1
|
Batista C, Cruz JVR, Stipursky J, de Almeida Mendes F, Pesquero JB. Kinin B 1 receptor and TLR4 interaction in inflammatory response. Inflamm Res 2024; 73:1459-1476. [PMID: 38965133 DOI: 10.1007/s00011-024-01909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
OBJECTIVE We aimed to broaden our understanding of a potential interaction between B1R and TLR4, considering earlier studies suggesting that lipopolysaccharide (LPS) may trigger B1R stimulation. METHODS We assessed the impact of DBK and LPS on the membrane potential of thoracic aortas from C57BL/6, B1R, or TLR4 knockout mice. Additionally, we examined the staining patterns of these receptors in the thoracic aortas of C57BL/6 and in endothelial cells (HBMEC). RESULTS DBK does not affect the resting membrane potential of aortic rings in C57BL/6 mice, but it hyperpolarizes preparations in B1KO and TLR4KO mice. The hyperpolarization mechanism in B1KO mice involves B2R, and the TLR4KO response is independent of cytoplasmic calcium influx but relies on potassium channels. Conversely, LPS hyperpolarizes thoracic aorta rings in both C57BL/6 and B1KO mice, with the response unaffected by a B1R antagonist. Interestingly, the absence of B1R alters the LPS response to potassium channels. These activities are independent of nitric oxide synthase (NOS). While exposure to DBK and LPS does not alter B1R and TLR4 mRNA expression, treatment with these agonists increases B1R staining in endothelial cells of thoracic aortic rings and modifies the staining pattern of B1R and TLR4 in endothelial cells. Proximity ligation assay suggests a interaction between the receptors. CONCLUSION Our findings provide additional support for a putative connection between B1R and TLR4 signaling. Given the involvement of these receptors and their agonists in inflammation, it suggests that drugs and therapies targeting their effects could be promising therapeutic avenues worth exploring.
Collapse
Affiliation(s)
- Carolina Batista
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rua César Pernetta, S/N, Prédio do ICB (Anexo ao Bloco F do CCS), 3º andar, sala LJ.03.01, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-902, Brazil
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Pedro de Toledo, 669, 9° andar, São Paulo, SP, CEP: 04039-032, Brazil
| | - João Victor Roza Cruz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rua César Pernetta, S/N, Prédio do ICB (Anexo ao Bloco F do CCS), 3º andar, sala LJ.03.01, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-902, Brazil
| | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rua César Pernetta, S/N, Prédio do ICB (Anexo ao Bloco F do CCS), 3º andar, sala LJ.03.01, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-902, Brazil
| | - Fabio de Almeida Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rua César Pernetta, S/N, Prédio do ICB (Anexo ao Bloco F do CCS), 3º andar, sala LJ.03.01, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-902, Brazil.
| | - João Bosco Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Pedro de Toledo, 669, 9° andar, São Paulo, SP, CEP: 04039-032, Brazil.
| |
Collapse
|
2
|
Batista C, Sales VM, Merino VF, Bader M, Feres T, Pesquero JB. Role of Endothelial Kinin B1 Receptor on the Membrane Potential of Transgenic Rat Aorta. Physiol Res 2022. [DOI: 10.33549/physiolres.934904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The kinin receptors are classically involved in inflammation, pain and sepsis. The effects of the kinin B1 receptor agonist des-Arg9-bradykinin (DBK) and lipopolysaccharide (LPS) were investigated by comparing the membrane potential responses of aortic rings from transgenic rats overexpressing the kinin B1 receptor (B1R) in the endothelium (TGR(Tie2B1)) and Sprague Dawley (SD) rats. No difference in the resting membrane potential in the aorta’s smooth muscle from the transgenic and SD rats was observed. The aorta rings from SD rats hyperpolarized only to LPS but not to DBK, whereas the aorta rings from TGR(Tie2B1) responded by the administration of both drugs. DBK and LPS responses were inhibited by the B1 receptor antagonist R715 and by iberiotoxin in both cases. Thapsigargin induced a hyperpolarization in the smooth muscle of SD rats that was not reversed by R715, but was reversed by iberiotoxin and this hyperpolarization was further augmented by DBK administration. These results show that the model of overexpression of vascular B1 receptors in the TGR(Tie2B1) rats represent a good model to study the role of functional B1 receptors in the absence of any pathological stimulus. The data also show that KCa channels are the final mediators of the hyperpolarizing responses to DBK and LPS. In addition, we suggest an interaction between the B1R and TLR4, since the hyperpolarization induced by LPS could be abolished in the presence of R715.
Collapse
Affiliation(s)
- C Batista
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil. E-mail:
| | | | | | | | | | - JB Pesquero
- Department of Biophysics, Universidade Federal de São Paulo, 04023-062, São Paulo, SP, Brazil. E-mail:
| |
Collapse
|
4
|
Ribeiro AS, Fernandes VS, Martínez MP, Martínez-Sáenz A, Pazos MR, Orensanz LM, Recio P, Bustamante S, Carballido J, García-Sacristán A, Prieto D, Hernández M. Neuronal and non-neuronal bradykinin receptors are involved in the contraction and/or relaxation to the pig bladder neck smooth muscle. Neurourol Urodyn 2013; 33:558-65. [DOI: 10.1002/nau.22434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/18/2013] [Indexed: 01/31/2023]
Affiliation(s)
- Ana S.F. Ribeiro
- Departamento de Fisiología; Facultad de Farmacia, Universidad Complutense de Madrid; Madrid Spain
| | - Vítor S. Fernandes
- Departamento de Fisiología; Facultad de Farmacia, Universidad Complutense de Madrid; Madrid Spain
| | - María Pilar Martínez
- Departamento de Anatomía y Anatomía Patológica Comparadas; Facultad de Veterinaria, Universidad Complutense de Madrid; Madrid Spain
| | - Ana Martínez-Sáenz
- Unidad Experimental, Fundación de Investigación Biomédica; Hospital Universitario Puerta de Hierro-Majadahonda; Madrid Spain
| | - María Ruth Pazos
- Unidad Experimental, Fundación de Investigación Biomédica; Hospital Universitario Puerta de Hierro-Majadahonda; Madrid Spain
| | - Luis M. Orensanz
- Departamento de Investigación; Hospital Universitario Ramón y Cajal; Madrid Spain
| | - Paz Recio
- Departamento de Fisiología; Facultad de Farmacia, Universidad Complutense de Madrid; Madrid Spain
| | - Salvador Bustamante
- Departamento de Urología; Hospital Universitario Puerta de Hierro-Majadahonda; Madrid Spain
| | - Joaquín Carballido
- Departamento de Urología; Hospital Universitario Puerta de Hierro-Majadahonda; Madrid Spain
| | - Albino García-Sacristán
- Departamento de Fisiología; Facultad de Farmacia, Universidad Complutense de Madrid; Madrid Spain
| | - Dolores Prieto
- Departamento de Fisiología; Facultad de Farmacia, Universidad Complutense de Madrid; Madrid Spain
| | - Medardo Hernández
- Departamento de Fisiología; Facultad de Farmacia, Universidad Complutense de Madrid; Madrid Spain
| |
Collapse
|
5
|
Andoh T, Akira A, Saiki I, Kuraishi Y. Bradykinin increases the secretion and expression of endothelin-1 through kinin B2 receptors in melanoma cells. Peptides 2010; 31:238-41. [PMID: 19969036 DOI: 10.1016/j.peptides.2009.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/01/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
Abstract
The present study was conducted to determine whether bradykinin would affect the secretion and expression of endothelin-1 (ET-1) in B16-BL6 melanoma cells. Bradykinin administered to cultured melanoma cells increased preproET-1 mRNA level and the secretion of ET-1. Although kinin B(1) and B(2) receptor mRNAs are expressed in the melanoma cells, the increase of preproET-1 mRNA expression and the secretion of ET-1 were inhibited by kinin B(2), but not by B(1), receptor antagonist. These results suggest that bradykinin regulates the secretion and biosynthesis of ET-1 through kinin B(2) receptor in tumor cells, especially melanoma cells.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
6
|
Abe KC, Mori MADS, Pesquero JB. Leptin deficiency leads to the regulation of kinin receptors expression in mice. ACTA ACUST UNITED AC 2006; 138:56-8. [PMID: 17184856 DOI: 10.1016/j.regpep.2006.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 10/16/2006] [Accepted: 11/10/2006] [Indexed: 11/18/2022]
Abstract
Kinins are vasoactive and pro-inflammatory peptides generated by the cleavage of the kininogen by kallikreins. Two kinin receptors have been described and denominated B1 and B2. Obesity frequently accompanies other pathologies, such as diabetes and hypertention. The clustering of these pathologies is usually known as "metabolic syndrome". Mice lacking leptin gene (ob/ob) are severely obese and hyperphagic. Using quantitative RT-PCR analysis of B1 and B2 mRNAs expression, we described for the first time a correlation between the kallikrein-kinin system (KKS) and severe obesity in mice. The ob/ob mice presented lower expression of B2 mRNA in the white adipose tissue (WAT) and hypothalamus, both primary sites for neuroendocrine regulation of the energetic metabolism. B1 mRNA, however, is overexpressed in these tissues of ob/ob mice. An upregulation of the B1 mRNA has also been seen in liver, abdominal aorta and stomach fundus. However, different from the lean mice, the expression of the B1 mRNA in brown adipose tissue (BAT) and heart is completely abolished. Our data show that kinin receptors are differently modulated in distinct tissues in obesity. These findings suggest a connection between the KKS and obesity, and suggest that kinin receptors could be involved in the ethiopathogenesis of the metabolic syndrome.
Collapse
Affiliation(s)
- Karina Camasmie Abe
- Department of Biophysics, Federal University of São Paulo, 04023-062, São Paulo, Brazil
| | | | | |
Collapse
|