messenger via prejunctional A1 receptors to explain inhibition of cholinergic activity by β3-adrenoceptors. Isoprenaline (1 µM) decreased [3H]ACh release from stimulated (10 Hz, 200 pulses) human (-47 ± 5%) and rat (-38 ± 1%) detrusor strips. Mirabegron (0.1 µM, -53 ± 8%) and CL316,243 (1 µM, -37 ± 7%) mimicked isoprenaline (1 µM) inhibition, and their effects were prevented by blocking β3-adrenoceptors with L748,337 (30 nM) and SR59230A (100 nM), respectively, in human and rat detrusor. Mirabegron and isoprenaline increased extracellular adenosine in the detrusor. Blockage of A1 receptors with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 100 nM) or the equilibrative nucleoside transporters (ENT) with dipyridamole (0.5 µM) prevented mirabegron and isoprenaline inhibitory effects. Dipyridamole prevented isoprenaline-induced adenosine outflow from the rat detrusor, and this effect was mimicked by the ENT1 inhibitor, S-(4-nitrobenzyl)-6-thioinosine (NBTI, 30 µM). Cystometry recordings in anesthetized rats demonstrated that SR59230A, DPCPX, dipyridamole, and NBTI reversed the decrease in the voiding frequency caused by isoprenaline (0.1-1,000 nM). Data suggest that inhibition of cholinergic neurotransmission by β3-adrenoceptors results from adenosine release via equilibrative nucleoside transporters and prejunctional A1-receptor stimulation in human and rat urinary bladder.
Collapse
Affiliation(s)
- Isabel Silva
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Ana Filipa Costa
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Sílvia Moreira
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Maria Teresa Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Isabel Calejo
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Miguel Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Serviço de Urologia, Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal; .,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| |
Collapse
|
16
|
On the Site and Mechanism of Action of β 3-Adrenoceptor Agonists in the Bladder. Int Neurourol J 2017; 21:6-11. [PMID: 28361520 PMCID: PMC5380826 DOI: 10.5213/inj.1734850.425] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
The clinical success of mirabegron as the first β3-adrenoceptor (AR) agonist for treatment of the overactive bladder (OAB) syndrome, has resulted in substantial interest in its site and mechanism of action. Even if the adrenergic innervation of the bladder and urethra has been well studied, the location(s) of β3-ARs in different structures within the bladder wall and urethra, and the mode(s) of action of β3-AR stimulation have still not been established. The recent demonstration of β3-ARs on cholinergic nerve terminals with no immunoreactivity in urothelium or detrusor smooth muscle, is not in agreement with previous morphological studies, and functional data strongly suggest that β3-ARs can be found these structures. However, recent studies suggest that the β3-ARs on detrusor smooth muscle may not be the functionally most relevant. The assumption that β3-AR activation during bladder filling inhibits acetylcholine release from parasympathetic neurons by a prejunctional mechanism and that this decreases bladder micromotions that generate afferent activity, is an attractive hypothesis. It does not exclude that other mechanisms may be contributing, and supports combined approaches to reduce afferent activity for treatment of the OAB syndrome.
Collapse
|
17
|
Coelho A, Antunes-Lopes T, Gillespie J, Cruz F. Beta-3 adrenergic receptor is expressed in acetylcholine-containing nerve fibers of the human urinary bladder: An immunohistochemical study. Neurourol Urodyn 2017; 36:1972-1980. [PMID: 28185314 DOI: 10.1002/nau.23224] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/27/2016] [Accepted: 01/04/2017] [Indexed: 01/13/2023]
Abstract
AIMS To identify in the human bladder the structures which express the Beta-3 adrenoceptor (β3AR). METHODS Human bladders from cadaveric organ donors (equally balanced in sex and age) were collected. Bladders were immediately fixed in paraformaldehyde and further processed for cryostat sectioning. Single and double immunohistochemistry was performed using antibodies against β3AR C-terminal, β3AR N-terminal, a pan-neuronal marker (β3-Tubulin) and markers of cholinergic (Vesicular Acetylcholine Transporter), adrenergic (Tyrosine Hidroxylase), and peptidergic (Calcitonin Gene-Related Peptide) nerve fibers. RESULTS Nerve fibers expressing immunoreactivity for β3AR were abundantly found in the mucosa and muscular layers of the human bladder. No β3AR-IR was detected on urothelial or smooth muscle cells. The presence of β3AR-IR in nerve fibers was confirmed by co-expression with β3-Tubulin. Nerve fibers expressing β3AR-IR were cholinergic, VAChT+ , and abundantly observed in the suburothelium. The cholinergic fibers were in close proximity and intermingled with adrenergic TH+ and peptidergic CGRP+ fibers. CONCLUSIONS We demonstrated that β3AR is abundantly located in acetylcholine-containing nerve fibers. These findings have important consequences to understand the mechanism of action of β3AR agonists currently used for the treatment of OAB.
Collapse
Affiliation(s)
- Ana Coelho
- Institutode Investigação e Inovação em Saúde, Translational Neuro-urology Group, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal.,Faculty of Medicine, Department of Biomedicine, University of Porto, Porto, Portugal
| | - Tiago Antunes-Lopes
- Institutode Investigação e Inovação em Saúde, Translational Neuro-urology Group, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal.,Department of Urology, Hospital de S. João, Porto, Portugal
| | - James Gillespie
- Department of Urology, Campus Drie Eiken, University of Antwerpen, Belgium, Europe
| | - Francisco Cruz
- Institutode Investigação e Inovação em Saúde, Translational Neuro-urology Group, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal.,Department of Urology, Hospital de S. João, Porto, Portugal
| |
Collapse
|
18
|
Calmasini FB, de Oliveira MG, Alexandre EC, da Silva FH, da Silva CPV, Candido TZ, Antunes E, Mónica FZ. Long-term treatment with the beta-3 adrenoceptor agonist, mirabegron ameliorates detrusor overactivity and restores cyclic adenosine monophosphate (cAMP) levels in obese mice. Neurourol Urodyn 2016; 36:1511-1518. [PMID: 27794199 DOI: 10.1002/nau.23171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/06/2016] [Indexed: 01/14/2023]
Abstract
AIMS To evaluate the effects of the beta-3 adrenoceptor agonist, mirabegron in a mouse model of detrusor overactivity induced by obesity. METHODS C57BL/6 male mice were fed with standard chow or high-fat diet for 12 weeks. Lean and obese mice were treated orally with mirabegron (10 mg/kg/day) from the last 2 weeks of diet. Cystometric evaluations, functional assays, protein expression for phosphodiesterase type 4 (PDE4), and cyclic adenosine monophosphate (cAMP) measurement were carried out. RESULTS In obese mice the body weight, epididymal fat mass, fasting glucose, and low-density lipoprotein (LDL) levels were higher (P < 0.001) than in the lean mice. A reduction of 34% and 54% and an increase of 35% in the epididimal fat, LDL, and HDL levels (P < 0.05), respectively, were observed in the obese group treated with mirabegron, whereas no changes were seen in the lipid profile from lean mice. Obese group showed irregular micturition pattern, characterized by significant increases in frequency and non-void contractions. Carbachol, potassium chloride, and electrical-field stimulation induced detrusor smooth muscle (DSM) contractions, which were greater in bladders from obese mice than from lean mice. Two-week treatment with mirabegron restored all the contractile response alterations in the DSM. Basal intracellular levels of cAMP were reduced (68%), whereas PDE4 protein expression was increased (54%) in bladder from obese mice. Mirabegron restored the cAMP levels in obese bladder, without changing the PDE4 expression. CONCLUSION Mirabegron was able to completely restore the urinary alterations seen in the bladder from obese mice.
Collapse
Affiliation(s)
- Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eduardo C Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fábio H da Silva
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carmem P V da Silva
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Tuany Z Candido
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
19
|
Abstract
Overactive bladder (OAB) is a ubiquitous syndrome that is defined by urinary urgency with, or without urinary incontinence. OAB is observed in all parts of the world, with a prevalence of 5-12% in children (5-10 years of age) and a prevalence of 0.5% in older adolescents (16-18 years of age). Published data indicate that around a third of children with OAB are likely to become adults with similar complaints. Studies in children and in adults with OAB indicate that these individuals are more likely to also have anxiety, depression and attention deficit problems, and that appropriate treatment of these comorbidities can often improve the patient's OAB symptoms. Furthermore, data from twin studies and familial surveys seem to indicate a genetic component of OAB. Pharmacological treatments of OAB in children have improved in the past 5 years, moving beyond anticholinergic agents and including the off-label use of α-blockers, β3-agonists and intravesical botulinum toxin. Use of several different electrical stimulation techniques is also effective, both as first-line treatments, and for patients with treatment-refractory symptoms. Overall the outlook of children with OAB seems to be improving, with a greater understanding of the pathophysiology of this syndrome. Treatment modalities that target the source of the underlying problem, especially in children, are likely to provide the best patient outcomes.
Collapse
|
20
|
Propping S, Lorenz K, Michel MC, Wirth MP, Ravens U. β-Adrenoceptor-mediated Relaxation of Urinary Bladder Muscle in β2-Adrenoceptor Knockout Mice. Front Pharmacol 2016; 7:118. [PMID: 27242525 PMCID: PMC4860462 DOI: 10.3389/fphar.2016.00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/22/2016] [Indexed: 11/13/2022] Open
Abstract
Background and Objective: In order to characterize the β-adrenoceptor (AR) subtypes involved in agonist-stimulated relaxation of murine urinary bladder we studied the effects of (-)-isoprenaline and CL 316,243 on tonic contraction and spontaneous contractions in detrusor strips of wild-type (WT) and β2-AR knockout (β2-AR KO) mice. Materials and Methods: Urinary bladders were isolated from male WT and β2-AR KO mice. β-AR subtype expression was determined with quantitative real-time PCR. Intact muscle strips pre-contracted with KCl (40 mM) were exposed to cumulatively increasing concentrations of (-)-isoprenaline or β3-AR agonist CL 316,243 in the presence and absence of the subtype-selective β-AR blockers CGP 20712A (β1-ARs), ICI 118,551 (β2-ARs), and L748,337 (β3-ARs). Results: Quantitative real-time PCR confirmed lack of β2-AR expression in bladder tissue from β2-AR KO mice. In isolated detrusor strips, pre-contraction with KCl increased basal tone and enhanced spontaneous activity significantly more in β2-AR KO than in WT. (-)-Isoprenaline relaxed tonic tension and attenuated spontaneous activity with similar potency, but the concentrations required were two orders of magnitude higher in β2-AR KO than WT. The concentration-response curves (CRCs) for relaxation were not affected by CGP 20712A (300 nM), but were shifted to the right by ICI 118,551 (50 nM) and L748,337 (10 μM). The -logEC50 values for (-)-isoprenaline in WT and β2-AR KO tissue were 7.98 and 6.00, respectively, suggesting a large receptor reserve of β2-AR. (-)-CL 316,243 relaxed detrusor and attenuated spontaneous contractions from WT and β2-AR KO mice with a potency corresponding to the drug’s affinity for β3-AR. L743,337 shifted the CRCs to the right. Conclusion: Our findings in β2-AR KO mice suggest that there is a large receptor reserve for β2-AR in WT mice so that this β-AR subtype will mediate relaxation of tone and attenuation of spontaneous activity under physiological conditions. Nevertheless, upon removal of this reserve, β3-AR can also mediate murine detrusor relaxation.
Collapse
Affiliation(s)
- Stefan Propping
- Department of Urology, Faculty of Medicine Carl Gustav Carus, Dresden University of TechnologyDresden, Germany; Department of Physiology, Faculty of Medicine Carl Gustav Carus, Dresden University of TechnologyDresden, Germany
| | - Kristina Lorenz
- Department of Pharmacology and Toxicology, Julius Maximilian University WürzburgWürzburg, Germany; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V.Dortmund, Germany; West German Heart and Vascular Center Essen, University Hospital Essen-DuisburgDuisburg, Germany
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University Mainz, Germany
| | - Manfred P Wirth
- Department of Urology, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology Dresden, Germany
| | - Ursula Ravens
- Department of Physiology, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology Dresden, Germany
| |
Collapse
|
21
|
Michel MC, Korstanje C. β3-Adrenoceptor agonists for overactive bladder syndrome: Role of translational pharmacology in a repositioning clinical drug development project. Pharmacol Ther 2016; 159:66-82. [PMID: 26808167 DOI: 10.1016/j.pharmthera.2016.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
β3-Adrenoceptor agonists were originally considered as a promising drug class for the treatment of obesity and/or type 2 diabetes. When these development efforts failed, they were repositioned for the treatment of the overactive bladder syndrome. Based on the example of the β3-adrenoceptor agonist mirabegron, but also taking into consideration evidence obtained with ritobegron and solabegron, we discuss challenges facing a translational pharmacology program accompanying clinical drug development for a first-in-class molecule. Challenges included generic ones such as ligand selectivity, species differences and drug target gene polymorphisms. Challenges that are more specific included changing concepts of the underlying pathophysiology of the target condition while clinical development was under way; moreover, a paucity of public domain tools for the study of the drug target and aspects of receptor agonists as drugs had to be addressed. Nonetheless, a successful first-in-class launch was accomplished. Looking back at this translational pharmacology program, we conclude that a specifically tailored and highly flexible approach is required. However, several of the lessons learned may also be applicable to translational pharmacology programs in other indications.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany.
| | - Cees Korstanje
- Department of Drug Discovery Science & Management-Europe, Astellas Pharma Europe R&D, Leiden, The Netherlands
| |
Collapse
|
22
|
Alexandre EC, Kiguti LR, Calmasini FB, Silva FH, da Silva KP, Ferreira R, Ribeiro CA, Mónica FZ, Pupo AS, Antunes E. Mirabegron relaxes urethral smooth muscle by a dual mechanism involving β3 -adrenoceptor activation and α1 -adrenoceptor blockade. Br J Pharmacol 2016; 173:415-28. [PMID: 26493129 DOI: 10.1111/bph.13367] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 01/14/2023] Open
Abstract
LINKED ARTICLE This article is commented on by Michel, M. C., pp. 429-430 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.13379. BACKGROUND AND PURPOSE Mirabegron is the first β3 -adrenoceptor agonist approved for treatment of overactive bladder syndrome. This study aimed to investigate the effects of β3 -adrenoceptor agonist mirabegron in mouse urethra. The possibility that mirabegron also exerts α1 -adrenoceptor antagonism was also tested in rat smooth muscle preparations presenting α1A - (vas deferens and prostate), α1D - (aorta) and α1B -adrenoceptors (spleen). EXPERIMENTAL APPROACH Functional assays were carried out in mouse and rat isolated tissues. Competition assays for the specific binding of [(3) H]prazosin to membrane preparations of HEK-293 cells expressing each of the human α1 -adrenoceptors, as well as β-adrenoceptor mRNA expression and cyclic AMP measurements in mouse urethra, were performed. KEY RESULTS Mirabegron produced concentration-dependent urethral relaxations that were shifted to the right by the selective β3 -adrenoceptor antagonist L-748,337 but unaffected by β1 - and β2 -adrenoceptor antagonists (atenolol and ICI-118,551 respectively). Mirabegron-induced relaxations were enhanced by the PDE4 inhibitor rolipram, and the agonist stimulated cAMP synthesis. Mirabegron also produced rightward shifts in urethral contractions induced by the α1 -adrenoceptor agonist phenylephrine. Schild regression analysis revealed that mirabegron behaves as a competitive antagonist of α1 -adrenoceptors in urethra, vas deferens and prostate (α1A -adrenoceptor, pA2 ≅ 5.6) and aorta (α1D -adrenoceptor, pA2 ≅ 5.4) but not in spleen (α1B -adrenoceptor). The affinities estimated for mirabegron in functional assays were consistent with those estimated in radioligand binding with human recombinant α1A - and α1D -adrenoceptors (pKi ≅ 6.0). CONCLUSION AND IMPLICATIONS The effects of mirabegron in urethral smooth muscle are the result of β3 -adrenoceptor agonism together with α1A and α1D -adrenoceptor antagonism.
Collapse
Affiliation(s)
- E C Alexandre
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - L R Kiguti
- Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Botucatu, São Paulo, Brazil
| | - F B Calmasini
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - F H Silva
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - K P da Silva
- Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Botucatu, São Paulo, Brazil
| | - R Ferreira
- Hematology and Hemotherapy Center, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - C A Ribeiro
- Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Botucatu, São Paulo, Brazil
| | - F Z Mónica
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - A S Pupo
- Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Botucatu, São Paulo, Brazil
| | - E Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
23
|
Overactive Bladder and the β3-Adrenoceptor Agonists: Current Strategy and Future Prospects. Drugs 2015; 75:1707-13. [DOI: 10.1007/s40265-015-0456-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Hayashi M, Kajioka S, Itsumi M, Takahashi R, Shahab N, Ishigami T, Takeda M, Masuda N, Yamaguchi A, Naito S. Actions of cAMP on calcium sensitization in human detrusor smooth muscle contraction. BJU Int 2015; 117:179-91. [PMID: 25981809 DOI: 10.1111/bju.13180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To clarify the effect of cAMP on the Ca(2+) -sensitized smooth muscle contraction in human detrusor, as well as the role of novel exchange protein directly activated by cAMP (Epac) in cAMP-mediated relaxation. MATERIALS AND METHODS All experimental protocols to record isometric tension force were performed using α-toxin-permeabilized human detrusor smooth muscle strips. The mechanisms of cAMP-mediated suppression of Ca(2+) sensitization activated by 10 μm carbachol (CCh) and 100 μm GTP were studied using a selective rho kinase (ROK) inhibitor, Y-27632, and a selective protein kinase C (PKC) inhibitor, GF-109203X. The relaxation mechanisms were further probed using a selective protein kinase A (PKA) activator, 6-Bnz-cAMP and a selective Epac activator, 8-pCPT-2'-O-Me-cAMP. RESULTS We observed that CCh-induced Ca(2+) sensitization was inhibited by cAMP in a concentration-dependent manner. GF-109203X (10 μm) but not Y-27632 (10 μm) significantly enhanced the relaxation effect induced by cAMP (100 μm). 6-Bnz-cAMP (100 μm) predominantly decreased the tension force in comparison with 8-pCPT-2'-O-Me-cAMP (100 μm). CONCLUSIONS We showed that cAMP predominantly inhibited the ROK pathway but not the PKC pathway. The PKA-dependent pathway is dominant, while Epac plays a minor role in human detrusor smooth muscle Ca(2+) sensitization.
Collapse
Affiliation(s)
- Maya Hayashi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Shunichi Kajioka
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Momoe Itsumi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Ryosuke Takahashi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Nouval Shahab
- Department of Urology, Faculty of Medicine and Health Sciences, Syarif Hidayaullah Jakarta State Islamic University, Jakarta, Indonesia
| | - Takao Ishigami
- Urology Research Unit, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Masahiro Takeda
- Urology Research Unit, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Noriyuki Masuda
- Innovation and Research Portfolio Planning, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | | | - Seiji Naito
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| |
Collapse
|
25
|
Cernecka H, Kersten K, Maarsingh H, Elzinga CR, de Jong IJ, Korstanje C, Michel MC, Schmidt M. β3-Adrenoceptor-mediated relaxation of rat and human urinary bladder: roles of BKCa channels and Rho kinase. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:749-59. [PMID: 25956403 PMCID: PMC4475246 DOI: 10.1007/s00210-015-1128-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/23/2015] [Indexed: 12/18/2022]
Abstract
Previous studies suggest that the large-conductance Ca(2+)-activated K(+) (BKCa) channel and Rho-kinase play major roles in the control of urinary bladder tone. Here, we investigated their involvement in β-adrenoceptor (AR)-mediated relaxation of rat and human bladder. Concentration-response curves of isoprenaline and mirabegron-induced bladder relaxation were generated against passive tension and KCl- and carbachol-induced tone, in the absence or presence of the BKCa channel inhibitor iberiotoxin (100 nM) or the Rho-kinase inhibitor Y27,632 (1 μM). Myosin light chain (MLC) phosphorylation was studied by Western blot. In rat, iberiotoxin only slightly altered isoprenaline- and mirabegron-induced relaxation against KCl-induced tone but attenuated relaxation by both agonists against carbachol-induced tone. Y27,632 enhanced isoprenaline- or mirabegron-induced relaxation only against carbachol-induced tone. In humans, iberiotoxin slightly enhanced relaxation by both agonists against carbachol-induced pre-contraction. Y27,632 did not change isoprenaline-induced relaxation but enhanced that by mirabegron. Under passive tension, MLC phosphorylation was markedly reduced by both β-AR agonists, an effect insensitive to Y27,632. In the presence of carbachol, both β-AR agonists increased MLC phosphorylation, an effect reduced by Y27,632 only in the presence of 1 μM carbachol. These results indicate that the extent of BKCa channel and Rho-kinase involvement in relaxation induced by β-AR agonists depends on pre contractile stimulus and species.
Collapse
Affiliation(s)
- Hana Cernecka
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Svalø J, Sheykhzade M, Nordling J, Matras C, Bouchelouche P. Functional and molecular evidence for Kv7 channel subtypes in human detrusor from patients with and without bladder outflow obstruction. PLoS One 2015; 10:e0117350. [PMID: 25692982 PMCID: PMC4333569 DOI: 10.1371/journal.pone.0117350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 12/21/2014] [Indexed: 12/30/2022] Open
Abstract
The aim of the study was to investigate whether Kv7 channels and their ancillary β-subunits, KCNE, are functionally expressed in the human urinary bladder. Kv7 channels were examined at the molecular level and by functional studies using RT-qPCR and myography, respectively. We found mRNA expression of KCNQ1, KCNQ3-KCNQ5 and KCNE1-5 in the human urinary bladder from patients with normal bladder function (n = 7) and in patients with bladder outflow obstruction (n = 3). Interestingly, a 3.4-fold up-regulation of KCNQ1 was observed in the latter. The Kv7 channel subtype selective modulators, ML277 (activator of Kv7.1 channels, 10 μM) and ML213 (activator of Kv7.2, Kv7.4, Kv7.4/7.5 and Kv7.5 channels, 10 μM), reduced the tone of 1 μM carbachol pre-constricted bladder strips. XE991 (blocker of Kv7.1-7.5 channels, 10 μM) had opposing effects as it increased contractions achieved with 20 mM KPSS. Furthermore, we investigated if there is interplay between Kv7 channels and β-adrenoceptors. Using cumulative additions of isoprenaline (β-adrenoceptor agonist) and forskolin (adenylyl cyclase activator) in combination with the Kv7 channel activator and blocker, retigabine and XE991, we did not find interplay between Kv7 channels and β-adrenoceptors in the human urinary bladder. The performed gene expression analysis combined with the organ bath studies imply that compounds that activate Kv7 channels could be useful for treatment of overactive bladder syndrome.
Collapse
Affiliation(s)
- Julie Svalø
- Smooth Muscle Research Center, Department of Clinical Biochemistry, Copenhagen University Hospital, Koege, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Nordling
- Department of Urology, Copenhagen University Hospital, Herlev, Denmark
| | - Christina Matras
- Department of Urology, Copenhagen University Hospital, Naestved, Denmark
| | - Pierre Bouchelouche
- Smooth Muscle Research Center, Department of Clinical Biochemistry, Copenhagen University Hospital, Koege, Denmark
| |
Collapse
|
27
|
Michel MC, Seifert R. Selectivity of pharmacological tools: implications for use in cell physiology. A review in the theme: Cell signaling: proteins, pathways and mechanisms. Am J Physiol Cell Physiol 2015; 308:C505-20. [PMID: 25631871 DOI: 10.1152/ajpcell.00389.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/24/2015] [Indexed: 01/08/2023]
Abstract
Pharmacological inhibitors are frequently used to identify the receptors, receptor subtypes, and associated signaling pathways involved in physiological cell responses. Based on the effects of such inhibitors conclusions are drawn about the involvement of their assumed target or lack thereof. While such inhibitors can be useful tools for a better physiological understanding, their uncritical use can lead to incorrect conclusions. This article reviews the concept of inhibitor selectivity and its implication for cell physiology. Specifically, we discuss the implications of using inhibitor vs. activator approaches, issues of direct vs. indirect pathway modulation, implications of inverse agonism and biased signaling, and those of orthosteric vs. allosteric, competitive vs. noncompetitive, and reversible vs. irreversible inhibition. Additional problems can result from inconsistent estimates of inhibitor potency and differences in potency between cell-free systems and intact cells. These concepts are illustrated by several examples of inhibitors displaying affinity for related but distinct targets or even unrelated targets. Of note, many of the issues being addressed are also applicable to genetic inhibition strategies. The main practical conclusion following from these concepts is that investigators should be critical in the choice of inhibitor, its concentrations, and its mode of application. When this advice is adhered to, small-molecule pharmacological inhibitors can be important experimental tools in the hand of physiologists.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany; and
| | - Roland Seifert
- Department of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
28
|
Leone Roberti Maggiore U, Cardozo L, Ferrero S, Sileo F, Cola A, Del Deo F, Torella M, Colacurci N, Candiani M, Salvatore S. Mirabegron in the treatment of overactive bladder. Expert Opin Pharmacother 2014; 15:873-87. [PMID: 24646053 DOI: 10.1517/14656566.2014.898752] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Mirabegron is a selective β3-adrenergic receptor agonist recently developed for the treatment of patients with overactive bladder (OAB), which offers an alternative pharmacological option to the well-established treatment with antimuscarinics (AMs). AREAS COVERED This review offers an explanation of the mechanism of action, of the pharmacokinetics and pharmacodynamics of mirabegron and gives readers a complete overview of Phase II and III studies on the clinical efficacy, tolerability and safety of this agent in the setting of OAB treatment. EXPERT OPINION Both Phase II and III trials have shown that mirabegron is efficacious and safe in treating patients with OAB. Future research should focus on the assessment of mirabegron concentrations in the CNS and on the evaluation of the potential of the combination of mirabegron with AMs. Another field for future research is represented by the investigation of the interaction of mirabegron with CYP2D6 inhibitors. Furthermore, current literature completely lacks studies on the efficacy and safety of mirabegron in the pediatric population and such trials are awaited.
Collapse
|
29
|
Bayrak S, Balkanci ZD, Pehlivanoğlu B, Karabulut İ, Karaismailoğlu S, Erdem A. Does hypercholesterolemia affect the relaxation of the detrusor smooth muscle in rats? In vitro and in vivo studies. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:761-71. [PMID: 25344203 DOI: 10.1007/s00210-014-1060-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/13/2014] [Indexed: 12/22/2022]
Abstract
To evaluate the effects of hypercholesterolemia on the relaxation function of the urinary bladder, we examined the physiological mechanisms involved in the isoproterenol-induced relaxation in isolated detrusor strips in vitro and voiding behavior in vivo in rats. Adult male Sprague-Dawley rats were fed standard (control, N = 16) or 4 % cholesterol diet (hypercholesterolemia, N = 17) for 4 weeks. Concentration-response curves for isoproterenol-induced relaxations in carbachol-precontracted detrusor muscle strips were recorded. The contributions of β2- and β3-adrenoceptors and ATP-dependent and Ca(2+)-dependent potassium channels to the relaxation response were investigated by using selective adrenergic agonists salbutamol and BRL 37344 and specific potassium channel inhibitors glibenclamide and charybdotoxin, respectively. Cystometrography was performed to assess bladder function. Hypercholesterolemic rats had higher serum cholesterol and low- and high-density lipoprotein levels than the controls with no sign of atherosclerosis. Isoproterenol-induced relaxation was significantly enhanced in the hypercholesterolemia group. Preincubation with the M2 receptor antagonist attenuated the relaxation response in both groups. The relaxation responses to isoproterenol and salbutamol were similar in both groups, while BRL 37344 appeared to produce a greater relaxant effect in the hypercholesterolemic rats. Also, the inhibitory effects of potassium channel inhibitors on relaxation responses were comparable among the groups. The cystometric findings revealed that threshold and basal pressure values were higher in the hypercholesterolemia group compared with controls. We showed that hypercholesterolemia leads to greater relaxation responses to isoproterenol, appears to impair the braking function of M2 cholinergic receptors on adrenoceptor-induced relaxations in the isolated detrusor muscle, and affects the voiding function in rats.
Collapse
Affiliation(s)
- Sibel Bayrak
- Department of Physiology, Faculty of Medicine, Hacettepe University, 39, 06100, Sihhiye, Ankara, Turkey,
| | | | | | | | | | | |
Collapse
|
30
|
Nomiya M, Andersson KE, Yamaguchi O. Chronic bladder ischemia and oxidative stress: New pharmacotherapeutic targets for lower urinary tract symptoms. Int J Urol 2014; 22:40-6. [DOI: 10.1111/iju.12652] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/15/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Masanori Nomiya
- Division of Bioengineering and LUTD Research; Nihon University School of Engineering; Koriyama Japan
| | - Karl-Erik Andersson
- Institute for Regenerative Medicine; Wake Forest University School of Medicine; Winston-Salem North Carolina USA
- Aarhus Institute for Advanced Studies; Aarhus University; Aarhus Denmark
| | - Osamu Yamaguchi
- Division of Bioengineering and LUTD Research; Nihon University School of Engineering; Koriyama Japan
| |
Collapse
|
31
|
Bentzen BH, Olesen SP, Rønn LCB, Grunnet M. BK channel activators and their therapeutic perspectives. Front Physiol 2014; 5:389. [PMID: 25346695 PMCID: PMC4191079 DOI: 10.3389/fphys.2014.00389] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/19/2014] [Indexed: 01/05/2023] Open
Abstract
The large conductance calcium- and voltage-activated K+ channel (KCa1.1, BK, MaxiK) is ubiquitously expressed in the body, and holds the ability to integrate changes in intracellular calcium and membrane potential. This makes the BK channel an important negative feedback system linking increases in intracellular calcium to outward hyperpolarizing potassium currents. Consequently, the channel has many important physiological roles including regulation of smooth muscle tone, neurotransmitter release and neuronal excitability. Additionally, cardioprotective roles have been revealed in recent years. After a short introduction to the structure, function and regulation of BK channels, we review the small organic molecules activating BK channels and how these tool compounds have helped delineate the roles of BK channels in health and disease.
Collapse
Affiliation(s)
- Bo H Bentzen
- Department of Biomedical Sciences, Faculty of Health Sciences, Danish Arrhythmia Research Centre, University of Copenhagen Copenhagen, Denmark ; Acesion Pharma Copenhagen, Denmark
| | - Søren-Peter Olesen
- Department of Biomedical Sciences, Faculty of Health Sciences, Danish Arrhythmia Research Centre, University of Copenhagen Copenhagen, Denmark
| | | | - Morten Grunnet
- Acesion Pharma Copenhagen, Denmark ; H. Lundbeck A/S Copenhagen, Denmark
| |
Collapse
|
32
|
Nausch B, Rode F, Jørgensen S, Nardi A, Korsgaard MPG, Hougaard C, Bonev AD, Brown WD, Dyhring T, Strøbæk D, Olesen SP, Christophersen P, Grunnet M, Nelson MT, Rønn LCB. NS19504: a novel BK channel activator with relaxing effect on bladder smooth muscle spontaneous phasic contractions. J Pharmacol Exp Ther 2014; 350:520-30. [PMID: 24951278 DOI: 10.1124/jpet.113.212662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large-conductance Ca(2+)-activated K(+) channels (BK, KCa1.1, MaxiK) are important regulators of urinary bladder function and may be an attractive therapeutic target in bladder disorders. In this study, we established a high-throughput fluorometric imaging plate reader-based screening assay for BK channel activators and identified a small-molecule positive modulator, NS19504 (5-[(4-bromophenyl)methyl]-1,3-thiazol-2-amine), which activated the BK channel with an EC50 value of 11.0 ± 1.4 µM. Hit validation was performed using high-throughput electrophysiology (QPatch), and further characterization was achieved in manual whole-cell and inside-out patch-clamp studies in human embryonic kidney 293 cells expressing hBK channels: NS19504 caused distinct activation from a concentration of 0.3 and 10 µM NS19504 left-shifted the voltage activation curve by 60 mV. Furthermore, whole-cell recording showed that NS19504 activated BK channels in native smooth muscle cells from guinea pig urinary bladder. In guinea pig urinary bladder strips, NS19504 (1 µM) reduced spontaneous phasic contractions, an effect that was significantly inhibited by the specific BK channel blocker iberiotoxin. In contrast, NS19504 (1 µM) only modestly inhibited nerve-evoked contractions and had no effect on contractions induced by a high K(+) concentration consistent with a K(+) channel-mediated action. Collectively, these results show that NS19504 is a positive modulator of BK channels and provide support for the role of BK channels in urinary bladder function. The pharmacologic profile of NS19504 indicates that this compound may have the potential to reduce nonvoiding contractions associated with spontaneous bladder overactivity while having a minimal effect on normal voiding.
Collapse
Affiliation(s)
- Bernhard Nausch
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Frederik Rode
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Susanne Jørgensen
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Antonio Nardi
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Mads P G Korsgaard
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Charlotte Hougaard
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Adrian D Bonev
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - William D Brown
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Tino Dyhring
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Dorte Strøbæk
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Søren-Peter Olesen
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Palle Christophersen
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Morten Grunnet
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Mark T Nelson
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| | - Lars C B Rønn
- NeuroSearch A/S, Ballerup, Denmark (F.R., S.J., A.N., M.P.G.K., C.H., W.D.B., T.D., D.S., S.-P.O., P.C., M.G., L.C.B.R.); University of Vermont, Department of Pharmacology, Burlington, Vermont (B.N., A.D.B., M.T.N.); and Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom (M.T.N.)
| |
Collapse
|
33
|
Blockade of renin-angiotensin system prevents micturition dysfunction in renovascular hypertensive rats. Eur J Pharmacol 2014; 738:285-92. [PMID: 24881522 DOI: 10.1016/j.ejphar.2014.05.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/21/2022]
Abstract
Association between hypertension and bladder symptoms has been described. We hypothesized that micturition dysfunction may be associated with renin-angiotensin system (RAS) acting in urethra. The effects of the anti-hypertensive drugs losartan (AT1 antagonist) and captopril (angiotensin-converting enzyme inhibitor) in comparison with atenolol (β1-adrenoceptor antagonist independently of RAS blockade) have been investigated in bladder and urethral dysfunctions during renovascular hypertension in rats. Two kidney-1 clip (2K-1C) rats were treated with losartan (30 mg/kg/day), captopril (50mg/kg/day) or atenolol (90 mg/kg/day) for eight weeks. Cystometric study, bladder and urethra smooth muscle reactivities, measurement of cAMP levels and p38 MAPK phosphorylation in urinary tract were determined. Losartan and captopril markedly reduced blood pressure in 2K-1C rats. The increases in non-voiding contractions, voiding frequency and bladder capacity in 2K-1C rats were prevented by treatments with both drugs. Likewise, losartan and captopril prevented the enhanced bladder contractions to electrical-field stimulation (EFS) and carbachol, along with the impaired relaxations to β-adrenergic-cAMP stimulation. Enhanced neurogenic contractions and impaired nitrergic relaxations were observed in urethra from 2K-1C rats. Angiotensin II also produced greater urethral contractions that were accompanied by higher phosphorylation of p38 MAPK in urethral tissues of 2K-1C rats. Losartan and captopril normalized the urethral dysfunctions in 2K-1C rats. In contrast, atenolol treatment largely reduced the blood pressure in 2K-1C rats but failed to affect the urinary tract smooth muscle dysfunction. The urinary tract smooth muscle dysfunction in 2K-1C rats takes place by local RAS activation irrespective of levels of arterial blood pressure.
Collapse
|
34
|
Rouget C, Rekik M, Camparo P, Botto H, Rischmann P, Lluel P, Palea S, Westfall TD. Modulation of nerve-evoked contractions by β3-adrenoceptor agonism in human and rat isolated urinary bladder. Pharmacol Res 2013; 80:14-20. [PMID: 24378642 DOI: 10.1016/j.phrs.2013.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/12/2013] [Accepted: 12/18/2013] [Indexed: 12/18/2022]
Abstract
Activation of β3-adrenoceptors has been shown to have a direct relaxant effect on urinary bladder smooth muscle from both rats and humans, however there are very few studies investigating the effects of β3-adrenoceptor agonists on nerve-evoked bladder contractions. Therefore in the current study, the role of β3-adrenoceptors in modulating efferent neurotransmission was evaluated. The effects of β3-adrenoceptor agonism on neurogenic contractions induced by electrical field stimulation (EFS) were compared with effects on contractions induced by exogenous acetylcholine (Ach) and αβ-methylene adenosine triphosphate (αβ-meATP) in order to determine the site of action. Isoproterenol inhibited EFS-induced neurogenic contractions of human bladder (pD2=6.79; Emax=65%). The effect of isoproterenol was selectively inhibited by the β3-adrenoceptor antagonist L-748,337 (pKB=7.34). Contractions induced by exogenous Ach (0.5-1μM) were inhibited 25% by isoproterenol (3μM) while contractions to 10Hz in the same strip were inhibited 67%. The selective β3-adrenoceptor agonist CL-316,243 inhibited EFS-induced neurogenic contractions of rat bladder (pD2=7.83; Emax=65%). The effects of CL-316,243 were inhibited in a concentration dependent manner by L-748,337 (pA2=6.42). Contractions induced by exogenous Ach and αβ-meATP were significantly inhibited by CL-316,243, 29% and 40%, respectively. These results demonstrate that the activation of β3-adrenoceptors inhibits neurogenic contractions of both rat and human urinary bladder. Contractions induced by exogenously applied parasympathetic neurotransmitters are also inhibited by β3-agonism however the effect is clearly less than on neurogenic contractions (particularly in human), suggesting that in addition to a direct effect on smooth muscle, activation of prejunctional β3-adrenoceptors may inhibit neurotransmitter release.
Collapse
Affiliation(s)
- Céline Rouget
- UROsphere, Faculté des Sciences Pharmaceutiques, 35 chemin des Maraîchers, 31062 Toulouse Cedex 09, France
| | - Moèz Rekik
- UROsphere, Faculté des Sciences Pharmaceutiques, 35 chemin des Maraîchers, 31062 Toulouse Cedex 09, France
| | - Philippe Camparo
- Foch Hospital, Anatomy and Cytopathology Department, 92151 Suresnes Cedex, France
| | - Henry Botto
- Foch Hospital, Urology Department, 92151 Suresnes Cedex, France
| | - Pascal Rischmann
- Rangueil Hospital, Urology Department, 31059 Toulouse Cedex 9, France
| | - Philippe Lluel
- UROsphere, Faculté des Sciences Pharmaceutiques, 35 chemin des Maraîchers, 31062 Toulouse Cedex 09, France
| | - Stefano Palea
- UROsphere, Faculté des Sciences Pharmaceutiques, 35 chemin des Maraîchers, 31062 Toulouse Cedex 09, France
| | - Timothy D Westfall
- UROsphere, Faculté des Sciences Pharmaceutiques, 35 chemin des Maraîchers, 31062 Toulouse Cedex 09, France.
| |
Collapse
|
35
|
Sacco E, Bientinesi R. Mirabegron, a novel, non-antimuscarinic drug for the overactive bladder: An up-to-dated review. World J Obstet Gynecol 2013; 2:65-73. [DOI: 10.5317/wjog.v2.i4.65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/29/2013] [Accepted: 07/05/2013] [Indexed: 02/05/2023] Open
Abstract
Mirabegron opened a new era in the treatment of overactive bladder (OAB). For the first time physicians dealing with OAB have an effective alternative to the pharmacological mainstay of the therapy for this disorder, the antimuscarinic drugs. This first-in-class, potent β3-adrenoceptors agonist has recently received approval by regulatory authorities in Japan, United States and Europe, based on the favourable efficacy-tolerability profile demonstrated in multiple randomized, multinational, controlled trials, both short and long-term. There is substantial consistency through the studies in reporting the cardiovascular safety of treatment with mirabegron. The main advantage of mirabegron is the placebo-like incidence of classic adverse effects caused by antimuscarinics, dry mouth and constipation, that is expected to improve long-term adherence of patients to treatment. Mirabegron can be used in patients with contraindications to antimuscarinics and in those who discontinued previous antimuscarinic therapy. Herein, we reviewed the published literature on mirabegron, focusing on the rationale of β3-agonism for OAB treatment and on the preclinical and clinical evidence of efficacy and safety available on this new pharmacological principle.
Collapse
|
36
|
What do we know and not know about mirabegron, a novel β3 agonist, in the treatment of overactive bladder? Int Urogynecol J 2013; 25:165-70. [PMID: 23922008 DOI: 10.1007/s00192-013-2161-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/13/2013] [Indexed: 01/18/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Mirabegron is a novel β3-adrenoceptor agonist recently approved by Japanese, American, and European authorities for overactive bladder (OAB) therapy. Here we review existing knowledge on this new class of medication, analyze existing literature on the topic, and make recommendations regarding its administration and necessary future studies. METHODS We reviewed the current literature and analyzed mirabegron efficacy, safety, and suitability for treating OAB symptoms. We performed a systematic search of Medline/PubMed, and Embase. Studies exploring mechanisms involved in the effects of mirabegron were included. Searches were limited to the English language. RESULTS Two phase II and two large-scale phase III multinational randomized controlled trials have supported mirabegron efficacy and tolerability with up to 12 weeks of therapy in OAB patients. The reported frequency and severity of treatment-emergent and serious adverse events were similar to antimuscarinics but with more than threefold lower incidence of dry mouth than with tolterodine. However, effects on the cardiovascular system, cognitive functions, pharmacokinetic interactions with other drugs, and long-term adverse events have not yet been fully investigated. CONCLUSION Anticholinergic drugs should remain the first-line pharmacologic treatment for OAB until head-to-head comparative study eventually shows that mirabegron has equivalent or superior efficacy. However, it seems logical to use mirabegron as second-line treatment of OAB in patients who are poor responders or intolerant to anticholinergics.
Collapse
|
37
|
Protective effect of a β3-adrenoceptor agonist on bladder function in a rat model of chronic bladder ischemia. Eur Urol 2013; 64:664-71. [PMID: 23838637 DOI: 10.1016/j.eururo.2013.06.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/21/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND The β3-adrenoceptor (AR) agonist mirabegron has been introduced as a treatment for the overactive bladder. Its effects on the function of the ischemic bladder are not known. OBJECTIVE To investigate the effect of mirabegron in a rat model of chronic ischemia-related bladder dysfunction. DESIGN, SETTING, AND PARTICIPANTS Male Sprague-Dawley rats were divided into three groups: control (n=10), arterial endothelial injury (AI; n=16), and AI with mirabegron treatment (AI-mirabegron; n=10). AI and AI-mirabegron groups underwent endothelial injury of the iliac arteries and received a 2% cholesterol diet following AI. AI-mirabegron rats received mirabegron (10mg/kg/d) orally for 8 wk. The control group received a regular diet. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS After 8 wk, urodynamic investigation was performed in awake animals. Pharmacologic in vitro studies and histologic examination of the iliac arteries and bladders were performed. RESULTS AND LIMITATIONS Iliac arteries from both AI and AI-mirabegron rats displayed neointimal formation and luminal occlusion. Micturition interval (MI), bladder capacity (Bcap), and voided volume (VV) in the AI group were significantly less than in the control group (p<0.01). In the AI-mirabegron group, MI, Bcap, and VV were significantly larger than in the AI group (p<0.05) but significantly less than in the control group (p<0.05). Contractile responses of bladder strips to potassium chloride, electrical field stimulation, and carbachol were significantly lower after AI than in controls; responses in preparations from AI-mirabegron-treated animals were similar to those of controls. The AI group showed a significantly higher percentage of collagen (28.6 ± 1.57%) compared with the controls (8.65 ± 0.67%) and AI-mirabegron-treated animals (17.2 ± 2.32%). The mirabegron dose used in this study may potentially limit the translational value of the results. CONCLUSIONS In the chronically ischemic rat bladder, treatment with mirabegron seems to protect bladder function and morphology, resulting in reduced bladder hyperactivity. If the results are valid for humans, they support β3-AR agonism as a potential treatment of chronic ischemia-related bladder dysfunction.
Collapse
|
38
|
Nishikawa N, Kanematsu A, Negoro H, Imamura M, Sugino Y, Okinami T, Yoshimura K, Hashitani H, Ogawa O. PTHrP is endogenous relaxant for spontaneous smooth muscle contraction in urinary bladder of female rat. Endocrinology 2013; 154:2058-68. [PMID: 23546599 DOI: 10.1210/en.2012-2142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Acute bladder distension causes various morphologic and functional changes, in part through altered gene expression. We aimed to investigate the physiologic role of PTHrP, which is up-regulated in an acute bladder distension model in female rats. In the control Empty group, bladders were kept empty for 6 hours, and in the Distension group, bladders were kept distended for 3 hours after an artificial storing-voiding cycle for 3 hours. In the Distention group bladder, up-regulation of transcripts was noted for 3 genes reported to be up-regulated by stretch in the cultured bladder smooth muscle cells in vitro. Further transcriptome analysis by microarray identified PTHrP as the 22nd highest gene up-regulated in Distension group bladder, among more than 27,000 genes. Localization of PTHrP and its functional receptor, PTH/PTHrP receptor 1 (PTH1R), were analyzed in the untreated rat bladders and cultured bladder cells using real-time RT-PCR and immunoblotting, which revealed that PTH1R and PTHrP were more predominantly expressed in smooth muscle than in urothelium. Exogenous PTHrP peptide (1-34) increased intracellular cAMP level in cultured bladder smooth muscle cells. In organ bath study using bladder strips, the PTHrP peptide caused a marked reduction in the amplitude of spontaneous contraction but caused only modest suppression for carbachol-induced contraction. In in vivo functional study by cystometrogram, the PTHrP peptide decreased voiding pressure and increased bladder compliance. Thus, PTHrP is a potent endogenous relaxant of bladder contraction, and autocrine or paracrine mechanism of the PTHrP-PTH1R axis is a physiologically relevant pathway functioning in the bladder.
Collapse
MESH Headings
- Animals
- Carbachol/pharmacology
- Cells, Cultured
- Cholinergic Agonists/pharmacology
- Cyclic AMP/metabolism
- Female
- Gene Expression Profiling
- Immunoblotting
- In Vitro Techniques
- Muscle Contraction/genetics
- Muscle Contraction/physiology
- Muscle, Smooth/metabolism
- Muscle, Smooth/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oligonucleotide Array Sequence Analysis
- Parathyroid Hormone-Related Protein/genetics
- Parathyroid Hormone-Related Protein/metabolism
- Parathyroid Hormone-Related Protein/physiology
- Peptide Fragments/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptor, Parathyroid Hormone, Type 1/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Urinary Bladder/metabolism
- Urinary Bladder/physiopathology
- Urinary Retention/genetics
- Urinary Retention/metabolism
- Urinary Retention/physiopathology
Collapse
Affiliation(s)
- Nobuyuki Nishikawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Intermedin suppresses pressure overload cardiac hypertrophy through activation of autophagy. PLoS One 2013; 8:e64757. [PMID: 23737997 PMCID: PMC3667197 DOI: 10.1371/journal.pone.0064757] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 04/18/2013] [Indexed: 02/05/2023] Open
Abstract
Left ventricular hypertrophy is a maladaptive response to pressure overload and an important risk factor for heart failure. Intermedin (IMD), a multi-functional peptide, plays important roles in cardiovascular protection. In this study, we revealed an autophagy-dependent mechanism involved in IMD’s protection against cardiac remodeling and cardiomyocyte death in heart hypertrophy. We observed that transverse aortic contraction (TAC) induction, Ang II or ISO exposure induced remarkable increase in the expression of endogenous IMD and its receptor components, CRLR, RAMP1 and RAMP3, in mouse hearts and H9c2 cell cultures, respectively. Furthermore, the heart size, heart weight/body weight ratios, cardiomyocyte size and apoptosis, interstitial collagen, hypertrophic markers including ANP and BNP expression were also significantly increased, which were effectively suppressed by IMD supplementation. In addition, IMD induced capillary angiogenesis and improved functions in hypertrophic hearts. We further observed that IMD induced strong autophagy in hypertrophic hearts and cultured cells, which was paralleling with the decrease in cardiomyocyte size and apoptosis. Furthermore, an autophagy inhibitor, 3-MA, was used to block the IMD-augmented autophagy level, and then the protection of IMD on cardiomyocyte hypertrophy and apoptosis was almost abrogated. We also observed that IMD supplementation stirred intracellular cAMP production, and augmented the ERK1/2 phosphorylation induced by Ang II/ISO exposure in H9c2 cells. In addition, we inhibited PI3K, PKA and MAPK/ERK1/2 signaling pathways by using wortamannin, H89 and PD98059, respectively, in H9c2 cells co-incubating with both IMD and Ang II or ISO, and observed that these inhibitors effectively reduced IMD-augmented autophagy level, but only H89 and PD98059 pre-incubation abrogated the anti-apoptotic action of IMD. These results indicate that the endogenous IMD and its receptor complexes are induced in hypertrophic cardiomyocytes and proposed to play an important role in the pathogenesis of cardiac hypertrophy, and the autophagy stirred by IMD supplementation is involved in its protection against cardiomyocyte hypertrophy and apoptosis through the activation of both cAMP/PKA and MAPK/ERK1/2 pathways.
Collapse
|
40
|
Ochodnicky P, Uvelius B, Andersson KE, Michel MC. Autonomic nervous control of the urinary bladder. Acta Physiol (Oxf) 2013; 207:16-33. [PMID: 23033838 DOI: 10.1111/apha.12010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/28/2011] [Accepted: 09/10/2012] [Indexed: 01/25/2023]
Abstract
The autonomic nervous system plays an important role in the regulation of the urinary bladder function. Under physiological circumstances, noradrenaline, acting mainly on β(3) -adrenoceptors in the detrusor and on α(1) (A) -adrenoceptors in the bladder outflow tract, promotes urine storage, whereas neuronally released acetylcholine acting mainly on M(3) receptors promotes bladder emptying. Under pathophysiological conditions, however, this system may change in several ways. Firstly, there may be plasticity at the levels of innervation and receptor expression and function. Secondly, non-neuronal acetylcholine synthesis and release from the urothelium may occur during the storage phase, leading to a concomitant exposure of detrusor smooth muscle, urothelium and afferent nerves to acetylcholine and noradrenaline. This can cause interactions between the adrenergic and cholinergic system, which have been studied mostly at the post-junctional smooth muscle level until now. The implications of such plasticity are being discussed.
Collapse
Affiliation(s)
- P. Ochodnicky
- Department of Pharmacology & Pharmacotherapy; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - B. Uvelius
- Department of Urology; Skane University Hospital; Malmö; Sweden
| | - K.-E. Andersson
- Institute for Regenerative Medicine; Wake Forest University School of Medicine; Winston Salem; NC; USA
| | - M. C. Michel
- Department of Pharmacology; Johannes Gutenberg University; Mainz; Germany
| |
Collapse
|
41
|
Hatanaka T, Ukai M, Watanabe M, Someya A, Ohtake A, Suzuki M, Ueshima K, Sato S, Sasamata M. In vitro and in vivo pharmacological profile of the selective β3-adrenoceptor agonist mirabegron in rats. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:247-53. [PMID: 23239087 DOI: 10.1007/s00210-012-0821-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/28/2012] [Indexed: 01/13/2023]
Abstract
To investigate the pharmacological properties of mirabegron in in vitro and in vivo, the effects on cAMP accumulation in Chinese hamster ovary (CHO) cells expressing rat β-adrenoceptors, the relaxant activity in isolated rat bladder smooth muscle, and the voiding effects in cerebral infarcted rats were evaluated. Mirabegron increased cAMP accumulation with EC(50) value and intrinsic activity of 19 nmol/L and 1.0, respectively, in CHO cells expressing rat β(3)-adrenoceptors. The EC(50) values and the intrinsic activities of mirabegron were 610 nmol/L and 0.6 for rat β(1)-adrenoceptors and were sumless and 0.1 for β(2)-adrenoceptors, respectively. Mirabegron showed concentration-dependent relaxant and full agonistic effects in rat bladder strips under passive tension with EC(50) value of 290 nmol/L. The concentration-response curve of mirabegron was affected neither by the β(1)-adrenoceptor selective antagonist CGP-20712A nor by the β(2)-adrenoceptor selective antagonist ICI-118,551. In in vivo studies with cerebral infarcted rats, a significant decrease in the volume voided per micturition compared with sham-operated rats was observed. Mirabegron dose-dependently increased the volume voided per micturition. In conclusion, we have extended the selectivity profile of mirabegron to rats and demonstrated that it is effective via stimulation of β(3)-adrenoceptors in a rat cerebral infarction model of detrusor overactivity.
Collapse
Affiliation(s)
- Toshiki Hatanaka
- Applied Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The distribution of the prostaglandin E receptor type 2 (EP2) in the detrusor of the guinea pig. Prostaglandins Other Lipid Mediat 2012; 99:107-15. [DOI: 10.1016/j.prostaglandins.2012.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/02/2012] [Accepted: 08/21/2012] [Indexed: 12/16/2022]
|
43
|
Xin W, Cheng Q, Soder RP, Petkov GV. Inhibition of phosphodiesterases relaxes detrusor smooth muscle via activation of the large-conductance voltage- and Ca²⁺-activated K⁺ channel. Am J Physiol Cell Physiol 2012; 302:C1361-70. [PMID: 22322973 DOI: 10.1152/ajpcell.00432.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Detrusor smooth muscle (DSM) exhibits increased spontaneous phasic contractions under pathophysiological conditions such as detrusor overactivity (DO). Our previous studies showed that activation of cAMP signaling pathways reduces DSM contractility by increasing the large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel activity. Here, we tested the hypothesis whether inhibition of phosphodiesterases (PDEs) can reduce guinea pig DSM excitability and contractility by increasing BK channel activity. Utilizing isometric tension recordings of DSM isolated strips and the perforated patch-clamp technique on freshly isolated DSM cells, we examined the mechanism of DSM relaxation induced by PDE inhibition. Inhibition of PDEs by 3-isobutyl-1-methylxanthine (IBMX), a nonselective PDE inhibitor, significantly reduced DSM spontaneous and carbachol-induced contraction amplitude, frequency, duration, muscle force integral, and tone in a concentration-dependent manner. IBMX significantly reduced electrical field stimulation-induced contractions of DSM strips. Blocking BK channels with paxilline diminished the inhibitory effects of IBMX on DSM contractility, indicating a role for BK channels in DSM relaxation mediated by PDE inhibition. IBMX increased the transient BK currents (TBKCs) frequency by ∼3-fold without affecting the TBKCs amplitude. IBMX increased the frequency of the spontaneous transient hyperpolarizations by ∼2-fold and hyperpolarized the DSM cell resting membrane potential by ∼6 mV. Blocking the BK channels with paxilline abolished the IBMX hyperpolarizing effects. Under conditions of blocked Ca(2+) sources for BK channel activation, IBMX did not affect the depolarization-induced steady-state whole cell BK currents. Our data reveal that PDE inhibition with IBMX relaxes guinea pig DSM via TBKCs activation and subsequent DSM cell membrane hyperpolarization.
Collapse
Affiliation(s)
- Wenkuan Xin
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | |
Collapse
|
44
|
Effect of pre-contraction on β-adrenoceptor-mediated relaxation of rat urinary bladder. World J Urol 2011; 27:711-5. [PMID: 19449014 PMCID: PMC2780656 DOI: 10.1007/s00345-009-0416-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/24/2009] [Indexed: 01/25/2023] Open
Abstract
PURPOSE The human physiological bladder contraction is largely mediated by acetylcholine acting on muscarinic receptors, but in pathophysiological settings the relative role of non-cholinergic stimuli gains importance. β-Adrenoceptor agonists are currently in clinical development as treatments for the overactive bladder syndrome. Therefore, we have explored the ability of the β-adrenoceptor agonist isoprenaline to induce rat isolated bladder strip relaxation on pre-contraction with the muscarinic agonist carbachol as compared to bladder tone induced by several non-cholinergic stimuli. METHODS Bladder tone was induced by passive tension, receptor independently by KCl, carbachol, bradykinin or serotonin. Concentration–response curves were generated for relaxation by isoprenaline, and a single concentration of the receptor-independent relaxant forskolin was also tested. RESULTS The various contractile stimuli induced different degrees of bladder tone, but the ability of isoprenaline or forskolin to relax rat bladder was not correlated with the degree of tone. Isoprenaline was significantly less potent and effective in causing relaxation against carbachol-induced tone than against any other stimulus, whereas no such relationship was observed for forskolin. CONCLUSIONS We conclude that β-adrenoceptor agonists can induce rat bladder relaxation against a wide range of contractile stimuli and are more potent and/or effective against non-cholinergic stimuli than against muscarinic agonism. This profile appears desirable for agents intended for the treatment of overactive bladder.
Collapse
|
45
|
Ramos-Filho ACS, Mónica FZT, Franco-Penteado CF, Rojas-Moscoso JA, Báu FR, Schenka AA, De Nucci G, Antunes E. Characterization of the urinary bladder dysfunction in renovascular hypertensive rats. Neurourol Urodyn 2011; 30:1392-402. [PMID: 21661033 DOI: 10.1002/nau.21074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/24/2011] [Indexed: 11/07/2022]
Abstract
AIMS Association between arterial hypertension and urinary bladder dysfunction has been reported in humans and spontaneously hypertensive rats. However, no study exists evaluating the bladder dysfunction in conditions of renovascular hypertension. The purpose of this study was to characterize the bladder dysfunction in two kidney-one clip (2K-1C) hypertensive rats. METHODS A silver clip was placed around the renal artery of male Wistar rats. After 8 weeks, cystometric study, concentration-response curves to contractile and relaxant agents, frequency-dependent contractions, histomorphometry, muscarinic M(2) /M(3) mRNA expression and cyclic AMP measurements were performed. RESULTS 2K-1C rats showed enhanced bladder volume, wall thickness and smooth muscle density. 2K-1C rats also exhibited increases in bladder capacity and non-void contractions, and decreases in the inter-contraction intervals. In isolated detrusor smooth muscle (DSM), contractions to carbachol and electrical-field stimulation (EFS) were significantly greater in 2K-1C rats. The Rho-kinase inhibitor Y27632 (10 µM) significantly reduced the carbachol-induced contractions in SHAM and 2K-1C rats, but DSM remained overactive in 2K-1C rats in presence of Y27632. Concentration-dependent contractions to the P2X receptor agonist α,β-methylene ATP, KCl and extracellular Ca(2+) did not change between SHAM and 2K-1C groups. In 2K-1C rats, isoproterenol, metaproterenol and BRL 37-344 (non-selective, β(2) - and β(3) -selective adrenoceptor agonists, respectively) produced significantly lower relaxations and decreased cAMP levels, whereas relaxant responses to sodium nitroprusside and BAY 41-2272 remained unchanged. Muscarinic M(3) mRNA expression receptors were higher in 2K-1C group. CONCLUSIONS Renovascular hypertensive rats exhibit bladder dysfunction that involves tissue remodeling and enhanced muscarinic M(3) -mediated contractions associated with reduced β-adrenoceptor-mediated signal transduction.
Collapse
Affiliation(s)
- Antonio C S Ramos-Filho
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hao M, Li Y, Wang Y, Zhang S. A classification study of human β 3-adrenergic receptor agonists using BCUT descriptors. Mol Divers 2011; 15:877-87. [DOI: 10.1007/s11030-011-9321-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
|
47
|
Roy KK, Saxena AK. Structural Basis for the β-Adrenergic Receptor Subtype Selectivity of the Representative Agonists and Antagonists. J Chem Inf Model 2011; 51:1405-22. [DOI: 10.1021/ci2000874] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kuldeep K. Roy
- Division of Medicinal and Process Chemistry, Central Drug Research Institute, CSIR, Lucknow 226 001, India
| | - Anil K. Saxena
- Division of Medicinal and Process Chemistry, Central Drug Research Institute, CSIR, Lucknow 226 001, India
| |
Collapse
|
48
|
Michel MC, Ochodnicky P, Homma Y, Igawa Y. β-adrenoceptor agonist effects in experimental models of bladder dysfunction. Pharmacol Ther 2011; 131:40-9. [PMID: 21510978 DOI: 10.1016/j.pharmthera.2011.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 12/17/2022]
Abstract
β-adrenoceptor stimulation can enhance the storage function of the urinary bladder by acting on detrusor smooth muscle tone, mediator release from the urothelium and/or afferent nerve activity. In humans this may occur predominantly if not exclusively via the β₃-subtype. The effects of β-adrenoceptor agonists including several β₃-selective agonists have been studied in vitro and in vivo, in healthy animals of both genders and various age groups and in a wide range of animal (mostly rat) models of genetic or acquired bladder dysfunction. Such models included bladder irritation by intravesical instillation of acetic acid or prostaglandin E₂, bladder outlet obstruction, stroke, diabetes, spontaneously hypertensive rats, and NO synthase inhibition. Across all of these models β-adrenoceptor agonists had effects consistent with improved bladder storage function. β₃-adrenoceptor effects are resistant to agonist-induced desensitization in many cell types, but whether this also applies to the human bladder is unknown. The efficacy of β-adrenoceptor agonists appears to be largely unaffected by common polymorphisms of the β₃-adrenoceptor gene. Taken together these findings suggest that β₃-adrenoceptor agonists may become useful drugs for the treatment of bladder storage dysfunction, a view supported by recent phase III clinical studies for one such agent, mirabegron.
Collapse
Affiliation(s)
- Martin C Michel
- Dept. Pharmacology and Pharmacotherapy, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
49
|
Hidayat Santoso AG, Liang W. Bladder contractility is mediated by different K+ channels in the urothelium and detrusor smooth muscle. J Pharmacol Sci 2011; 115:127-134. [PMID: 21258177 DOI: 10.1254/jphs.10162fp] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022] Open
Abstract
The roles played by K(+) channels in the urothelium (UE) and detrusor smooth muscle (DSM) in regulating agonist-induced bladder contraction is not known at present. Thus, the effects in carbachol (CCh)-induced contraction in UE-intact (+UE) and UE-denuded (-UE) rat detrusor strips pretreated with K(+)-channel blockers were investigated here. The K(+)-channel blockers used were 4-aminopyridine (4-AP), glibenclamide (Glib), iberiotoxin (IbTx), charybdotoxin (ChTx), and apamin. In the absence of K(+)-channel blockers, control CCh-induced contractions were more potent in -UE than +UE strips. Treatment with IbTx and apamin resulted in more potent CCh-induced contractions in +UE strips. In -UE strips, CCh potency was increased by ChTx and Glib, but decreased by 4-AP. Different K(+) channels in the UE and DSM were thus involved in regulating bladder contractions. Contractile mediatory function of these channels, specific to the UE or DSM, may be potential drug targets in the management of bladder disorders.
Collapse
|
50
|
Abstract
The membrane potential fulfils an important role in initiating smooth muscle contraction, through its depolarization and the subsequent influx of Ca(2+) through voltage-gated Ca(2+) channels. Changes in membrane potential can also coordinate contraction across great distances, utilizing the speed of electrical current flow through gap junctions. Hence, regulating membrane potential can greatly influence smooth muscle function. In this chapter, we will consider the influence of ion channels, as dynamic gatekeepers of membrane permeability, on urogenital function. Through their ability to act as key regulators of both the resting membrane potential and its dynamic changes, they provide important pharmacological targets for influencing urogenital function.Urogenital smooth muscle and urothelia contain a diverse range of molecularly and functionally distinct K(+) channels, which are key to regulating the resting membrane and for re-establishing the normal membrane potential following both active and passive changes. The voltage-gated Ca(2+) channels are key to initiating contraction and causing rapid depolarization, supplemented in some smooth muscles by rapid Na(+) conductances. The Cl(-) channels, often assumed to be passive, can actively change the membrane potential, and hence, cellular function, because Cl(-) is not usually at its equilibrium potential. The useful ways in which these ion channels can be targeted therapeutically in the ureter, bladder and urethra are discussed, focussing particularly on treatments for ureteric obstruction and detrusor overactivity. Current treatments for many urinary tract disorders, particularly the overactive bladder, are complicated by side effects. While ion channels have traditionally been considered as poor therapeutic targets by the pharmaceutical industry, our increasing knowledge of the molecular diversity of K(+) and Cl(-) channels gives new hope for more narrowly focused drug targeting, while the exciting discoveries of active currents in interstitial cells give us a new set of cellular targets for drugs.
Collapse
Affiliation(s)
- A F Brading
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| | | |
Collapse
|