1
|
Ölmestig J, Mortensen KN, Fagerlund B, Naveed N, Nordling MM, Christensen H, Iversen HK, Poulsen MB, Siebner HR, Kruuse C. Cerebral blood flow and cognition after 3 months tadalafil treatment in small vessel disease (ETLAS-2): study protocol for a randomized controlled trial. Trials 2024; 25:570. [PMID: 39210472 PMCID: PMC11360322 DOI: 10.1186/s13063-024-08402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Targeted treatment is highly warranted for cerebral small vessel disease, a causal factor of one in four strokes and a major contributor to vascular dementia. Patients with cerebral small vessel disease have impaired cerebral blood flow and vessel reactivity. Tadalafil is a specific phosphodiesterase 5 inhibitor shown to improve vascular reactivity in the brain. METHODS The ETLAS-2 trial is a phase 2 double-blind, randomized placebo-controlled, parallel trial with the feasibility of tadalafil as the primary outcome. The trial aims to include 100 patients with small vessel occlusion stroke or transitory ischemic attacks and signs of cerebral small vessel disease more than 6 months before administration of study medication. Patients are treated for 3 months with tadalafil 20 mg or placebo daily and undergo magnetic resonance imaging (MRI) to evaluate changes in small vessel disease according to the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE) criteria as well as cerebral blood flow, cerebrovascular reactivity, and neurovascular coupling in a functional MRI sub-study. The investigation includes comprehensive cognitive testing using paper-pencil tests and Cambridge Neuropsychological Test Automated Battery (CANTAB) tests in a cognitive sub-study. DISCUSSION The ETLAS-2 trial tests the feasibility of long-term treatment with tadalafil and explores vascular and cognitive effects in cerebral small vessel disease in trial sub-studies. The study aims to propose a new treatment target and improve the understanding of small vessel disease. Currently, 64 patients have been included and the trial is estimated to be completed in the year 2024. TRIAL REGISTRATION Clinicaltrials.gov, NCT05173896. Registered on 30 December 2021.
Collapse
Affiliation(s)
- Joakim Ölmestig
- Neurovascular Research Unit, Department of Neurology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
| | - Kristian Nygaard Mortensen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Child and Adolescent Mental Health Center, Copenhagen University Hospital, Mental Health Services CPH, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Nadia Naveed
- Department of Radiology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Mette Maria Nordling
- Department of Radiology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Hanne Christensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Helle Klingenberg Iversen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Mai Bang Poulsen
- Department of Neurology, Copenhagen University Hospital-North Zealand, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Christina Kruuse
- Neurovascular Research Unit, Department of Neurology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
- Department of Brain and Spinal Cord Injury, Neuroscience Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
2
|
Guo S, Christensen SL, Al‐Karagholi MA, Olesen J. Molecular nociceptive mechanisms in migraine: The migraine cascade. Eur J Neurol 2024; 31:e16333. [PMID: 38894592 PMCID: PMC11235602 DOI: 10.1111/ene.16333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE This review will explore the categorization of migraine-provoking molecules, their cellular actions, site of action and potential drug targets based on the migraine cascade model. METHODS Personal experience and literature. RESULTS Migraine impacts over 1 billion people worldwide but is underfunded in research. Recent progress, particularly through the human and animal provocation model, has deepened our understanding of its mechanisms. This model have identified endogenous neuropeptides such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP) that induces controlled migraine-like attacks leading to significant discoveries of their role in migraine. This knowledge led to the development of CGRP-inhibiting drugs; a groundbreaking migraine treatment now accessible globally. Also a PACAP-inhibiting drug was effective in a recent phase II trial. Notably, rodent studies have shed light on pain pathways and the mechanisms of various migraine-inducing substances identifying novel drug targets. This is primarily done by using selective inhibitors that target specific signaling pathways of the known migraine triggers leading to the hypothesized cellular cascade model of migraine. CONCLUSION The model of migraine presents numerous opportunities for innovative drug development. The future of new migraine treatments is limited only by the investment from pharmaceutical companies.
Collapse
Affiliation(s)
- Song Guo
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
- Department of NeurologyZealand University HospitalRoskildeDenmark
| | - Sarah Louise Christensen
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
| | - Mohammad Al‐Mahdi Al‐Karagholi
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
| |
Collapse
|
3
|
AlRuwaili R, Al-Kuraishy HM, Alruwaili M, Khalifa AK, Alexiou A, Papadakis M, Saad HM, Batiha GES. The potential therapeutic effect of phosphodiesterase 5 inhibitors in the acute ischemic stroke (AIS). Mol Cell Biochem 2024; 479:1267-1278. [PMID: 37395897 PMCID: PMC11116240 DOI: 10.1007/s11010-023-04793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Acute ischemic stroke (AIS) is a focal neurological disorder that accounts for 85% of all stroke types, due to occlusion of cerebral arteries by thrombosis and emboli. AIS is also developed due to cerebral hemodynamic abnormality. AIS is associated with the development of neuroinflammation which increases the severity of AIS. Phosphodiesterase enzyme (PDEs) inhibitors have neuro-restorative and neuroprotective effects against the development of AIS through modulation of the cerebral cyclic adenosine monophosphate (cAMP)/cyclic guanosine monophosphate (cGMP)/nitric oxide (NO) pathway. PDE5 inhibitors through mitigation of neuroinflammation may decrease the risk of long-term AIS-induced complications. PDE5 inhibitors may affect the hemodynamic properties and coagulation pathway which are associated with thrombotic complications in AIS. PDE5 inhibitors reduce activation of the pro-coagulant pathway and improve the microcirculatory level in patients with hemodynamic disturbances in AIS. PDE5 inhibitors mainly tadalafil and sildenafil improve clinical outcomes in AIS patients through the regulation of cerebral perfusion and cerebral blood flow (CBF). PDE5 inhibitors reduced thrombomodulin, P-selectin, and tissue plasminogen activator. Herein, PDE5 inhibitors may reduce activation of the pro-coagulant pathway and improve the microcirculatory level in patients with hemodynamic disturbances in AIS. In conclusion, PDE5 inhibitors may have potential roles in the management of AIS through modulation of CBF, cAMP/cGMP/NO pathway, neuroinflammation, and inflammatory signaling pathways. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Raed AlRuwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Amira Karam Khalifa
- Department of Medical Pharmacology, Kasr El-Ainy School of Medicine, Cairo University, El Manial, Cairo, 11562, Egypt
- Lecturer of Medical Pharmacology, Nahda Faculty of Medicine, Beni Suef, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
4
|
Wang X, Li J, Liu L, Kan JM, Niu P, Yu ZQ, Ma C, Dong F, Han MX, Li J, Zhao DX. Pharmacological mechanism and therapeutic efficacy of Icariside II in the treatment of acute ischemic stroke: a systematic review and network pharmacological analysis. BMC Complement Med Ther 2022; 22:253. [PMID: 36180911 PMCID: PMC9526298 DOI: 10.1186/s12906-022-03732-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/19/2022] [Indexed: 09/13/2024] Open
Abstract
Background and objective Epimedii has long been used as a traditional medicine in Asia for the treatment of various common diseases, including Alzheimer's disease, cancer, erectile dysfunction, and stroke. Studies have reported the ameliorative effects of Icariside II (ICS II), a major metabolite of Epimedii, on acute ischemic stroke (AIS) in animal models. Based on network pharmacology, molecular docking, and molecular dynamics (MD) simulations, we conducted a systematic review to evaluate the effects and neuroprotective mechanisms of ICS II on AIS. Methods First, we have searched 6 databases using studies with ICS II treatment on AIS animal models to explore the efficacy of ICS II on AIS in preclinical studies. The literature retrieval time ended on March 8, 2022 (Systematic Review Registration ID: CRD42022306291). There were no restrictions on the language of the search strategy. Systematic review follows the Patient, Intervention, Comparison and Outcome (PICO) methodology and framework. SYCLE's RoB tool was used to evaluate the the risk of bias. In network pharmacology, AIS-related genes were identified and the target-pathway network was constructed. Then, these targets were used in the enrichments of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology (GO). Molecular docking and MD simulation were finally employed between ICS II and the potential target genes. Results Twelve publications were included describing outcomes of 1993 animals. The literature details, animal strains, induction models, doses administered, duration of administration, and outcome measures were extracted from the 12 included studies. ICS II has a good protective effect against AIS. Most of the studies in this systematic review had the appropriate methodological quality, but some did not clearly state the controlling for bias of potential study. Network pharmacology identified 246 targets with SRC, CTNNB1, HSP90AA1, MAPK1, and RELA as the core target proteins. Besides, 215 potential pathways of ICS II were identified, such as PI3K-Akt, MAPK, and cGMP-PKG signaling pathway. GO enrichment analysis showed that ICS II was significantly enriched in subsequent regulation such as MAPK cascade. Molecular docking and MD simulations showed that ICS II can closely bind with important targets. Conclusions ICS II is a promising drug in the treatment of AIS. However, this systematic review reveals key knowledge gaps (i.e., the protective role of ICS II in women) that ICS II must address before it can be used for the treatment of human AIS. Our study shows that ICS II plays a protective role in AIS through multi-target and multi-pathway characteristics, providing ideas for the development of drugs for the treatment of AIS. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03732-9.
Collapse
|
5
|
Ölmestig J, Marlet IR, Vilsbøll T, Rungby J, Rostrup E, Lambertsen KL, Kruuse C. A single dose of exenatide had no effect on blood flow velocity in the middle cerebral artery in elderly healthy volunteers: Randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci 2022; 14:899389. [PMID: 36636739 PMCID: PMC9831269 DOI: 10.3389/fnagi.2022.899389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/04/2022] [Indexed: 01/26/2023] Open
Abstract
Background and aims Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RA) are widely used for the treatment of type 2 diabetes, and recent studies indicate that they may be cardio- and neuroprotective. The safety and effect of a single dose of exenatide, a short-acting GLP-1RA, on cerebral and peripheral arterial function remain unknown. Methods In this randomized, double-blind pilot trial, we assigned elderly healthy volunteers without diabetes and no previous history of stroke to receive a single dose of subcutaneous exenatide (5 μg) or placebo. Primary outcome was immediate changes over time in blood flow velocity of the middle cerebral arteries (VMCA) assessed by repeated transcranial Doppler measurements. Secondary outcomes were changes in peripheral arterial function with finger plethysmography, ankle-brachial index (ABI), and inflammatory- and endothelial-specific biomarkers. Results Healthy volunteers (13 women and 17 men) were included: (mean ± standard deviation) age: 62 ± 8 years; body weight: 79.6 ± 12.7 kg; VMCA: 65.3 ± 10.7 cm/s; fasting plasma glucose: 5.5 ± 0.5 mmol/L; HbA1c: 33.9 ± 4.1 mmol/mol (5.3 ± 0.38%). No differences between exenatide and placebo group were seen regarding VMCA (p = 0.058), systolic ABI (p = 0.71), plethysmography (p = 0.45), tumor necrosis factor (p = 0.33), interleukin-6 (p = 0.11), interleukin-1β (p = 0.34), vascular cell adhesion molecule 1 (p = 0.73), intercellular adhesion molecule 1 (p = 0.74), or E-selectin (p = 0.31). No severe adverse events were observed. Conclusion A single dose of exenatide did not change cerebral blood flow velocity or peripheral vessel function in elderly healthy volunteers. The medication was safe to use in persons without diabetes allowing us to investigate this drug further in search of the neuroprotective mechanisms. Clinical Trial Registration https://clinicaltrials.gov, Identifier NCT02838589.
Collapse
Affiliation(s)
- Joakim Ölmestig
- Neurovascular Research Unit, Department of Neurology, Copenhagen University Hospital – Herlev and Gentofte, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ida R. Marlet
- Neurovascular Research Unit, Department of Neurology, Copenhagen University Hospital – Herlev and Gentofte, Copenhagen, Denmark
| | - Tina Vilsbøll
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| | - Jørgen Rungby
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Endocrinology, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research, Copenhagen University Hospital – Mental Health Center Glostrup, Copenhagen, Denmark
| | - Kate L. Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark,Department of Neurology, Odense University Hospital, Odense, Denmark,BRIDGE – Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christina Kruuse
- Neurovascular Research Unit, Department of Neurology, Copenhagen University Hospital – Herlev and Gentofte, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,*Correspondence: Christina Kruuse,
| |
Collapse
|
6
|
Xiong Y, Wintermark P. The Role of Sildenafil in Treating Brain Injuries in Adults and Neonates. Front Cell Neurosci 2022; 16:879649. [PMID: 35620219 PMCID: PMC9127063 DOI: 10.3389/fncel.2022.879649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Sildenafil is a recognized treatment for patients suffering from erectile dysfunction and pulmonary hypertension. However, new evidence suggests that it may have a neuroprotective and a neurorestorative role in the central nervous system of both adults and neonates. Phosphodiesterase type 5-the target of sildenafil-is distributed in many cells throughout the body, including neurons and glial cells. This study is a comprehensive review of the demonstrated effects of sildenafil on the brain with respect to its function, extent of injury, neurons, neuroinflammation, myelination, and cerebral vessels.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Pia Wintermark
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
| |
Collapse
|
7
|
Yu YH, Kim SW, Kang J, Song Y, Im H, Kim SJ, Yoo DY, Lee MR, Park DK, Oh JS, Kim DS. Phosphodiesterase-5 Inhibitor Attenuates Anxious Phenotypes and Movement Disorder Induced by Mild Ischemic Stroke in Rats. J Korean Neurosurg Soc 2022; 65:665-679. [PMID: 35430790 PMCID: PMC9452378 DOI: 10.3340/jkns.2021.0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/03/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Patients with mild ischemic stroke experience various sequela and residual symptoms, such as anxious behavior and deficits in movement. Few approaches have been proved to be effective and safe therapeutic approaches for patients with mild ischemic stroke by acute stroke. Sildenafil (SIL), a phosphodiesterase-5 inhibitor (PDE5i), is a known remedy for neurodegenerative disorders and vascular dementia through its angiogenesis and neurogenesis effects. In this study, we investigated the efficacy of PDE5i in the emotional and behavioral abnormalities in rats with mild ischemic stroke.
Methods We divided the rats into four groups as follows (n=20, respectively) : group 1, naïve; group 2, middle cerebral artery occlusion (MCAo30); group 3, MCAo30+SIL-pre; and group 4, MCAo30+SIL-post. In the case of drug administration groups, single dose of PDE5i (sildenafil citrate, 20 mg/kg) was given at 30-minute before and after reperfusion of MCAo in rats. After surgery, we investigated and confirmed the therapeutic effect of sildenafil on histology, immunofluorescence, behavioral assays and neural oscillations.
Results Sildenafil alleviated a neuronal loss and reduced the infarction volume. And results of behavior task and immunofluorescence shown possibility that anti-inflammation process and improve motor deficits sildenafil treatment after mild ischemic stroke. Furthermore, sildenafil treatment attenuated the alteration of theta-frequency rhythm in the CA1 region of the hippocampus, a known neural oscillatory marker for anxiety disorder in rodents, induced by mild ischemic stroke.
Conclusion PDE5i as effective therapeutic agents for anxiety and movement disorders and provide robust preclinical evidence to support the development and use of PDE5i for the treatment of mild ischemic stroke residual disorders.
Collapse
|
8
|
Phosphodiesterase-1 in the cardiovascular system. Cell Signal 2022; 92:110251. [DOI: 10.1016/j.cellsig.2022.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/18/2022]
|
9
|
Zinni M, Pansiot J, Léger PL, El Kamouh M, Baud O. Sildenafil-Mediated Neuroprotection from Adult to Neonatal Brain Injury: Evidence, Mechanisms, and Future Translation. Cells 2021; 10:cells10102766. [PMID: 34685745 PMCID: PMC8534574 DOI: 10.3390/cells10102766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebral stroke, traumatic brain injury, and hypoxic ischemic encephalopathy are among the most frequently occurring brain injuries. A complex pathogenesis, characterized by a synergistic interaction between alterations of the cerebrovascular system, cell death, and inflammation, is at the basis of the brain damage that leads to behavioral and neurodevelopmental disabilities in affected subjects. Sildenafil is a selective inhibitor of the enzyme phosphodiesterase 5 (PDE5) that is able to cross the blood-brain barrier. Preclinical data suggest that sildenafil may be a good candidate for the prevention or repair of brain injury in both adults and neonates. The aim of this review is to summarize the evidence supporting the neuroprotective action of sildenafil and discuss the possible benefits of the association of sildenafil with current therapeutic strategies.
Collapse
Affiliation(s)
- Manuela Zinni
- Inserm UMR1141 NeuroDiderot, Université de Paris, 75019 Paris, France; (M.Z.); (J.P.); (M.E.K.)
| | - Julien Pansiot
- Inserm UMR1141 NeuroDiderot, Université de Paris, 75019 Paris, France; (M.Z.); (J.P.); (M.E.K.)
| | - Pierre-Louis Léger
- Pediatric and Neonatal Intensive Care Unit, Armand-Trousseau University Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne University, 75019 Paris, France;
| | - Marina El Kamouh
- Inserm UMR1141 NeuroDiderot, Université de Paris, 75019 Paris, France; (M.Z.); (J.P.); (M.E.K.)
- Laboratoire de Physiologie et Génomique des Poissons-INRAE, 35700 Rennes, France
| | - Olivier Baud
- Laboratory of Child Growth and Development, University of Geneva, 1211 Geneva, Switzerland
- Division of Neonatology and Pediatric Intensive Care, Children’s University Hospital of Geneva, 1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-795-534-204
| |
Collapse
|
10
|
Ölmestig J, Marlet IR, Hansen RH, Rehman S, Krawcyk RS, Rostrup E, Lambertsen KL, Kruuse C. Tadalafil may improve cerebral perfusion in small-vessel occlusion stroke-a pilot study. Brain Commun 2020; 2:fcaa020. [PMID: 33033800 PMCID: PMC7530832 DOI: 10.1093/braincomms/fcaa020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/22/2019] [Accepted: 12/28/2019] [Indexed: 01/29/2023] Open
Abstract
New treatments for cerebral small-vessel disease are needed to reduce the risk of small-vessel occlusion stroke and vascular cognitive impairment. We investigated an approach targeted to the signalling molecule cyclic guanosine monophosphate, using the phosphodiesterase 5 inhibitor tadalafil, to explore if it improves cerebral blood flow and endothelial function in patients with cerebral small-vessel disease and stroke. In a randomized, double-blinded, placebo-controlled, cross-over pilot trial (NCT02801032), we included patients who had a previous (>6 months) small-vessel occlusion stroke. They received a single dose of either 20 mg tadalafil or placebo on 2 separate days at least 1 week apart. We measured the following: baseline MRI for lesion load, repeated measurements of blood flow velocity in the middle cerebral artery by transcranial Doppler, blood oxygen saturation in the cortical microvasculature by near-infrared spectroscopy, peripheral endothelial response by EndoPAT and endothelial-specific blood biomarkers. Twenty patients with cerebral small-vessel disease stroke (3 women, 17 men), mean age 67.1 ± 9.6, were included. The baseline mean values ± standard deviations were as follows: blood flow velocity in the middle cerebral artery, 57.4 ± 10.8 cm/s; blood oxygen saturation in the cortical microvasculature, 67.0 ± 8.2%; systolic blood pressure, 145.8 ± 19.5 mmHg; and diastolic blood pressure, 81.3 ± 9.1 mmHg. We found that tadalafil significantly increased blood oxygen saturation in the cortical microvasculature at 180 min post-administration with a mean difference of 1.57 ± 3.02%. However, we saw no significant differences in transcranial Doppler measurements over time. Tadalafil had no effects on peripheral endothelial function assessed by EndoPAT and endothelial biomarker results conflicted. Our findings suggest that tadalafil may improve vascular parameters in patients with cerebral small-vessel disease stroke, although the effect size was small. Increased oxygenation of cerebral microvasculature during tadalafil treatment indicated improved perfusion in the cerebral microvasculature, theoretically presenting an attractive new therapeutic target in cerebral small-vessel disease. Future studies of the effect of long-term tadalafil treatment on cerebrovascular reactivity and endothelial function are needed to evaluate general microvascular changes and effects in cerebral small-vessel disease and stroke.
Collapse
Affiliation(s)
- Joakim Ölmestig
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Herlev 2730, Denmark
| | - Ida R Marlet
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Herlev 2730, Denmark
| | - Rasmus H Hansen
- Department of Radiology, Herlev Gentofte Hospital, Herlev 2730, Denmark
| | - Shazia Rehman
- Department of Radiology, Herlev Gentofte Hospital, Herlev 2730, Denmark
| | - Rikke Steen Krawcyk
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Herlev 2730, Denmark.,Department of Physiotherapy and Occupational Therapy, Herlev Gentofte Hospital, Herlev 2730, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Capital Region Psychiatry, Glostrup 2600, Denmark
| | - Kate L Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark.,Department of Neurology, Odense University Hospital, Odense 5000, Denmark.,BRIDGE-Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense 5000, Denmark
| | - Christina Kruuse
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Herlev 2730, Denmark.,Institute for Clinical Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
11
|
Yasmeen S, Akram BH, Hainsworth AH, Kruuse C. Cyclic nucleotide phosphodiesterases (PDEs) and endothelial function in ischaemic stroke. A review. Cell Signal 2019; 61:108-119. [PMID: 31132399 DOI: 10.1016/j.cellsig.2019.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Endothelial dysfunction is a hallmark of cerebrovascular disease, including ischemic stroke. Modulating endothelial signalling by cyclic nucleotides, cAMP and cGMP, is a potential therapeutic target in stroke. Inhibitors of the cyclic nucleotide degrading phosphodiesterase (PDE) enzymes may restore cerebral endothelial function. Current knowledge on PDE distribution and function in cerebral endothelial cells is sparse. This review explores data on PDE distribution and effects of PDEi in cerebral endothelial cells and identifies which PDEs are potential treatment targets in stroke. METHOD We performed a systematic search of electronic databases (Medline and Embase). Our search terms were cerebral ischaemia, cerebral endothelial cells, cyclic nucleotide, phosphodiesterase and phosphodiesterase inhibitors. RESULTS We found 23 publications which described effects of selective inhibitors of only three PDE families on endothelial function in ischemic stroke. PDE3 inhibitors (PDE3i) (11 publications) and PDE4 inhibitors (PDE4i) (3 publications) showed anti-inflammatory, anti-apoptotic or pro-angiogenic effects. PDE3i also reduced leucocyte infiltration and MMP-9 expression. Both PDE3i and PDE4i increased expression of tight junction proteins and protected the blood-brain barrier. PDE5 inhibitors (PDE5i) (6 publications) reduced inflammation and apoptosis. In preclinical models, PDE5i enhanced cGMP/NO signalling associated with microvascular angiogenesis, increased cerebral blood flow and improved functional recovery. Non-specific PDEi (3 publications) had mainly anti-inflammatory effects. CONCLUSION This review demonstrates that non-selective and selective PDEi of PDE3, PDE4 and PDE5 modulated endothelial function in cerebral ischemic stroke by regulating processes involved in vascular repair and neuroprotection and thus reduced cell death and inflammation. Of note, they promoted angiogenesis, microcirculation and improved functional recovery; all are important in stroke prevention and recovery, and effects should be further evaluated in humans.
Collapse
Affiliation(s)
- Saiqa Yasmeen
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bilal Hussain Akram
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Atticus H Hainsworth
- Clinical Neuroscience, Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Christina Kruuse
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
12
|
Vasita E, Yasmeen S, Andoh J, Bridges LR, Kruuse C, Pauls MMH, Pereira AC, Hainsworth AH. The cGMP-Degrading Enzyme Phosphodiesterase-5 (PDE5) in Cerebral Small Arteries of Older People. J Neuropathol Exp Neurol 2019; 78:191-194. [PMID: 30590671 DOI: 10.1093/jnen/nly117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Cerebral small vessel disease in deep penetrating arteries is a major cause of lacunar infarcts, white matter lesions and vascular cognitive impairment. Local cerebral blood flow in these small vessels is controlled by endothelial-derived nitric oxide, which exerts a primary vasodilator stimulus on vascular myocytes, via cytoplasmic cyclic GMP. Here, we investigated whether the cGMP-degrading enzyme phosphodiesterase-5 (PDE5) is present in small penetrating arteries in the deep subcortical white matter of older people. Frontal cortical tissue blocks were examined from donated brains of older people (n = 42, 24 male: 18 female, median age 81, range: 59-100 years). PDE5, detected by immunohistochemical labeling, was graded as absent, sparse, or abundant in vascular cells within small arteries in subcortical white matter (vessel outer diameter: 20-100 µm). PDE5 labeling within arterial myocytes was detected in all cases. Degree of PDE5 expression (absent, sparse, or abundant) was not associated with age or with neuropathological diagnosis of small vessel disease. In conclusion, PDE5 is present in vascular myocytes within small penetrating arteries in older people. This is a potential molecular target for pharmacological interventions.
Collapse
Affiliation(s)
- Ekta Vasita
- Molecular and Clinical Sciences Research Institute, St. Georges University of London, London, United Kingdom
| | - Saiqa Yasmeen
- Department of Neurology, Herlev Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Joycelyn Andoh
- Molecular and Clinical Sciences Research Institute, St. Georges University of London, London, United Kingdom
| | - Leslie R Bridges
- Department of Cellular Pathology, St. George's University Hospitals NHS Foundation Trust, Blackshaw Road, SW17 0QT, London, United Kingdom
| | - Christina Kruuse
- Department of Neurology, Herlev Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Mathilde M H Pauls
- Molecular and Clinical Sciences Research Institute, St. Georges University of London, London, United Kingdom
| | - Anthony C Pereira
- Department of Neurology, St. George's University Hospitals NHS Foundation Trust, London, Blackshaw Road, SW17 0QT, United Kingdom
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St. Georges University of London, London, United Kingdom
| |
Collapse
|
13
|
Pauls MMH, Moynihan B, Barrick TR, Kruuse C, Madigan JB, Hainsworth AH, Isaacs JD. The effect of phosphodiesterase-5 inhibitors on cerebral blood flow in humans: A systematic review. J Cereb Blood Flow Metab 2018; 38:189-203. [PMID: 29256324 PMCID: PMC5951021 DOI: 10.1177/0271678x17747177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 11/29/2022]
Abstract
Agents that augment cerebral blood flow (CBF) could be potential treatments for vascular cognitive impairment. Phosphodiesterase-5 inhibitors are vasodilating drugs established in the treatment of erectile dysfunction (ED) and pulmonary hypertension. We reviewed published data on the effects of phosphodiesterase-5 inhibitors on CBF in adult humans. A systematic review according to PRISMA guidelines was performed. Embase, Medline and Cochrane Library Trials databases were searched. Sixteen studies with 353 participants in total were retrieved. Studies included healthy volunteers and patients with migraine, ED, type 2 diabetes, stroke, pulmonary hypertension, Becker muscular dystrophy and subarachnoid haemorrhage. Most studies used middle cerebral artery flow velocity to estimate CBF. Few studies employed direct measurements of tissue perfusion. Resting CBF velocity was unaffected by phosphodiesterase-5 inhibitors, but cerebrovascular regulation was improved in ED, pulmonary hypertension, diabetes, Becker's and a group of healthy volunteers. This evidence suggests that phosphodiesterase-5 inhibitors improve responsiveness of the cerebral vasculature, particularly in disease states associated with an impaired endothelial dilatory response. This supports the potential therapeutic use of phosphodiesterase-5 inhibitors in vascular cognitive impairment where CBF is reduced. Further studies with better resolution of deep CBF are warranted. The review is registered on the PROSPERO database (registration number CRD42016029668).
Collapse
Affiliation(s)
- Mathilde MH Pauls
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| | - Barry Moynihan
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
- Department of Geriatric and Stroke
Medicine, Beaumont Hospital, Dublin, Ireland
| | - Thomas R Barrick
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
| | - Christina Kruuse
- Department of Neurology, Neurovascular
Research Unit, Herlev Gentofte Hospital and University of Copenhagen, Denmark
| | - Jeremy B Madigan
- Department of Neuroradiology, St
George's University Hospitals NHS Foundation Trust, London, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| | - Jeremy D Isaacs
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
14
|
Ölmestig JNE, Marlet IR, Hainsworth AH, Kruuse C. Phosphodiesterase 5 inhibition as a therapeutic target for ischemic stroke: A systematic review of preclinical studies. Cell Signal 2017; 38:39-48. [PMID: 28648945 DOI: 10.1016/j.cellsig.2017.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/10/2017] [Accepted: 06/20/2017] [Indexed: 12/19/2022]
Abstract
Phosphodiesterase 5 inhibitors (PDE5i), such as sildenafil (Viagra®) are widely used for erectile dysfunction and pulmonary hypertension. Preclinical studies suggest that PDE5i may improve functional outcome following ischemic stroke. In this systematic review we aimed to evaluate the effects of selective PDE5i in animal models of brain ischaemia. A systematic search in Medline, Embase, and The Cochrane Library was performed including studies in English assessing the effects of selective PDE5i. 32 publications were included describing outcome in 3646 animals. Neuroprotective effects of PDE5i were dependent on the NO-cGMP-PKG-pathway. These included reduced neuronal apoptosis (n=3 studies), oxidative stress (n=5), and neuroinflammation (n=2). PDE5i increased angiogenesis and elevated regional cerebral blood flow in the ischemic penumbra, and improved functional recovery. Some studies found that PDE5i treatment reduced lesion volume (n=9), others found no effect (n=9). Treatment was effective when administered within 24h post-ischemia, though treatment delayed to seven days improved outcome in one study. This review demonstrates both neuroprotective and neurorestorative effects of PDE5i in animal models of stroke, though the specific underlying signaling pathways relating to PDE5 inhibition and cGMP may remain serendipitous in some studies. There is currently limited evidence on the effects of selective PDE5i in human stroke patients, hence translation of preclinical results into clinical trials may be warranted.
Collapse
Affiliation(s)
- Joakim N E Ölmestig
- Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, 2730 Herlev, Denmark.
| | - Ida R Marlet
- Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, 2730 Herlev, Denmark.
| | - Atticus H Hainsworth
- Clinical Neuroscience, Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| | - Christina Kruuse
- Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, 2730 Herlev, Denmark.
| |
Collapse
|
15
|
Jahshan S, Dayan L, Jacob G. Nitric oxide-sensitive guanylyl cyclase signaling affects CO2-dependent but not pressure-dependent regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 2017; 312:R948-R955. [DOI: 10.1152/ajpregu.00241.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 01/06/2023]
Abstract
Cerebrovascular CO2 reactivity is affected by nitric oxide (NO). We tested the hypothesis that sildenafil selectively potentiates NO-cGMP signaling, which affects CO2 reactivity. Fourteen healthy males (34 ± 2 yr) were enrolled in the study. Blood pressure (BP), ECG, velocity of cerebral blood flow (CBF; measured by transcranial Doppler), and end-tidal CO2 (EtCO2) were assessed at baseline (CO2 ~39 mmHg), during hyperventilation (CO2 ~24 mmHg), during hypercapnia (CO2 ~46 mmHg), during boluses of phenylephrine (25–200 µg), and during graded head-up tilting (HUT). Measurements were repeated 1 h after 100 mg sildenafil were taken. Results showed that sildenafil did not affect resting BP, heart rate, CBF peak and mean velocities, estimated regional cerebrovascular resistance (eCVR; mean BP/mean CBF), breath/min, and EtCO2: 117 ± 2/67 ± 3 mmHg, 69 ± 3 beats/min, 84 ± 5 and 57 ± 4 cm/s, 1.56 ± 0.1 mmHg·cm−1·s−1, 14 ± 0.5 breaths/min, and 39 ± 0.9 mmHg, respectively. Sildenafil increased and decreased the hypercapnia induced in CBF and eCVR, respectively. Sildenafil also attenuated the decrease in peak velocity of CBF, 25 ± 2 vs. 20 ± 2% ( P < 0.05) and increased the eCVR, 2.5 ± 0.2 vs. 2 ± 0.2% ( P < 0.03) during hyperventilation. Sildenafil did not affect CBF despite significant increases in the eCVRs that were elicited by phenylephrine and HUT. This investigation suggests that sildenafil, which potentiates the NO-cGMP signaling, seems to affect the cerebrovascular CO2 reactivity without affecting the static and dynamic pressure-dependent mechanisms of cerebrovascular autoregulation.
Collapse
Affiliation(s)
- Shadi Jahshan
- J. Recanati Autonomic Dysfunction Center, Tel Aviv “Sourasky” Medical Center, Tel Aviv University, Tel Aviv, Israel
- Neurosurgery Department, Tel Aviv “Sourasky” Medical Center, Tel Aviv University, Tel Aviv, Israel; and
| | - Lior Dayan
- J. Recanati Autonomic Dysfunction Center, Tel Aviv “Sourasky” Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Giris Jacob
- Department of Internal Medicine, Tel Aviv “Sourasky” Medical Center, Tel Aviv University, Tel Aviv, Israel
- J. Recanati Autonomic Dysfunction Center, Tel Aviv “Sourasky” Medical Center, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv “Sourasky” Medical Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Pauls MMH, Clarke N, Trippier S, Betteridge S, Howe FA, Khan U, Kruuse C, Madigan JB, Moynihan B, Pereira AC, Rolfe D, Rostrup E, Haig CE, Barrick TR, Isaacs JD, Hainsworth AH. Perfusion by Arterial Spin labelling following Single dose Tadalafil In Small vessel disease (PASTIS): study protocol for a randomised controlled trial. Trials 2017; 18:229. [PMID: 28532471 PMCID: PMC5440904 DOI: 10.1186/s13063-017-1973-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebral small vessel disease is a common cause of vascular cognitive impairment in older people, with no licensed treatment. Cerebral blood flow is reduced in small vessel disease. Tadalafil is a widely prescribed phosphodiesterase-5 inhibitor that increases blood flow in other vascular territories. The aim of this trial is to test the hypothesis that tadalafil increases cerebral blood flow in older people with small vessel disease. METHODS/DESIGN Perfusion by Arterial Spin labelling following Single dose Tadalafil In Small vessel disease (PASTIS) is a phase II randomised double-blind crossover trial. In two visits, 7-30 days apart, participants undergo arterial spin labelling to measure cerebral blood flow and a battery of cognitive tests, pre- and post-dosing with oral tadalafil (20 mg) or placebo. SAMPLE SIZE 54 participants are required to detect a 15% increase in cerebral blood flow in subcortical white matter (p < 0.05, 90% power). Primary outcomes are cerebral blood flow in subcortical white matter and deep grey nuclei. Secondary outcomes are cortical grey matter cerebral blood flow and performance on cognitive tests (reaction time, information processing speed, digit span forwards and backwards, semantic fluency). DISCUSSION Recruitment started on 4th September 2015 and 36 participants have completed to date (19th April 2017). No serious adverse events have occurred. All participants have been recruited from one centre, St George's University Hospitals NHS Foundation Trust. TRIAL REGISTRATION European Union Clinical Trials Register: EudraCT number 2015-001235-20 . Registered on 13 May 2015.
Collapse
Affiliation(s)
- Mathilde M. H. Pauls
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
- Cell Biology and Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
- Department of Neurology, St George’s University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT UK
| | - Natasha Clarke
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
- Stroke Clinical Research Network, St George’s University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT UK
| | - Sarah Trippier
- Stroke Clinical Research Network, St George’s University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT UK
| | - Shai Betteridge
- Department of Neuropsychology, St George’s University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT UK
| | - Franklyn A. Howe
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Usman Khan
- Department of Neurology, St George’s University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT UK
| | - Christina Kruuse
- Department of Neurology, Herlev Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Jeremy B. Madigan
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
- Department of Neuroradiology, St George’s University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT UK
| | | | - Anthony C. Pereira
- Department of Neurology, St George’s University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT UK
| | - Debbie Rolfe
- Joint Research and Enterprise Office, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Egill Rostrup
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Nordre Ringvej 57, DK-2600 Glostrup, Denmark
| | - Caroline E. Haig
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, G12 8QQ UK
| | - Thomas R. Barrick
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Jeremy D. Isaacs
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
- Cell Biology and Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
- Department of Neurology, St George’s University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT UK
| | - Atticus H. Hainsworth
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
- Cell Biology and Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
- Department of Neurology, St George’s University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT UK
- Cerebrovascular Disease, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
| |
Collapse
|
17
|
Peuler JD, Phelps LE. Sildenafil does not enhance but rather attenuates vasorelaxant effects of antidiabetic agents. J Smooth Muscle Res 2015; 51:22-36. [PMID: 26004378 PMCID: PMC5137313 DOI: 10.1540/jsmr.51.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Type 2 diabetic men commonly experience erectile dysfunction for which
phosphodiesterase-5 (PDE5) inhibitors like sildenafil (Viagra) are often recommended. By
preventing degradation of cyclic guanosine monophosphate (cGMP) in vascular smooth muscle,
these inhibitors also enhance arterial vasorelaxant effects of nitric oxide donors (which
stimulate cGMP synthesis). In the present work, we confirmed this enhancing effect after
co-administration of sildenafil with nitroprusside to freshly-isolated rat tail arterial
tissues. However, in the same tissues we also observed that sildenafil does not enhance
but rather attenuates vasorelaxant effects of three commonly-used antidiabetic drugs, i.e.
the biguanide metformin and the thiazolidinediones pioglitazone and rosiglitazone. Indeed,
sildenafil completely blocked vasorelaxant effects of low concentrations of these drugs.
In addition, we found that this same novel anti-vasorelaxant interaction of sildenafil
with these agents was abolished by either 1) omitting extracellular glucose or 2)
inhibiting specific smooth muscle glycolytic pathways; pathways known to preferentially
utilize extracellular glucose to fuel certain adenosine triphosphate (ATP)-dependent ion
transporters: e.g. ATP-sensitive K channels, sarcoplasmic reticulum Ca-ATPase, plasma
membrane Ca-ATPase and Na/K-ATPase. Accordingly, we suspect that altered activity of one
or more of these ion transporters mediates the observed attenuating (anti-vasorelaxant)
interaction of sildenafil with the antidiabetic drugs. The present results are relevant
because hypertension is so common and difficult to control in Type 2 diabetes. The present
data suggest that sildenafil might interfere with the known antihypertensive potential of
metformin and the thiazolidinediones. However, they do not suggest that it will interact
with them to cause life-threatening episodes of severe hypotension, as can occur when it
is co-administered with nitrates.
Collapse
Affiliation(s)
- Jacob D Peuler
- Department of Pharmacology, Midwestern University, Downers Grove, IL, USA
| | | |
Collapse
|
18
|
Nordgaard JC, Kruse LS, Møller M, Kruuse C. Phosphodiesterases 3 and 5 express activity in the trigeminal ganglion and co-localize with calcitonin gene-related peptide. Cephalalgia 2013; 34:503-13. [DOI: 10.1177/0333102413515345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/29/2013] [Indexed: 11/16/2022]
Abstract
Background Understanding of the neuropathology leading to migraine pain has centered on either a vascular or neuronal origin. Sildenafil, a specific inhibitor of phosphodiesterase 5 (PDE5), induces migraine-like headache in a human headache model without concomitant artery dilation. The presence and activity of PDE3 and PDE5 is known in cerebral arteries. However, the presence in the neuronal part of the trigeminovascular pathway, i.e. the trigeminal ganglion and the possible co-localization with calcitonin gene-related peptide (CGRP), is not known. Methods Rat trigeminal ganglia were isolated and immunohistochemistry and in situ hybridization was applied. Evaluations of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) hydrolysis were performed using scintillation proximity assays. Results PDE3 and PDE5 were present and active in the trigeminal ganglia. A subset of PDE3- and PDE5-positive neurons contained CGRP. In contrast to cGMP, both sildenafil and cilostazol influenced cAMP hydrolysis. Interpretation Sildenafil may exert its effect on the neuronal part of the migraine pain pathway. In addition to the effects on cGMP signaling, sildenafil may indirectly affect cAMP signaling in the trigeminal ganglion. This result may suggest a common cAMP-related pathway for sildenafil, cilostazol, and CGRP in eliciting migraine pain.
Collapse
Affiliation(s)
- Julie C Nordgaard
- Lundbeck Foundation Center for Neurovascular signaling (LUCENS), Glostrup Research Institute, University of Copenhagen, Glostrup Hospital, Denmark
| | - Lars S Kruse
- Department of Clinical Experimental Research, Glostrup Hospital, University of Copenhagen, Denmark
| | - Morten Møller
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Christina Kruuse
- Lundbeck Foundation Center for Neurovascular signaling (LUCENS), Glostrup Research Institute, University of Copenhagen, Glostrup Hospital, Denmark
- Department of Neurology, Herlev University Hospital, Denmark
| |
Collapse
|
19
|
Grände G, Nilsson E, Edvinsson L. Comparison of responses to vasoactive drugs in human and rat cerebral arteries using myography and pressurized cerebral artery method. Cephalalgia 2012. [DOI: 10.1177/0333102412468340] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Dilatation of cranial vessels has been proposed as a part of the cascade that initiates an episode of migraine. This is based on the observation that intravenous administration of several substances with vasodilator properties can trigger migraine-like symptoms in migraineurs. Methods We used in vitro myography of human cerebral arteries and in vitro pressurized arteriography of rat middle cerebral artery (MCA) to evaluate the vasomotor responses of cerebral arteries to increasing concentrations of vasoactive substances used to elicit migraine-like attacks. Results All substances except carbachol induced a strong vasodilatory response when applied to the abluminal side of a rat MCA but negligible response when applied to the luminal side. Luminal carbachol gave a strong dilatory response but a weak response at the abluminal side. The prostaglandins PGE2 and epoprostenol constricted the rat MCA while human cerebral arteries relaxed. The pEC50 of carbachol, histamine, epoprostenol, VIP and sildenafil differed significantly between cerebral arteries from man and rat. The differences in pEC50 for SNP, αCGRP, PACAP-27 and PACAP-38 were not significant between the species. PGE2 had no noticeable effect on human arteries in vitro. Conclusion All tested substances with the exception of VIP and carbachol have been found to elicit migraine-like attacks in migraineurs. Since these two agents have vasodilatory effects in humans, it suggests that vasodilatation is not the only reason for eliciting a migraine-like attack in migraineurs. In addition, there are significant species differences that show the importance of performing experiments in human vessels.
Collapse
Affiliation(s)
- Gustaf Grände
- Division of Experimental Vascular Research, Institute of Clinical Science, Lund University, Sweden
| | - Elisabeth Nilsson
- Division of Experimental Vascular Research, Institute of Clinical Science, Lund University, Sweden
| | - Lars Edvinsson
- Division of Experimental Vascular Research, Institute of Clinical Science, Lund University, Sweden
| |
Collapse
|
20
|
García-Osta A, Cuadrado-Tejedor M, García-Barroso C, Oyarzábal J, Franco R. Phosphodiesterases as therapeutic targets for Alzheimer's disease. ACS Chem Neurosci 2012; 3:832-44. [PMID: 23173065 DOI: 10.1021/cn3000907] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/01/2012] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly. In AD patients, memory loss is accompanied by the formation of beta-amyloid plaques and the appearance of tau in a pathological form. Given the lack of effective treatments for AD, the development of new management strategies for these patients is critical. The continued failure to find effective therapies using molecules aimed at addressing the anti-beta amyloid pathology has led researchers to focus on other non-amyloid-based approaches to restore memory function. Promising non-amyloid related candidate targets include phosphosdiesterases (PDEs), and indeed, Rolipram, a specific PDE4 inhibitor, was the first compound found to effectively restore cognitive deficits in animal models of AD. More recently, PDE5 inhibitors have also been shown to effectively restore memory function. Accordingly, inhibitors of other members of the PDE family may also improve memory performance in AD and non-AD animal models. Hence, in this review, we will summarize the data supporting the use of PDE inhibitors as cognitive enhancers and we will discuss the possible mechanisms of action underlying these effects. We shall also adopt a medicinal chemistry perspective that leads us to propose the most promising PDE candidates on the basis of inhibitor selectivity, brain distribution, and mechanism of action.
Collapse
Affiliation(s)
- Ana García-Osta
- Molecular and Cell Neuropharmacology
Laboratory, Neurosciences Division, CIMA (Centro de investigación Médica Aplicada), Avda Pio
XII, Pamplona, Spain
| | - Mar Cuadrado-Tejedor
- Molecular and Cell Neuropharmacology
Laboratory, Neurosciences Division, CIMA (Centro de investigación Médica Aplicada), Avda Pio
XII, Pamplona, Spain
| | - Carolina García-Barroso
- Molecular and Cell Neuropharmacology
Laboratory, Neurosciences Division, CIMA (Centro de investigación Médica Aplicada), Avda Pio
XII, Pamplona, Spain
| | - Julen Oyarzábal
- Molecular and Cell Neuropharmacology
Laboratory, Neurosciences Division, CIMA (Centro de investigación Médica Aplicada), Avda Pio
XII, Pamplona, Spain
- Small
Molecule Discovery Platform, CIMA (Centro
de investigación Médica
Aplicada), Avda Pio XII, Pamplona, Spain
| | - Rafael Franco
- Molecular and Cell Neuropharmacology
Laboratory, Neurosciences Division, CIMA (Centro de investigación Médica Aplicada), Avda Pio
XII, Pamplona, Spain
| |
Collapse
|
21
|
Kruuse C, Gupta S, Nilsson E, Kruse L, Edvinsson L. Differential vasoactive effects of sildenafil and tadalafil on cerebral arteries. Eur J Pharmacol 2012; 674:345-51. [DOI: 10.1016/j.ejphar.2011.10.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 10/14/2011] [Accepted: 10/30/2011] [Indexed: 11/27/2022]
|
22
|
Yamazaki T, Anraku T, Matsuzawa S. Ibudilast, a mixed PDE3/4 inhibitor, causes a selective and nitric oxide/cGMP-independent relaxation of the intracranial vertebrobasilar artery. Eur J Pharmacol 2010; 650:605-11. [PMID: 21036126 DOI: 10.1016/j.ejphar.2010.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 11/16/2022]
Abstract
Ibudilast, a mixed phosphodiesterase (PDE) 3/4 inhibitor, is a cerebral vasodilator widely used in Japan for treating post-stroke dizziness. However, little studies have been conducted on the vasorelaxant effects of PDE inhibitors in the vertebrobasilar artery associated with dizziness onset. The in vitro vasorelaxant properties of ibudilast were, therefore, investigated by comparing with known selective PDE inhibitors, using vertebrobasilar arteries. Vasorelaxant activities of PDE3, PDE4, PDE5 inhibitors, and ibudilast were assessed in 5-hydroxytryptamine precontracted ring preparations from rabbit intracranial and extracranial vertebrobasilar arteries. Ibudilast more selectively relaxed the intracranial than extracranial artery. Similarly, selective PDE3 and PDE4 inhibitors showed higher selectivity for intracranial arteries. Furthermore, like selective PDE4 inhibitor, the vasorelaxation by ibudilast accompanied by increase in cAMP levels was inhibited by the adenylyl cyclase inhibitor SQ22536 in intracranial arteries. Next, it was examined whether nitric oxide (NO)/cGMP signaling is involved in this vasorelaxation in intracranial arteries. The suppression of NO/cGMP signaling by an NO synthase inhibitor or a guanylyl cyclase inhibitor potentiated the vasorelaxion by a PDE3 inhibitor and reduced that by a PDE4 inhibitor, while either suppression of the signaling had little influence on that by ibudilast. These results suggest that ibudilast has the high vasoselectivity for intracranial artery based on a mixed PDE3 and PDE4-inhibition, and effectively relaxes intracranial arteries independently of NO/cGMP signaling because of its vasorelaxation compensated by either PDE3- or PDE4-inhibition depending on the state of NO/cGMP signaling change.
Collapse
Affiliation(s)
- Takanobu Yamazaki
- Development Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi, 329-0114, Japan.
| | | | | |
Collapse
|
23
|
Schankin CJ, Kruse LS, Reinisch VM, Jungmann S, Kristensen JC, Grau S, Ferrari U, Sinicina I, Goldbrunner R, Straube A, Kruuse C. Nitric oxide-induced changes in endothelial expression of phosphodiesterases 2, 3, and 5. Headache 2009; 50:431-41. [PMID: 19751368 DOI: 10.1111/j.1526-4610.2009.01512.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To investigate nitric oxide (NO)-mediated changes in expression of cyclic nucleotide degrading phosphodiesterases 2A (PDE2A), PDE3B, and PDE5A in human endothelial cells. BACKGROUND Nitric oxide induces production of cyclic guanosine monophosphate (cGMP), which along with cyclic adenosine monophosphate (cAMP) is degraded by PDEs. NO donors and selective inhibitors of PDE3 and PDE5 induce migraine-like headache and play a role in endothelial dysfunction during stroke. The current study investigates possible NO modulation of cGMP-related PDEs relevant to headache induction in a cell line containing such PDEs. METHODS Real time polymerase chain reaction and Western blots were used to show expression of PDE2A, PDE3B, and PDE5A in a stable cell line of human brain microvascular endothelial cells. Effects of NO on PDE expression were analyzed at specific time intervals after continued DETA NONOate administration. RESULTS This study shows the expression of PDE2A, PDE3B, and PDE5A mRNA and PDE3B and PDE5A protein in human cerebral endothelial cells. Long-term DETA NONOate administration induced an immediate mRNA up-regulation of PDE5A (1.9-fold, 0.5 hour), an early peak of PDE2A (1.4-fold, 1 and 2 hours) and later up-regulation of both PDE3B (1.6-fold, 4 hours) and PDE2A (1.7-fold, 8 hours and 1.2-fold after 24 hours). Such changes were, however, not translated into significant changes in protein expression indicating few, if any, functional effects. CONCLUSIONS Long-term NO stimulation modulated PDE3 and PDE5 mRNA expression in endothelial cells. However, PDE3 and PDE5 protein levels were unaffected by NO. The presence of PDE3 or PDE5 in endothelial cells indicates that selective inhibitors may have functional effects in such cells. A complex interaction of cGMP and cAMP in response to NO administration may take place if the mRNA translates into active protein. Whether or not this plays a role in the headache mechanisms remains to be investigated.
Collapse
Affiliation(s)
- Christoph J Schankin
- Department of Neurology, University of Munich Hospital - Grosshadern, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Sildenafil (Viagra), a cyclic guanosine monophosphate-degrading phosphodiesterase 5 inhibitor, induces headache and migraine. Such headache induction may be caused by an increased neuronal excitability, as no concurrent effect on cerebral arteries is found. In 13 healthy females (23+/-3 years, 70.3+/-6.6 kg), the effect of sildenafil on a visual (reversing checkerboard) and a hypercapnic (6% CO2 inhalation) response was evaluated using functional magnetic resonance imaging (fMRI, 3 T MR scanner). On separate occasions, visual-evoked potential (VEP) measurements (latency (P100) and maximal amplitude) were performed. The measurements were applied at baseline and at both 1 and 2 h after ingestion of 100 mg of sildenafil. Blood pressure, heart rate and side effects, including headache, were obtained. Headache was induced in all but one subject on both study days. Sildenafil did not affect VEP amplitude or latency (P100). The fMRI response to visual stimulation or hypercapnia was unchanged by sildenafil. In conclusion, sildenafil induces mild headache without potentiating a neuronal or local cerebrovascular visual response or a global cerebrovascular hypercapnic response. The implication is that sildenafil-induced headache does not include a general lowering of threshold for a neuronal or cerebrovascular response, and that sildenafil does not modulate the hypercapnic response in healthy subjects.
Collapse
|
25
|
Toda N, Ayajiki K, Okamura T. Cerebral Blood Flow Regulation by Nitric Oxide: Recent Advances. Pharmacol Rev 2009; 61:62-97. [DOI: 10.1124/pr.108.000547] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
26
|
Demchenko IT, Ruehle A, Allen BW, Vann RD, Piantadosi CA. Phosphodiesterase-5 inhibitors oppose hyperoxic vasoconstriction and accelerate seizure development in rats exposed to hyperbaric oxygen. J Appl Physiol (1985) 2009; 106:1234-42. [PMID: 19179645 DOI: 10.1152/japplphysiol.91407.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxygen is a potent cerebral vasoconstrictor, but excessive exposure to hyperbaric oxygen (HBO(2)) can reverse this vasoconstriction by stimulating brain nitric oxide (NO) production, which increases cerebral blood flow (CBF)-a predictor of O(2) convulsions. We tested the hypothesis that phosphodiesterase (PDE)-5 blockers, specifically sildenafil and tadalafil, increase CBF in HBO(2) and accelerate seizure development. To estimate changes in cerebrovascular responses to hyperoxia, CBF was measured by hydrogen clearance in anesthetized rats, either control animals or those pretreated with one of these blockers, with the NO inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME), with the NO donor S-nitroso-N-acetylpenicillamine (SNAP), or with a blocker combined with l-NAME. Animals were exposed to 30% O(2) at 1 atm absolute (ATA) ("air") or to 100% O(2) at 4 or 6 ATA. EEG spikes indicated central nervous system CNS O(2) toxicity. The effects of PDE-5 blockade varied as a positive function of ambient Po(2). In air, CBF did not increase significantly, except after pretreatment with SNAP. However, at 6 ATA O(2), mean values for CBF increased and values for seizure latency decreased, both significantly; pretreatment with l-NAME abolished these effects. Conscious rats treated with sildenafil before HBO(2) were also more susceptible to CNS O(2) toxicity, as demonstrated by significantly shortened convulsive latency. Decreases in regional CBF reflect net vasoconstriction in the brain regions studied, since mean arterial pressures remained constant or increased throughout. Thus PDE-5 blockers oppose the protective vasoconstriction that is the initial response to hyperbaric hyperoxia, decreasing the safety of HBO(2) by hastening onset of CNS O(2) toxicity.
Collapse
Affiliation(s)
- Ivan T Demchenko
- Center for Hyperbaric Medicine and Environmental Physiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Phosphodiesterase type 5A (PDE5A) selectively hydrolyzes cyclic GMP. Inhibitors of PDE5A such as sildenafil are widely used to treat erectile dysfunction, but growing evidence supports important roles for the enzyme in both the vasculature and heart. In disorders such as cardiac failure, PDE5A upregulation may contribute to a decline in cGMP and protein kinase G signaling, exacerbating dysfunction. PDE5A plays an important role in the pulmonary vasculature where its inhibition benefits patients with pulmonary hypertension. In the heart, PDE5A signaling appears compartmentalized, and its inhibition is cardioprotective against ischemia-reperfusion and antracycline toxicity, blunts acute adrenergic contractile stimulation, and can suppress chronic hypertrophy and dysfunction attributable to pressure-overload. In this review, we discuss the molecular biology, pharmacology, and physiology of PDE5A, mechanisms of vascular and cardiac regulation, and recent evidence supporting the utility of selective PDE5A inhibition for the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
28
|
Salom JB, Castelló-Ruiz M, Burguete MC, Guzmán C, Jover-Mengual T, Torregrosa G, Jover R, Lizasoain I, Alborch E. Role of K+ and Ca2+ fluxes in the cerebroarterial vasoactive effects of sildenafil. Eur J Pharmacol 2007; 581:138-47. [PMID: 18155692 DOI: 10.1016/j.ejphar.2007.11.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 11/05/2007] [Accepted: 11/15/2007] [Indexed: 11/28/2022]
Abstract
The aim of this study was to assess the role of K(+) and Ca(2+) fluxes in the cerebroarterial vasoactive effects of the phosphodiesterase-5 inhibitor sildenafil. We used isolated rabbit basilar arteries to assess the effects of extracellular K(+) raising on sildenafil-induced vasodilatation, and studied the pharmacological interaction of sildenafil with selective modulators of membrane K(+) and Ca(2+) channels. Expression of Kv1 subunits of K(+) channels was assessed at messenger and protein levels. Parallel experiments were carried out with zaprinast for comparison. Sildenafil (10 nM-0.1 mM) induced concentration-dependent relaxation of endothelin-1 (10 nM)-precontracted arteries, which was partially inhibited by depolarization with KCl (50 mM), 3 mM tetraethylammonium (non-selective K(+) channel blocker) or 1 mM aminopyridine (inhibitor of K(v) channels), but not by 1 microM glibenclamide (inhibitor of K(ATP) channels) or 50 nM iberiotoxin (inhibitor of K(Ca) channels). Arterial smooth muscle expressed messengers for Kv1.2, Kv1.3, Kv1.4, Kv1.5 and Kv1.6, and proteins of Kv1.1, Kv1.2 and Kv1.4. CaCl(2) (10 microM- 10 mM) induced concentration-dependent contraction in Ca(2+)-free, depolarizing (50 mM KCl) medium. Sildenafil (0.1-100 microM) produced reversible concentration-dependent inhibition of the response to CaCl(2), which was completely abolished by the highest sildenafil concentration. By contrast, only 100 microM zaprinast inhibited the response to CaCl(2). The L-type Ca(2+) channel activator Bay K 8644 (0.1 nM-1 microM) induced concentration-dependent potentiation of the response to CaCl(2) inhibited by 100 microM sildenafil. Moreover, Bay K 8644 (0.1 nM-1 microM) induced concentration-dependent contraction in slightly depolarizing (15 mM) medium, which was inhibited to the same extent and in a concentration-dependent way by sildenafil (0.1-100 microM) and zaprinast (1 or 100 microM). These results show that sildenafil relaxes the rabbit basilar artery by increasing K(+) efflux through K(v) channels, which in turn may affect Ca(2+) signalling. Expression of Kv1 subunits involved in this pharmacological effect occurs at the messenger and, in some cases, at the protein level. In addition to this phosphodiesterase-5-related effect, sildenafil and zaprinast inhibit cerebroarterial vasoconstriction at least in part by directly blocking L-type Ca(2+) channels, although a decrease in the sensitivity of the contractile apparatus to Ca(2+) can not be discarded.
Collapse
Affiliation(s)
- Juan B Salom
- Centro de Investigación, Hospital Universitario La Fe, Valencia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ballester C, Sarriá B, García-Granero E, Morcillo EJ, Lledó S, Cortijo J. Relaxation of the isolated human internal anal sphincter by sildenafil. Br J Surg 2007; 94:894-902. [PMID: 17335124 DOI: 10.1002/bjs.5724] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Hypertonicity of the internal anal sphincter (IAS) appears to be involved in the pathogenesis of anal fissure. The relaxant effects of sildenafil, a selective phosphodiesterase 5 (PDE5) inhibitor, on isolated human IAS were investigated. METHODS The efficacy (maximal effect, E(max)) and potency (-log IC(50), where IC(50) is half-maximal inhibitory concentration) of the PDE5 inhibitors, sildenafil and zaprinast, and of nitric oxide donors, sodium nitroprusside and glyceryl trinitrate, as relaxants of histamine (0.1 mmol/l)-induced tone were examined in IAS strips under isometric contraction. The presence of PDE5 isoenzymes and changes in intracellular calcium and cyclic nucleotide levels in IAS muscle were tested by real-time reverse transcriptase-polymerase chain reaction, epifluorescence microscopy and enzyme immunoassay respectively. RESULTS Sildenafil produced a concentration-related inhibition of the mean(s.e.m.) histamine-induced tone (E(max) 83(2) per cent, - log IC(50) 7.04(0.05); n = 12). Zaprinast produced relaxation to similar degree, but with lower potency. Nitric oxide donors also relaxed IAS. Sildenafil (1 micromol/l) produced a 1.8-fold increase in guanosine 3',5'-cyclic monophosphate content, with no change in adenosine 3',5'-cyclic monophosphate levels. Sildenafil markedly depressed the peak intracellular calcium increase evoked by histamine. PDE5A1, PDE5A2 and PDE5A3 transcripts were expressed in IAS muscle. CONCLUSION Sildenafil relaxes the augmented tone of human IAS in vitro. These results support the potential use of this PDE5 inhibitor in the treatment of chronic anal fissure.
Collapse
Affiliation(s)
- C Ballester
- Department of Surgery, University of Valencia, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Kruse LS, Sandholdt NTH, Gammeltoft S, Olesen J, Kruuse C. Phosphodiesterase 3 and 5 and cyclic nucleotide-gated ion channel expression in rat trigeminovascular system. Neurosci Lett 2006; 404:202-7. [PMID: 16808996 DOI: 10.1016/j.neulet.2006.05.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 11/27/2022]
Abstract
Activation of the trigeminovascular pain signalling system appears involved in migraine pathophysiology. However, the molecular mechanisms are only partially known. Stimulation of cAMP and cGMP production as well as inhibition of their breakdown induce migraine-like headache. Additionally, migraine may be associated with mutations in ion channels. The aim of the present study was to describe the expression of phosphodiesterase 3 (PDE3) and 5 (PDE5) and cyclic nucleotide-gated ion channels (CNG) in cerebral arteries, meninges, and the trigeminal ganglion. mRNA for PDE and CNG was determined in the rat middle cerebral artery, basilar artery, trigeminal ganglion, and dura mater using real-time PCR. PDE and CNG proteins were identified using Western blot. For comparison, rat aorta and mesenteric artery were analysed. PDE3A, PDE3B, and PDE5A mRNA were detected in all tissues examined except for PDE3A mRNA in dura mater and the trigeminal ganglion. PDE5A and PDE3A protein expression was present in both cerebral and peripheral arteries, whereas PDE3B protein was present only in the cerebral arteries. The CNGA4 and B1 subunit mRNAs were detected in cerebral arteries and CNGA2 also in the mesenteric artery. CNGA2 and A3 proteins were found in cerebral arteries and dura and CNGA1, CNGA2 and CNGA3 in the trigeminal ganglion. In conclusion, PDE3A, PDE3B, PDE5A, and five CNG subunits were expressed in several components of the trigeminovascular system of the rat. This suggests that modulation of cAMP and cGMP levels by PDE and activation of CNG may play a role in trigeminovascular pain signalling leading to migraine headache.
Collapse
Affiliation(s)
- Lars S Kruse
- Department of Neurology, Glostrup Hospital, Nordre Ringvej 57, Denmark.
| | | | | | | | | |
Collapse
|