1
|
Etaee F, Rezvani-Kamran A, Komaki S, Asadbegi M, Faraji N, Raoufi S, Taheri M, Kourosh-Arami M, Komaki A. Effects of Buprenorphine on the Memory and Learning Deficit Induced by Methamphetamine Administration in Male Rats. Front Behav Neurosci 2021; 15:748563. [PMID: 34887733 PMCID: PMC8650604 DOI: 10.3389/fnbeh.2021.748563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Little is known about the effects of methamphetamine (Meth) and buprenorphine (Bup) on memory and learning in rats. The aim of this investigation was to examine the impact of Meth and Bup on memory and learning. Fourteen male Wistar rats weighing 250–300 g were assigned to four groups: Sham, Meth, Bup, and Meth + Bup and were treated for 1 week. Spatial learning and memory, avoidance learning, and locomotion were assessed using the Morris water maze, passive avoidance learning, and open field tests, respectively. Meth and Bup impaired spatial learning and memory in rats. Co-administration of Meth + Bup did not increase the time spent in the target quadrant compared to Meth alone in the MWM. The Bup and Meh + Bup groups were found with an increase in step-through latency (STLr) and a decrease in the time spent in the dark compartment (TDC). Meth and Bup had no effects on locomotor activity in the open field test. Bup showed a beneficial effect on aversive memory. Since Bup demonstrates fewer side effects than other opioid drugs, it may be preferable for the treatment of avoidance memory deficits in patients with Meth addiction.
Collapse
Affiliation(s)
- Farshid Etaee
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Arezoo Rezvani-Kamran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Somayeh Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Asadbegi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nafiseh Faraji
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Escelsior A, Belvederi Murri M, Corsini GP, Serafini G, Aguglia A, Zampogna D, Cattedra S, Nebbia J, Trabucco A, Prestia D, Olcese M, Barletta E, Pereira da Silva B, Amore M. Cannabinoid use and self-injurious behaviours: A systematic review and meta-analysis. J Affect Disord 2021; 278:85-98. [PMID: 32956965 DOI: 10.1016/j.jad.2020.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The increasing availability of high-potency cannabis-derived compounds and the use of synthetic cannabinoids may be responsible for severe side effects like cognitive impairment, psychosis or self-injurious behaviours (SIB). In particular, SIB like non-suicidal self-injury (NSSI) and deliberate self-harm (DSH) raise growing concern as a possible consequence of cannabis use. However, the research to date has not addressed the relationship between cannabinoid use and SIB systematically. METHODS We conducted a systematic review on PubMed up to March 2020, using search terms related to cannabinoids and SIB. RESULTS The search yielded a total of 440 abstracts. Of those, 37 studies published between 1995 and 2020 were eligible for inclusion. Cannabinoid use was significantly associated with SIB at the cross-sectional (OR=1.569, 95%CI [1.167-2.108]) and longitudinal (OR=2.569, 95%CI [2.207-3.256]) level. Chronic use, presence of mental disorders, depressive symptoms, emotional dysregulation and impulsive traits might further increase the likelihood of self-harm in cannabis users. Synthetic cannabinoids may trigger highly destructive SIB mainly through the psychotomimetic properties of these compounds. CONCLUSION Cannabinoid use was associated with an increased prevalence of self-injury and may act as a causative factor with a duration-dependent manner. Emotional regulation and behavioural impulsivity functions might crucially moderate this association. Future studies should further investigate the mechanisms underlying this association, while exploring potential therapeutic applications of substances modulating the endocannabinoid system.
Collapse
Affiliation(s)
- Andrea Escelsior
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Martino Belvederi Murri
- Institute of Psychiatry, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Pietro Corsini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Domenico Zampogna
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Simone Cattedra
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Jacopo Nebbia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alice Trabucco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Davide Prestia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Martina Olcese
- Department of Educational Science - Psychology Unit, University of Genoa, Genoa, Italy
| | | | - Beatriz Pereira da Silva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
3
|
Etaee F, Rezvani-Kamran A, Taheri M, Omidi G, Hasanein P, Komaki A. Comparing the Antinociceptive Effects of Methamphetamine, Buprenorphine, or Both After Chronic Treatment and Withdrawal in Male Rats. Basic Clin Neurosci 2019. [PMID: 32231768 PMCID: PMC7101515 DOI: 10.32598/bcn.10.4.290.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Introduction: Methamphetamine (Meth) and Buprenorphine (BUP) modulate pain perception. However, the antinociceptive effects of their interactions, which affect through different systems, are unclear in rats. This study aimed to compare the analgesic effects of Meth, BUP, and their coadministration, as well as the effect of withdrawal from these substances on nociception in male rats. Methods: In this experiment, 40 male Wistar rats (weight: 250–300 g) were categorized into four groups: control, Meth, BUP, or BUP+Meth. After seven days of treatments, the antinociceptive effects were assessed using the hot plate and the tail flick tests. The differences among the groups were analyzed with ANOVA and Tukey’s post hoc tests. P values less than 0.05 were considered significant. Results: Meth and BUP increased the reaction times during the hot plate and tail flick tests. The combination of Meth and BUP increased reaction time more than Meth or BUP alone. Conclusion: The significantly high reaction times in rats treated with Meth and BUP indicate that these substances have antinociceptive effects. In addition, Meth enhanced the antinociceptive effects of BUP. These synergistic effects might occur through the dopaminergic, serotonergic, and or adrenergic systems.
Collapse
Affiliation(s)
- Farshid Etaee
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezoo Rezvani-Kamran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Omidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parisa Hasanein
- Department of Biology, School of Sciences, University of Zabol, Zabol, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Allen M, Johnson RA. Evaluation of self-injurious behavior, thermal sensitivity, food intake, fecal output, and pica after injection of three buprenorphine formulations in rats (Rattus norvegicus). Am J Vet Res 2018; 79:697-703. [DOI: 10.2460/ajvr.79.7.697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Mori T, Sawaguchi T. [Underlying Mechanisms of Methamphetamine-Induced Self-Injurious Behavior and Lethal Effects in Mice]. Nihon Eiseigaku Zasshi 2018; 73:51-56. [PMID: 29386447 DOI: 10.1265/jjh.73.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Relatively high doses of psychostimulants induce neurotoxicity on the dopaminergic system and self-injurious behavior (SIB) in rodents. However the underlying neuronal mechanisms of SIB remains unclear. Dopamine receptor antagonists, N-methyl-D-aspartic acid (NMDA) receptor antagonists, Nitric Oxide Synthase (NOS) inhibitors and free radical scavengers significantly attenuate methamphetamine-induced SIB. These findings indicate that activation of dopamine as well as NMDA receptors followed by radical formation and oxidative stress, especially when mediated by NOS activation, is associated with methamphetamine-induced SIB. On the other hand, an increase in the incidence of polydrug abuse is a major problem worldwide. Coadministered methamphetamine and morphine induced lethality in more than 80% in mice, accompanied by an increase in the number of poly (ADP-ribose) polymerase (PARP)-immunoreactive cells in the heart, kidney and liver. The lethal effect and the increase in the incidence of rupture or PARP-immunoreactive cells induced by the coadministration of methamphetamine and morphine were significantly attenuated by pretreatment with a phospholipase A2 inhibitor or a radical scavenger, or by cooling of body from 30 to 90 min after drug administration. These results suggest that free radicals play an important role in the increased lethality induced by the coadministration of methamphetamine and morphine. Therefore, free radical scavengers and cooling are beneficial for preventing death that is induced by the coadministration of methamphetamine and morphine. These findings may help us better understand for masochistic behavior, which is a clinical phenomenon on SIB, as well as polydrug-abuse-induced acute toxicity.
Collapse
Affiliation(s)
- Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Toshiko Sawaguchi
- National Institute of Public Health, Minsitry of Health Labour & Welfare.,Department of Legal Medicine, Showa University School of Medicine
| |
Collapse
|
6
|
Allen M, Nietlisbach N, Johnson RA. Evaluation of self-injurious behavior, food intake, fecal output, and thermal withdrawal latencies after injection of a high-concentration buprenorphine formulation in rats (Rattus norvegicus). Am J Vet Res 2018; 79:154-162. [DOI: 10.2460/ajvr.79.2.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
OBJECTIVE To evaluate effects of high-concentration buprenorphine (HCB) on self-injurious behavior, food intake, fecal output, and thermal withdrawal latencies in healthy rats.
ANIMALS 8 Sprague-Dawley rats.
PROCEDURES Rats received 4 SC treatments (HCB at 0.075, 0.15, or 0.30 mg/kg [HCB0.075, HCB0.15, and HCB0.30, respectively] or 5% dextrose solution [0.20 mL/kg]) in a randomized, crossover-design study. Self-injurious behavior was assessed for 8 hours after injection. Food intake and fecal output were assessed for predetermined periods before and after treatment and separated into 12-hour light and dark periods for further analysis. Withdrawal latencies were assessed before (time 0) and at predetermined times after injection. Data were compared among treatments and time points.
RESULTS Self-injurious behavior was observed up to 8 hours after injection for all HCB, but not dextrose, treatments. Preinjection food intake and fecal output amounts were similar among groups and higher during the dark period than during the light period. Food intake after all HCB treatments was higher during the light period and lower during the dark period, compared with preinjection results for the same treatments and with postinjection results for dextrose administration. Light-period fecal output was lower after HCB0.15 and HCB0.30 administration, compared with preinjection values for the same treatments and postinjection values for dextrose administration. Percentage change in withdrawal latency was significantly higher than that at time 0 (ie, 0%) for only 1 treatment (HCB0.30) at 1 time point (1 hour after injection).
CONCLUSIONS AND CLINICAL RELEVANCE Although HCB0.30 produced a degree of thermal hypoalgesia in healthy rats, self-injurious behavior and alterations in food intake and fecal output were detected, potentially affecting clinical utility of the treatment.
Collapse
|
7
|
Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to "Biased Opioids"? Int J Mol Sci 2018; 19:ijms19010272. [PMID: 29342106 PMCID: PMC5796218 DOI: 10.3390/ijms19010272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 11/16/2022] Open
Abstract
Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists.
Collapse
|
8
|
The effects of methamphetamine and buprenorphine, and their interaction on anxiety-like behavior and locomotion in male rats. Neurosci Lett 2017; 655:172-178. [PMID: 28698151 DOI: 10.1016/j.neulet.2017.04.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/22/2022]
Abstract
Methamphetamine (Meth) abuse and dependence are major global problems. Most of previous studies showed that Meth is anxiogenic. While buprenorphine (Bup) is used to treat anxiety-related behaviors, the effects of Meth in combination with Bup on anxiety-like behavior are unclear. In this study, we examined the effects of these drugs on anxiety-like behavior with the elevated plus maze (EPM) and open field (OF) tests, which are widely used to assess anxiety-like behavior in small rodents. Forty male Wistar rats were divided into four groups: sham, Meth, Bup, and Bup+Meth. The groups were administered their assigned treatments for 7days. The time spent in the open arms, and number of total entries into the arms (total activity) in the EPM were recorded. In addition, locomotor activity and number of entrances into the center area in the OF were recorded. The 7-day administration of Meth or Bup increased open arm exploration in the EPM. In contrast, the combined administration of Bup and Meth had the opposite effects. In addition, Meth and Bup had no effects on total and locomotor activity. Furthermore, the rats in the Meth and Bup groups spent more time in the center of the OF, while the group given both Bup and Meth spent less time in the center of the OF. The administration of Meth and Bup alone was anxiolytic in rats, whereas the coadministration of Bup and Meth was anxiogenic.
Collapse
|
9
|
Kitanaka J, Kitanaka N, Hall FS, Uhl GR, Takemura M. Brain Histamine N-Methyltransferase As a Possible Target of Treatment for Methamphetamine Overdose. Drug Target Insights 2016; 10:1-7. [PMID: 26966348 PMCID: PMC4777238 DOI: 10.4137/dti.s38342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/18/2022] Open
Abstract
Stereotypical behaviors induced by methamphetamine (METH) overdose are one of the overt symptoms of METH abuse, which can be easily assessed in animal models. Currently, there is no successful treatment for METH overdose. There is increasing evidence that elevated levels of brain histamine can attenuate METH-induced behavioral abnormalities, which might therefore constitute a novel therapeutic treatment for METH abuse and METH overdose. In mammals, histamine N-methyltransferase (HMT) is the sole enzyme responsible for degrading histamine in the brain. Metoprine, one of the most potent HMT inhibitors, can cross the blood-brain barrier and increase brain histamine levels by inhibiting HMT. Consequently, this compound can be a candidate for a prototype of drugs for the treatment of METH overdose.
Collapse
Affiliation(s)
- Junichi Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo, Japan
| | - Nobue Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo, Japan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - George R Uhl
- New Mexico VA Healthcare System/BRINM, Albuquerque, NM, USA
| | | |
Collapse
|
10
|
Abstract
BACKGROUND Methamphetamine (METH) abuse and dependence present a major global problem. We investigated the efficacy of adding buprenorphine in reducing METH cravings during treatment with the Matrix program. METHODS This was a randomized, double-blind, controlled clinical trial of 40 men between the age of 18 and 40 years who were referred to the addiction treatment center at Noor Hospital from December 2012 to September 2013. All of the selected subjects participated in the Matrix program and were randomly assigned into 2 groups and given either buprenorphine or a placebo. A 4-month intervention program with buprenorphine or a placebo was arranged for each group. Demographic variables of the 2 groups, descriptive indices from the cocaine craving questionnaire-brief (CCQ-Brief), the ratio of urine tests positive for METH, and the frequency of drug complications were regularly evaluated in both groups every 2 weeks and, if not possible, by the third or fourth week. All analyses were performed by SPSS20 using analysis of covariance, χ, and t tests. RESULTS The average of indices from the cocaine craving questionnaire-brief score, except the 2 initial measurements, was significantly lower in the intervention group in all measurements (P < 0.05). Apart from weeks 3 and 28, the ratio of positive tests was significantly different in all measurements in both groups (P < 0.05). CONCLUSIONS Buprenorphine augmentation, in comparison with the placebo, significantly reduced the craving to use METH during treatment with the Matrix program.
Collapse
|
11
|
Bosse KE, Jutkiewicz EM, Schultz-Kuszak KN, Mabrouk OS, Kennedy RT, Gnegy ME, Traynor JR. Synergistic activity between the delta-opioid agonist SNC80 and amphetamine occurs via a glutamatergic NMDA-receptor dependent mechanism. Neuropharmacology 2013; 77:19-27. [PMID: 24035916 DOI: 10.1016/j.neuropharm.2013.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 10/26/2022]
Abstract
Glutamate is known to cause the release of dopamine through a Ca(2+)-sensitive mechanism that involves activation of NMDA ionotropic glutamate receptors. In the current study, we tested the hypothesis that the delta opioid agonist SNC80 acts indirectly, via the glutamatergic system, to enhance both amphetamine-stimulated dopamine efflux from striatal preparations and amphetamine-stimulated locomotor activity. SNC80 increased extracellular glutamate content, which was accompanied by a concurrent decrease in GABA levels. Inhibition of NMDA signaling with the selective antagonist MK801 blocked the enhancement of both amphetamine-induced dopamine efflux and hyperlocomotion observed with SNC80 pretreatment. Addition of exogenous glutamate also potentiated amphetamine-stimulated dopamine efflux in a Mg(2+)- and MK801-sensitive manner. After removal of Mg(2+) to relieve the ion conductance inhibition of NMDA receptors, SNC80 both elicited dopamine release alone and produced a greater enhancement of amphetamine-evoked dopamine efflux. The action of SNC80 to enhance amphetamine-evoked dopamine efflux was mimicked by the GABA(B) antagonist 2-hydroxysaclofen. These cumulative findings suggest SNC80 modulates amphetamine-stimulated dopamine efflux through an intra-striatal mechanism involving inhibition of GABA transmission leading to the local release of glutamate followed by subsequent activation of NMDA receptors.
Collapse
Affiliation(s)
- Kelly E Bosse
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Omar S Mabrouk
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Robert T Kennedy
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Margaret E Gnegy
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John R Traynor
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Pereira FC, Gough B, Macedo TR, Ribeiro CF, Ali SF, Binienda ZK. Buprenorphine modulates methamphetamine-induced dopamine dynamics in the rat caudate nucleus. Neurotox Res 2009; 19:94-101. [PMID: 20033362 DOI: 10.1007/s12640-009-9143-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 10/02/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
Abstract
Methamphetamine (METH) abuse and addiction present a major problem in the United States and globally. Oxidative stress associated with exposure to METH mediates to the large extent METH-evoked neurotoxicity. While there are currently no medications approved for treating METH addiction, its pharmacology provides opportunities for potential pharmacotherapeutic adjuncts to behavioral therapy in the treatment of METH addiction. Opioid receptor agonists can modulate the activity of dopamine neurons and could, therefore, modify the pharmacodynamic effects of METH in the dopaminergic system. Efficacy of the adjunctive medication with buprenorphine has been demonstrated in the treatment of cocaine addiction extending beyond opiate addiction. We investigated the interactions of morphine (10 mg/kg) and buprenorphine (0.01 and 10 mg/kg) with METH (2 mg/kg) affecting striatal dopaminergic transmission. The extracellular concentration of dopamine (DA) and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were determined using brain microdialysis coupled with high performance liquid chromatography with electrochemical detection (HPLC-ED) in the caudate nucleus of adult, awake, male Sprague-Dawley rats. Compared to METH alone, extracellular DA release was prolonged for 140 min without changes in DA peak-effect by combined treatment with morphine/METH. Morphine did not change DOPAC efflux evoked by METH. On the other hand, both buprenorphine doses attenuated the METH-induced DA peak-effect. However, whereas high buprenorphine dose extended DA outflow for 190 min, the low-dose abbreviated DA release. High buprenorphine dose also shortened METH-induced decrease in DOPAC efflux. Data confirm that opiates modulate dopaminergic neurotransmission evoked by METH. Alteration of dopaminergic response to METH challenge under buprenorphine may suggest effectiveness of buprenorphine treatment in METH addiction.
Collapse
Affiliation(s)
- Frederico C Pereira
- Institute of Pharmacology and Therapeutics, Biomedical Institute for Research in Light and Image, Faculty of Medicine, University of Coimbra, Subunit 1-Polo 3, Azinhaga de Santa Comba, Celas, 3000-354 Coimbra, Portugal.
| | | | | | | | | | | |
Collapse
|
13
|
Kita T, Miyazaki I, Asanuma M, Takeshima M, Wagner GC. Dopamine-Induced Behavioral Changes and Oxidative Stress in Methamphetamine-Induced Neurotoxicity. NEW CONCEPTS OF PSYCHOSTIMULANT INDUCED NEUROTOXICITY 2009; 88:43-64. [DOI: 10.1016/s0074-7742(09)88003-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Chun S, McEvilly R, Foster JA, Sakic B. Proclivity to self-injurious behavior in MRL-lpr mice: implications for autoimmunity-induced damage in the dopaminergic system. Mol Psychiatry 2008; 13:1043-53. [PMID: 17768421 DOI: 10.1038/sj.mp.4002078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Systemic lupus erythematosus is frequently accompanied by psychiatric manifestations of unknown origin. Although damage of central neurons had been documented, little is known about neurotransmitter systems affected by the autoimmune/inflammatory process. Recent studies on lupus-prone MRL-lpr mice point to imbalanced dopamine function and neurodegeneration in dopamine-rich brain regions. We follow up on anecdotal observations of singly housed mice developing chest wounds. Compulsive grooming and/or skin biting accounted for open lesions, lending itself to the operational term 'self-injurious behavior' (SIB). Low incidence of spontaneous SIB increased significantly after repeated injections of dopamine-2/3 receptor (D2/D3R) agonist quinpirole (QNP). To further probe the dopaminergic circuitry and examine whether SIB is associated with development of lupus-like disease, we compared behavioral responses among cohorts that differed in the immune status. Two-week treatment with QNP (intraperitoneal, 0.5 mg kg(-1) body weight per day) induced SIB in 60% of diseased MRL-lpr mice, and exacerbated their splenomegaly. Although increased grooming and stereotypy were observed in less symptomatic MRL+/+ controls, only one mouse (10%) developed SIB. Similarly, SIB was not seen in young, asymptomatic groups despite dissimilar ambulatory responses to QNP. In situ hybridization revealed treatment-independent upregulation of D2R mRNA in substantia nigra of diseased MRL-lpr mice. The above results suggest that development of systemic autoimmunity alters sensitivity of the dopaminergic system and renders MRL-lpr mice prone to SIB. Although pathogenic factors were not examined, we hypothesize that immune and endocrine mechanisms jointly contribute to early neuronal damage, which underlies behavioral deficiency in the adulthood.
Collapse
Affiliation(s)
- S Chun
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
15
|
Bosse KE, Jutkiewicz EM, Gnegy ME, Traynor JR. The selective delta opioid agonist SNC80 enhances amphetamine-mediated efflux of dopamine from rat striatum. Neuropharmacology 2008; 55:755-62. [PMID: 18602932 DOI: 10.1016/j.neuropharm.2008.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 05/23/2008] [Accepted: 06/11/2008] [Indexed: 11/18/2022]
Abstract
The highly selective delta opioid agonist, SNC80, elicits dopamine-related behaviors including locomotor stimulation and conditioned place-preference. In contrast, it has been reported that SNC80 fails to promote dopamine efflux from the striatum of freely moving rats. However, SNC80 does enhance behavioral responses to the stimulants, amphetamine and cocaine, suggesting an interaction between delta opioids and psychostimulants. Since the increase in locomotor activity elicited by amphetamine and related stimulants acting at the dopamine transporter is associated with increases in extracellular concentrations of dopamine within the striatum, we hypothesized that SNC80 enhances this activity by potentiating the overflow of dopamine through the transporter. To test this hypothesis, striatal preparations from Sprague Dawley rats were assayed for dopamine efflux in response to amphetamine challenge. SNC80 was given either in vivo or in vitro directly to rat striatal tissue, prior to in vitro amphetamine challenge. Both in vivo and in vitro administration of SNC80 enhanced amphetamine-mediated dopamine efflux in a concentration- and time-dependent manner. However, SNC80 in either treatment paradigm produced no stimulation of dopamine efflux in the absence of amphetamine. The effect of SNC80 on amphetamine-mediated dopamine overflow, but not the effect of amphetamine alone, was blocked by the delta selective antagonist, naltrindole and was also observed with other delta agonists. The results of this study demonstrate that even though SNC80 does not stimulate dopamine efflux alone, it is able to augment amphetamine-mediated dopamine efflux through a delta opioid receptor mediated action locally in the striatum.
Collapse
Affiliation(s)
- Kelly E Bosse
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
16
|
Abstract
The effects of dopamine receptor agonists and antagonists on hyperlocomotion in mice induced by the nonpeptide delta-opioid receptor agonist (+)-4-[(aR)-a-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide) (SNC80) were investigated. SNC80 significantly increased locomotion (maximally at 2 mg/kg). In antagonism tests, naltrindole and naltriben completely attenuated this SNC80-induced hyperlocomotion, which suggests that SNC80-induced hyperlocomotion may be mainly mediated through delta-opioid receptors. Although haloperidol (dopamine D2-receptor antagonist) did not affect SNC80-induced hyperactivity, it inhibited morphine-induced hyperlocomotion. In combination tests, SNC80, at a dose that did not affect spontaneous activity, significantly potentiated hyperlocomotion induced by methamphetamine and the dopamine D1-receptor agonist 6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetra-hydro-1H-3-benzazepin hydrobromide (SKF81297), whereas the combination of SNC80 and the D2-like receptor agonist 7-OH-N,N-di-n-propyl-2-aminotetralin did not affect locomotor activity. An earlier study demonstrated that the combination of the D1-receptor agonist SKF81297 and the D2-like receptor agonist 7-OH-N,N-di-n-propyl-2-aminotetralin synergistically induced hyperactivity in mice. Therefore, the present findings suggest that stimulation of either D2-like receptors or delta-opioid receptors can enhance the hyperlocomotion induced by stimulation of D1 receptors by methamphetamine and SKF81297, and the mechanism that underlies the hyperactivity caused by SNC80 may be different from that which underlies the effects of morphine.
Collapse
|
17
|
Abstract
This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, United States.
| |
Collapse
|
18
|
Ito S, Mori T, Kanazawa H, Sawaguchi T. Differential effects of the ascorbyl and tocopheryl derivative on the methamphetamine-induced toxic behavior and toxicity. Toxicology 2007; 240:96-110. [PMID: 17875351 DOI: 10.1016/j.tox.2007.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 01/24/2023]
Abstract
A previous study showed that high doses of methamphetamine induce self-injurious behavior (SIB) in rodents. Furthermore, the combination of methamphetamine and morphine increased lethality in mice. We recently surmised that the rise in SIB and mortality induced by methamphetamine and/or morphine may be related to oxidative stress. The present study was designed to determine whether an antioxidant could inhibit SIB or mortality directly induced by methamphetamine and/or morphine. The SIB induced by 20mg/kg of methamphetamine was abolished by the administration of Na L-ascorbyl-2-phosphate (APS: 300 mg/kg), but not Na DL-alpha-tocopheryl phosphate (TPNa: 200mg/kg). In contrast, APS (300 mg/kg) and TPNa (200mg/kg) each significantly attenuated the lethality induced by methamphetamine and morphine. The present study showed that the signal intensity of superoxide adduct was increased by 20mg/kg of methamphetamine in the heart and lungs, and methamphetamine plus morphine tended to increase superoxide adduct in all of the tissues measured by ESR spin trap methods. Adduct signal induced in brain by methamphetamine administration increased in significance, but in mouse administrated methamphetamine plus morphine. There are differential effects of administration of methamphetamine and coadministration of methamphetamine plus morphine on adduct signal. These results suggest that APS and TPNa are effective for reducing methamphetamine-induced toxicity and/or toxicological behavior. While APS and TPNa each affected methamphetamine- and/or morphine-induced toxicology and/or toxicological behavior, indicating that both drugs have antioxidative effects, their effects differed.
Collapse
Affiliation(s)
- Shinobu Ito
- Department of Legal Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | |
Collapse
|
19
|
Swenson J, Olgun S, Radjavi A, Kaur T, Reilly CM. Clinical efficacy of buprenorphine to minimize distress in MRL/lpr mice. Eur J Pharmacol 2007; 567:67-76. [PMID: 17490635 PMCID: PMC2570058 DOI: 10.1016/j.ejphar.2007.03.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 03/04/2007] [Accepted: 03/06/2007] [Indexed: 10/23/2022]
Abstract
MRL/MpJ-Fas(lpr) (MRL/lpr) mice are an accepted animal model to study human systemic lupus erythematosus. We tested if a commonly used analgesic (buprenorphine hydrochloride) would reduce pain and distress in these mice without impacting the progression of autoimmune disease. Female MRL/lpr mice were randomly separated into four groups. Experimental groups received cyclophosphamide (25 mg/kg i.p. weekly), buprenorphine (0.09 mg/kg/mouse/day via drinking water), or cyclophosphamide+buprenorphine from 11 to 21 weeks of age. Controls received no treatments. Mice were monitored daily by a licensed veterinarian (blinded observer) and assigned a score weekly on parameters associated with pain and distress as well as progression of disease. Proteinuria was measured weekly, and serum anti-dsDNA antibody levels were determined at 11, 15, and 18 weeks of age. At 21 weeks of age, the animals were euthanized and the kidneys and spleens were removed for evaluation. Regardless of the parameter observed, buprenorphine did not significantly decrease distress when compared to the controls. Buprenorphine did not alter the progression of autoimmune disease, based on characteristics of splenic architecture and splenocyte cell profiles, development of lymphadenopathy, or kidney histology as compared to controls. This study indicates that buprenorphine at this dose and route of administration was ineffective in reducing distress associated with disease progression in the MRL/lpr strain. More studies are needed to determine if, at a different dose or route, buprenorphine would be useful as adjunctive therapy in reducing distress in MRL/lpr mice.
Collapse
Affiliation(s)
- Julie Swenson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060
- Current Address: Zoological Medicine Service, Veterinary Medical Teaching Hospital, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Selen Olgun
- Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060
| | - Ali Radjavi
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060
| | - Taranjit Kaur
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060
| | - Christopher M. Reilly
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060
- Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060
| |
Collapse
|
20
|
Ito S, Mori T, Sawaguchi T. Differential effects of μ-opioid, δ-opioid and κ-opioid receptor agonists on dopamine receptor agonist-induced climbing behavior in mice. Behav Pharmacol 2006; 17:691-701. [PMID: 17110795 DOI: 10.1097/fbp.0b013e32801155a1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interactions between the dopaminergic system and opioids have not been adequately clarified. The present study was designed to investigate the effects of micro-opioid (morphine), delta-opioid (SNC80) and kappa-opioid (U50 488H) receptor agonists on dopamine receptor agonist-induced climbing behavior in mice. Apomorphine (dopamine-receptor agonist) increased stereotyped climbing behavior, unlike methamphetamine, morphine, U-50 488H and (+/-)7-hydroxy-N,N-di-n-propyl-2-aminotetralin hydrobromide (D2-like receptor agonist). Furthermore, SKF81297 (D1 receptor agonist) and SNC80 caused climbing behavior. In addition, while morphine (20 mg/kg), but not U50 488H or SNC80, significantly attenuated high-dose apomorphine (2.0 mg/kg)-induced climbing behavior, it significantly potentiated low-dose apomorphine (0.5 mg/kg)-induced climbing behavior. These results suggest that morphine may have dual effects on the behavioral effects induced by apomorphine. Furthermore, we interestingly showed that the combination of apomorphine or SKF81297 and SNC80 enhanced frequent nonstereotypic climbing behavior, suggesting that delta/D1 interactions may play a prominent role in the expression of certain types of behavior in mice. Thus, micro-opioid, delta-opioid and kappa-opioid receptor agonists induce possible differential effects on the dopaminergic system in mice.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Apomorphine
- Benzamides/pharmacology
- Benzazepines
- Dopamine Agonists
- Male
- Mice
- Mice, Inbred Strains
- Morphine/pharmacology
- Motor Activity/drug effects
- Piperazines/pharmacology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, mu/agonists
- Tetrahydronaphthalenes
Collapse
Affiliation(s)
- Shinobu Ito
- Department of Legal Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | | | | |
Collapse
|