1
|
Sadraei H, Ghasemi M, Saranji S. Evaluation of spasmolytic effects of naringenin on ileum contraction and intestinal charcoal meal transit: Involvement of ATP-sensitive K+ channels. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Naringenin is a flavonoid constituent of many herbal plants, including citreous fruits. Biological studies have suggested various therapeutic effects for naringenin, including protective effects on gastrointestinal (GI) motility. The present study was performed to investigate the involvement of ATP-sensitive K+ channels on the effect of naringenin in rat ileum motility. Methods: Ileum contractions were induced by either KCl or acetylcholine (ACh) in vitro. Inhibitory concentration-response curves were constructed for naringenin and diazoxide after exposure of rat isolated ileum to KCl (20mM) or ACh (500nM). The relaxant effects of naringenin and diazoxide were also examined in the presence of glibenclamide. Furthermore, oral effects of diazoxide (25 mg/kg) and naringenin (25, 50 mg/kg) were also assessed on the intestinal charcoal meal transit in mice (n=10) in the absence and presence of glibenclamide (50 mg/kg). Results: Diazoxide and naringenin in a concentration-dependent manner inhibited ileum contractions induced by low bath concentration of KCl (20mM). However, both drugs had no effect on contractions induced by a high concentration of KCl (160mM). The inhibitory effects of diazoxide and naringenin were blocked by glibenclamide. Oral administration of diazoxide and naringenin significantly reduced the intestinal transit of charcoal meal. The delay in the intestinal transit was blocked by the oral dose of glibenclamide. The effect of naringenin on the rat intestinal strip pre-contracted with the KCl was relatively similar to that of ATP-sensitive K+ channel opener (diazoxide). Conclusion: This research supports that ATP-sensitive K+ channels are involved in the rat small intestinal smooth muscles relaxation induced by naringenin.
Collapse
Affiliation(s)
- Hassan Sadraei
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Salman Saranji
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Arni S, Maeyashiki T, Latshang T, Opitz I, Inci I. Ex Vivo Lung Perfusion with K(ATP) Channel Modulators Antagonize Ischemia Reperfusion Injury. Cells 2021; 10:cells10092296. [PMID: 34571948 PMCID: PMC8472464 DOI: 10.3390/cells10092296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Ex vivo lung perfusion (EVLP) has been implemented to increase the number of donor lungs available for transplantation. The use of K(ATP) channel modulators during EVLP experiments may protect against lung ischemia-reperfusion injury and may inhibit the formation of reactive oxygen species. In a rat model of donation after circulatory death with 2 h warm ischemic time, we evaluated rat lungs for a 4-hour time in EVLP containing either mitochondrial-specific or plasma membrane and/or sarcolemmal-specific forms of K(ATP) channel modulators. Lung physiological data were recorded, and metabolic parameters were assessed. When compared to the control group, in the EVLP performed with diazoxide or 5-hydroxydecanoic acid (5-HD) we recorded significantly lower pulmonary vascular resistance and only in the diazoxide group recorded significant lung weight loss. In the perfusate of the 5-HD group, interleukin-1β and interleukin-1α were significantly lower when compared to the control group. Perfusate levels of calcium ions were significantly higher in both 5-HD and cromakalim groups, whereas the levels of calcium, potassium, chlorine and lactate were reduced in the diazoxide group, although not significantly when compared to the control. The use of a diazoxide mitochondrial-specific K(ATP) channel opener during EVLP improved lung physiological and metabolic parameters and reduced edema.
Collapse
Affiliation(s)
- Stephan Arni
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland; (S.A.); (T.M.); (I.O.)
| | - Tatsuo Maeyashiki
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland; (S.A.); (T.M.); (I.O.)
| | - Tsogyal Latshang
- Department of Pneumology, Kantonsspital Graubünden, 7000 Chur, Switzerland;
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland; (S.A.); (T.M.); (I.O.)
| | - Ilhan Inci
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland; (S.A.); (T.M.); (I.O.)
- Correspondence: ; Tel.: +41-(0)-44-255-85-43
| |
Collapse
|
3
|
Boly R, Yabre Z, Nitiema M, Yaro B, Yoda J, Belemnaba L, Ilboudo S, Youl NHE, Guissou IP, Ouedraogo S. Pharmacological Evaluation of the Bronchorelaxant Effect of Waltheria indica L. (Malvaceae) Extracts on Rat Trachea. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5535727. [PMID: 33995545 PMCID: PMC8096538 DOI: 10.1155/2021/5535727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/01/2022]
Abstract
Waltheria indica L. (Malvaceae) is a plant used in Burkina Faso for the treatment of various ailments including asthma. The aim of the study was to evaluate the pharmacological relaxant effect of the leafy stem extracts of Waltheria indica and thereby verify claim of use in treating asthma. Aqueous decoction and hydroalcoholic extracts obtained from the powdered leafy stems were screened for the presence of some phytoconstituents. The in vitro relaxant effect of the two extracts was evaluated on acetylcholine- (ACh 10-5 M) and potassium chloride- (KCl 6 × 10-2 M) induced contractions on rat-isolated tracheal preparations. To examine whether the potassium (K+) channels are involved in the relaxant effect, glibenclamide, an ATP-sensitive potassium channel inhibitor, was used. Moreover, to assess the safety of the extracts, acute oral toxicity was carried out on mice. The phytochemical screening revealed the presence of alkaloids, flavonoids, saponins, steroids, triterpenoids, tannins, and coumarins in the hydroalcoholic extract. Tannins, steroids, triterpenoids, and coumarins were not detected in the aqueous decoction. With respective EC50 values of 1.517 ± 0.002 mg/mL and 1.433 ± 0.001 mg/mL on ACh-and KCl-provoked contractions, the hydroalcoholic extract was found more potent in relaxing the isolated rat tracheal preparations compared to the aqueous decoction. In the presence of glibenclamide, the relaxant effect of the hydroalcoholic extract (EC50 = 0.191 ± 0.002 mg/mL) increased and was higher than that of the aqueous decoction. At dose of 5000 mg/kg of body weight, the extracts did not produce deaths or any significant changes in the general behavior of mice. The results suggest that different mechanisms including modulation of calcium and potassium channels, particularly the ATP-sensitive K+ channels, could be involved in the relaxation effect. These findings could justify the traditional use of W. indica in the management of asthma.
Collapse
Affiliation(s)
- Rainatou Boly
- Institute of Research in Health Science (IRSS), 03 PO 7047, Ouagadougou 03, Burkina Faso
| | - Zakaline Yabre
- Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Mathieu Nitiema
- Institute of Research in Health Science (IRSS), 03 PO 7047, Ouagadougou 03, Burkina Faso
| | - Boubacar Yaro
- Institute of Research in Health Science (IRSS), 03 PO 7047, Ouagadougou 03, Burkina Faso
| | - Jules Yoda
- Institute of Research in Health Science (IRSS), 03 PO 7047, Ouagadougou 03, Burkina Faso
| | - Lazare Belemnaba
- Institute of Research in Health Science (IRSS), 03 PO 7047, Ouagadougou 03, Burkina Faso
| | - Sylvain Ilboudo
- Institute of Research in Health Science (IRSS), 03 PO 7047, Ouagadougou 03, Burkina Faso
| | - Noëla Hoho Estelle Youl
- Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | | | - Sylvin Ouedraogo
- Institute of Research in Health Science (IRSS), 03 PO 7047, Ouagadougou 03, Burkina Faso
| |
Collapse
|
4
|
Higashi H, Kinjo T, Uno K, Kuramoto N. Regulatory effects associated with changes in intracellular potassium level in susceptibility to mitochondrial depolarization and excitotoxicity. Neurochem Int 2019; 133:104627. [PMID: 31805298 DOI: 10.1016/j.neuint.2019.104627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/16/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Excitotoxicity has been believed to be one of the causes of neurodegenerative diseases such as Alzheimer's disease and Huntington's disease. So far, much research has been done to suppress the neuronal excessive excitations, however, we still have not achieved full control, which may be due to the lack of some factors. As a matter of course, there is an urgent need to clarify all mechanisms that inhibit the onset and progression of neurodegenerative diseases. We found that potassium ion level regulation may be important in the sense that it suppresses mitochondrial depolarization rather than hyperpolarization of cell membrane potential. Minoxidil, an opener of ATP-activated potassium (KATP) channels decreased injury with middle cerebral artery occlusion in vivo experiment using TTC staining. In the primary cortical neurons, N-methyl-D-aspartate (NMDA)-induced mitochondrial depolarization was suppressed by minoxidil treatment. Minoxidil inhibited the increase in levels of cleaved caspase 3 and the release of cytochrome c into the cytosol, further reducing potassium ion levels. It was observed decreased potassium levels in neurons by the treatment of minoxidil. Those effects of minoxidil were blocked by glibenclamide. Therefore, it was suggested that minoxidil, via opening of KATP channels, reduced intracellular potassium ion level that contribute to mitochondrial depolarization, and suppressed subsequent NMDA-induced mitochondrial depolarization. Our findings suggest that the control of ion levels in neurons could dominate the onset and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hiroshi Higashi
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, 573-0101, Japan
| | - Toshihiko Kinjo
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, 573-0101, Japan
| | - Kyosuke Uno
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, 573-0101, Japan
| | - Nobuyuki Kuramoto
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, 573-0101, Japan.
| |
Collapse
|
5
|
Madreiter-Sokolowski CT, Ramadani-Muja J, Ziomek G, Burgstaller S, Bischof H, Koshenov Z, Gottschalk B, Malli R, Graier WF. Tracking intra- and inter-organelle signaling of mitochondria. FEBS J 2019; 286:4378-4401. [PMID: 31661602 PMCID: PMC6899612 DOI: 10.1111/febs.15103] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Mitochondria are as highly specialized organelles and masters of the cellular energy metabolism in a constant and dynamic interplay with their cellular environment, providing adenosine triphosphate, buffering Ca2+ and fundamentally contributing to various signaling pathways. Hence, such broad field of action within eukaryotic cells requires a high level of structural and functional adaptation. Therefore, mitochondria are constantly moving and undergoing fusion and fission processes, changing their shape and their interaction with other organelles. Moreover, mitochondrial activity gets fine-tuned by intra- and interorganelle H+ , K+ , Na+ , and Ca2+ signaling. In this review, we provide an up-to-date overview on mitochondrial strategies to adapt and respond to, as well as affect, their cellular environment. We also present cutting-edge technologies used to track and investigate subcellular signaling, essential to the understanding of various physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Corina T Madreiter-Sokolowski
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria.,Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Jeta Ramadani-Muja
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Gabriela Ziomek
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Sandra Burgstaller
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Helmut Bischof
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Zhanat Koshenov
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria.,BioTechMed, Graz, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria.,BioTechMed, Graz, Austria
| |
Collapse
|
6
|
Cerebral Edema After Cardiopulmonary Resuscitation: A Therapeutic Target Following Cardiac Arrest? Neurocrit Care 2019; 28:276-287. [PMID: 29080068 DOI: 10.1007/s12028-017-0474-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We sought to review the role that cerebral edema plays in neurologic outcome following cardiac arrest, to understand whether cerebral edema might be an appropriate therapeutic target for neuroprotection in patients who survive cardiopulmonary resuscitation. Articles indexed in PubMed and written in English. Following cardiac arrest, cerebral edema is a cardinal feature of brain injury and is a powerful prognosticator of neurologic outcome. Like other conditions characterized by cerebral ischemia/reperfusion, neuroprotection after cardiac arrest has proven to be difficult to achieve. Neuroprotection after cardiac arrest generally has focused on protecting neurons, not the microvascular endothelium or blood-brain barrier. Limited preclinical data suggest that strategies to reduce cerebral edema may improve neurologic outcome. Ongoing research will be necessary to determine whether targeting cerebral edema will improve patient outcomes after cardiac arrest.
Collapse
|
7
|
King ZA, Sheth KN, Kimberly WT, Simard JM. Profile of intravenous glyburide for the prevention of cerebral edema following large hemispheric infarction: evidence to date. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2539-2552. [PMID: 30147301 PMCID: PMC6101021 DOI: 10.2147/dddt.s150043] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glyburide (also known as glibenclamide) is a second-generation sulfonylurea drug that inhibits sulfonylurea receptor 1 (Sur1) at nanomolar concentrations. Long used to target KATP (Sur1–Kir6.2) channels for the treatment of diabetes mellitus type 2, glyburide was recently repurposed to target Sur1–transient receptor potential melastatin 4 (Trpm4) channels in acute central nervous system injury. Discovered nearly two decades ago, SUR1–TRPM4 has emerged as a critical target in stroke, specifically in large hemispheric infarction, which is characterized by edema formation and life-threatening brain swelling. Following ischemia, SUR1–TRPM4 channels are transcriptionally upregulated in all cells of the neurovascular unit, including neurons, astrocytes, microglia, oligodendrocytes and microvascular endothelial cells. Work by several independent laboratories has linked SUR1–TRPM4 to edema formation, with blockade by glyburide reducing brain swelling and death in preclinical models. Recent work showed that, following ischemia, SUR1–TRPM4 co-assembles with aquaporin-4 to mediate cellular swelling of astrocytes, which contributes to brain swelling. Additionally, recent work linked SUR1–TRPM4 to secretion of matrix metalloproteinase-9 (MMP-9) induced by recombinant tissue plasminogen activator in activated brain endothelial cells, with blockade of SUR1–TRPM4 by glyburide reducing MMP-9 and hemorrhagic transformation in preclinical models with recombinant tissue plasminogen activator. The recently completed GAMES (Glyburide Advantage in Malignant Edema and Stroke) clinical trials on patients with large hemispheric infarctions treated with intravenous glyburide (RP-1127) revealed promising findings with regard to brain swelling (midline shift), MMP-9, functional outcomes and mortality. Here, we review key elements of the basic science, preclinical experiments and clinical studies, both retrospective and prospective, on glyburide in focal cerebral ischemia and stroke.
Collapse
Affiliation(s)
- Zachary A King
- Department of Neurology, Division of Neurocritical Care and Emergency Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin N Sheth
- Department of Neurology, Division of Neurocritical Care and Emergency Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - W Taylor Kimberly
- Department of Neurology, Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA,
| |
Collapse
|
8
|
Sun CJ, Jin Y, Zhang WY, Li L, Liu XW. Role of AKR1C3 in renal injury and glibenclamide is anti-inflammatory in preeclamptic rats. Gene 2018; 662:1-9. [DOI: 10.1016/j.gene.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/04/2018] [Indexed: 01/18/2023]
|
9
|
Loos JA, Churio MS, Cumino AC. Anthelminthic activity of glibenclamide on secondary cystic echinococcosis in mice. PLoS Negl Trop Dis 2017; 11:e0006111. [PMID: 29190739 PMCID: PMC5726723 DOI: 10.1371/journal.pntd.0006111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/12/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
Cystic echinococcosis (CE) is a worldwide parasitic zoonosis caused by the larval stage of Echinococcus granulosus. Current chemotherapy against this disease is based on the administration of benzimidazoles (BZMs). However, BZM treatment has a low cure rate and causes several side effects. Therefore, new treatment options are needed. The antidiabetic drug glibenclamide (Glb) is a second-generation sulfonylurea receptor inhibitor that has been shown to be active against protozoan parasites. Hence, we assessed the in vitro and in vivo pharmacological effects of Glb against the larval stage of E. granulosus. The in vitro activity was concentration dependent on both protoscoleces and metacestodes. Moreover, Glb combined with the minimum effective concentration of albendazole sulfoxide (ABZSO) was demonstrated to have a greater effect on metacestodes in comparison with each drug alone. Likewise, there was a reduction in the cyst weight after oral administration of Glb to infected mice (5 mg/kg of body weight administered daily for a period of 8 weeks). However, in contrast to in vitro assays, no differences in effectiveness were found between Glb + albendazole (ABZ) combined treatment and Glb monotherapy. Our results also revealed mitochondrial membrane depolarization and an increase in intracellular Ca2+ levels in Glb-treated protoscoleces. In addition, the intracystic drug accumulation and our bioinformatic analysis using the available E. granulosus genome suggest the presence of genes encoding sulfonylurea transporters in the parasite. Our data clearly demonstrated an anti-echinococcal effect of Glb on E. granulosus larval stage. Further studies are needed in order to thoroughly investigate the mechanism involved in the therapeutic response of the parasite to this sulfonylurea. In this work we demonstrated the in vitro and in vivo efficacy of Glb against the larval stage of Echinococcus granulosus. At the cellular level, the drug triggered mitochondrial membrane depolarization and increased intracellular Ca2+ levels, thus affecting ATP generation in the parasite. In addition, since intracystic Glb concentrations were higher than those used in the external medium, we proposed that the drug might enter the cyst through cell surface transporters. The observed effect of the drug on the growth of hydatid cysts in mice leads to the consideration of a novel role of Glb in CE treatment. Therefore, our further studies will focus on the evaluation of ABZ formulations with enhanced bioavailability to achieve an improved in vivo anti-echinococcal effect using both drugs simultaneously.
Collapse
Affiliation(s)
- Julia A. Loos
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Sandra Churio
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- IFIMAR, Instituto de Investigaciones Físicas de Mar del Plata (CONICET-UNMdP), Argentina
| | - Andrea C. Cumino
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- * E-mail:
| |
Collapse
|
10
|
A Protective Role of Glibenclamide in Inflammation-Associated Injury. Mediators Inflamm 2017; 2017:3578702. [PMID: 28740332 PMCID: PMC5504948 DOI: 10.1155/2017/3578702] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/26/2017] [Accepted: 04/06/2017] [Indexed: 12/13/2022] Open
Abstract
Glibenclamide is the most widely used sulfonylurea drug for the treatment of type 2 diabetes mellitus (DM). Recent studies have suggested that glibenclamide reduced adverse neuroinflammation and improved behavioral outcomes following central nervous system (CNS) injury. We reviewed glibenclamide's anti-inflammatory effects: abundant evidences have shown that glibenclamide exerted an anti-inflammatory effect in respiratory, digestive, urological, cardiological, and CNS diseases, as well as in ischemia-reperfusion injury. Glibenclamide might block KATP channel, Sur1-Trpm4 channel, and NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome activation, decrease the production of proinflammatory mediators (TNF-α, IL-1β, and reactive oxygen species), and suppress the accumulation of inflammatory cells. Glibenclamide's anti-inflammation warrants further investigation.
Collapse
|
11
|
Piri H, Haghdoost-Yazdi H, Fraidouni N, Dargahi T, Yaghoubidoust M, Azadmehr A. The Anti-Parkinsonism Effects of K ATP Channel Blockade in the 6-Hydroxydopamine-Induced Animal Model: The Role of Oxidative Stress. Basic Clin Neurosci 2017; 8:183-192. [PMID: 28781726 PMCID: PMC5535324 DOI: 10.18869/nirp.bcn.8.3.183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Studies suggest that ATP-sensitive potassium (KATP) channels are a potential pharmacotherapeutic target for neuroprotection in neurodegenerative diseases. The current study aimed at evaluating the effect of pretreatment with glibenclamide (Glib) and B vitamins supplement on the severity of behavioral symptoms in 6-hydroxydopamine (OHDA)-induced Parkinsonism. Also malondialdehyde (MDA) concentration was measured in the blood and brain suspensions to find probable neuroprotective mechanism of Glib. METHODS The 6-OHDA was injected into striatum of rats by stereotaxic surgery. Treatment with Glib and B vitamins was started before the surgery and continued up to 3 weeks after that. Development and severity of Parkinsonism were evaluated by conventional behavioral tests. MDA values were measured spectrophotometrically using thiobarbituric acid and MDA standard curve. RESULTS Pretreatments with Glib, at both doses of 1 and 5 mg/kg or B vitamins significantly ameliorated severity of the behavioral symptoms. Pretreatment with a combination of Glib and B vitamins was more effective than pretreatment with Glib or B vitamins alone. Also, pretreatment with B vitamins, Glib, or a combination of them reduced MDA concentration in the brain suspensions. Decrease in MDA concentration in the group of rats that received a combination of B vitamins and Glib was more prominent than that of the Glib groups. CONCLUSION As severity of the behavioral symptoms in the 6-OHDA-induced Parkinsonism reflects the degree of the lesion in Substantia Nigra (SN) dopaminergic neurons, it is suggested that Glib pretreatment has neuroprotective effect against 6-OHDA-induced neurotoxicity. The current study data also showed that this effect may be mediated by antioxidant effect of Glib.
Collapse
Affiliation(s)
- Hossein Piri
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hashem Haghdoost-Yazdi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Negin Fraidouni
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Tahereh Dargahi
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Abbas Azadmehr
- Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
12
|
Xu Z, Liu Y, Yang D, Yuan F, Ding J, Wang L, Qu M, Yang G, Tian H. Glibenclamide–sulfonylurea receptor 1 antagonist alleviates LPS-induced BV2 cell activation through the p38/MAPK pathway. RSC Adv 2017. [DOI: 10.1039/c7ra03042h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated the anti-neuroinflammatory activity and mechanism of glibenclamide, sulfonylurea receptor 1 (Sur1) antagonist, against LPS-induced microglial activationin vitro.
Collapse
Affiliation(s)
- Zhiming Xu
- Department of Neurosurgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Yingliang Liu
- Department of Neurosurgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Dianxu Yang
- Department of Neurosurgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Fang Yuan
- Department of Neurosurgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Jun Ding
- Department of Neurosurgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Liping Wang
- Department of Neurology
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Meijie Qu
- Department of Neurology
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Guoyuan Yang
- Department of Neurology
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Hengli Tian
- Department of Neurosurgery
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| |
Collapse
|
13
|
Schwingshackl A. The role of stretch-activated ion channels in acute respiratory distress syndrome: finally a new target? Am J Physiol Lung Cell Mol Physiol 2016; 311:L639-52. [PMID: 27521425 DOI: 10.1152/ajplung.00458.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
Mechanical ventilation (MV) and oxygen therapy (hyperoxia; HO) comprise the cornerstones of life-saving interventions for patients with acute respiratory distress syndrome (ARDS). Unfortunately, the side effects of MV and HO include exacerbation of lung injury by barotrauma, volutrauma, and propagation of lung inflammation. Despite significant improvements in ventilator technologies and a heightened awareness of oxygen toxicity, besides low tidal volume ventilation few if any medical interventions have improved ARDS outcomes over the past two decades. We are lacking a comprehensive understanding of mechanotransduction processes in the healthy lung and know little about the interactions between simultaneously activated stretch-, HO-, and cytokine-induced signaling cascades in ARDS. Nevertheless, as we are unraveling these mechanisms we are gathering increasing evidence for the importance of stretch-activated ion channels (SACs) in the activation of lung-resident and inflammatory cells. In addition to the discovery of new SAC families in the lung, e.g., two-pore domain potassium channels, we are increasingly assigning mechanosensing properties to already known Na(+), Ca(2+), K(+), and Cl(-) channels. Better insights into the mechanotransduction mechanisms of SACs will improve our understanding of the pathways leading to ventilator-induced lung injury and lead to much needed novel therapeutic approaches against ARDS by specifically targeting SACs. This review 1) summarizes the reasons why the time has come to seriously consider SACs as new therapeutic targets against ARDS, 2) critically analyzes the physiological and experimental factors that currently limit our knowledge about SACs, and 3) outlines the most important questions future research studies need to address.
Collapse
|
14
|
Xu ZM, Yuan F, Liu YL, Ding J, Tian HL. Glibenclamide Attenuates Blood-Brain Barrier Disruption in Adult Mice after Traumatic Brain Injury. J Neurotrauma 2016; 34:925-933. [PMID: 27297934 DOI: 10.1089/neu.2016.4491] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glibenclamide is a hypoglycemic drug that is widely used for the treatment of diabetes mellitus type 2 (DM II), but it also plays a protective role following injury to the central nervous system (CNS). However, the precise mechanisms underlying its neuroprotective actions remain to be elucidated. Therefore, the present study evaluated the effects of glibenclamide on the blood-brain barrier (BBB) in a mouse model of traumatic brain injury (TBI). In the present study, 86 adult male C57BL/6 mice were exposed to a controlled cortical impact (CCI) injury and then received glibenclamide (10 μg) for 3 days. Tight junction (TJ) protein levels, BBB permeability, and tissue hemoglobin levels were evaluated following the CCI injury. Additionally, a biaxial stretch injury was applied to cell cultures of bEnd.3 cells using the Cell Injury Controller II system to explore the mechanisms by which glibenclamide inhibits apoptosis-signaling pathways. Compared with the control group, glibenclamide-treated mice exhibited decreases in brain water content (p < 0.05), tissue hemoglobin levels (p < 0.05), and Evans Blue extravasation (p < 0.01) after the CCI injury. Glibenclamide primarily attenuated apoptosis via the JNK/c-jun signaling pathway and resulted in an elevation of stretch injury-induced ZO-1 expression in bEnd.3 cells (p < 0.01).Glibenclamide downregulated the activity of the JNK/c-jun apoptosis-signaling pathway which, in turn, decreased apoptosis in endothelial cells (ECs). This may have prevented the disruption of the BBB in a mouse model of TBI.
Collapse
Affiliation(s)
- Zhi-Ming Xu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Fang Yuan
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Ying-Liang Liu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Jun Ding
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
15
|
The antidiabetic agent glibenclamide protects airway hyperresponsiveness and inflammation in mice. Inflammation 2015; 38:835-45. [PMID: 25113133 DOI: 10.1007/s10753-014-9993-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glibenclamide has a newly discovered role in inflammation regulation besides its antidiabetic effect. As an inhibitor of ATP-sensitive potassium (KATP) channel, glibenclamide antagonizes the relaxation of the tracheal smooth muscle. This indicates that glibenclamide might attenuate airway inflammation while aggravate airway hyperresponsiveness (AHR) in asthmatics. Clinically, many diabetics with asthma are prescribed with glibenclamide to control blood glucose. However, whether glibenclamide could exert any effects on asthmatic inflammation remains unknown. Using an ovalbumin (OVA)-induced mouse model of asthma, we evaluated the effects of glibenclamide on the AHR and inflammation. Interestingly, glibenclamide reduced all the cardinal features of asthma in OVA-challenged mice, including AHR, airway inflammation, and T-helper type 2 (Th2) cytokines. Glibenclamide also downregulated OVA-induced expressions of vascular cell adhesion molecule 1 (VCAM-1) and phosphorylated signal transducer and activator of transcription 6 (p-STAT6) in the lung. In addition, increased sulfonylurea receptor 1 (SUR1) expression in the lung was observed after the OVA challenge. These findings suggest that the classic sulfonylurea glibenclamide plays an important protective role in the development of asthma, which not only provides the evidence for the safety of prescribed glibenclamide in diabetics combined with asthma but also indicates a possible new therapeutic for asthma via targeting glibenclamide-related pathways.
Collapse
|
16
|
Liu Z, Zhao H, Liu W, Li T, Wang Y, Zhao M. NLRP3 inflammasome activation is essential for paraquat-induced acute lung injury. Inflammation 2015; 38:433-44. [PMID: 25338942 PMCID: PMC7101550 DOI: 10.1007/s10753-014-0048-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The innate immune response is important in paraquat-induced acute lung injury, but the exact pathways involved are not elucidated. The objectives of this study were to determine the specific role of the NLRP3 inflammasome in the process. Acute lung injury was induced by administering paraquat (PQ) intraperitoneally. NLRP3 inflammasome including NLRP3, ASC, and caspase-1 mRNA and protein expression in lung tissue and IL-1β and IL-18 levels in BALF were detected at 4, 8, 24, and 72 h after PQ administration in rats. Moreover, rats were pretreated with 10, 30, and 50 mg/kg NLRP3 inflammasome blocker glybenclamide, respectively, 1 h before PQ exposure. At 72 h after PQ administration, lung histopathology changes, NLRP3, ASC, and caspase-1 protein expression, as well as secretion of cytokines including IL-1β and IL-18 in BALF were investigated. The NLRP3 inflammasome including NLRP3, ASC, caspase-1 expression, and cytokines IL-1β and IL-18 levels in PQ poisoning rats were significantly higher than that in the control group. NLRP3 inflammasome blocker glybenclamide pretreatment attenuated lung edema, inhibited the NLRP3, ASC, and caspase-1 activation, and reduced IL-1β and IL-18 levels in BALF. In the in vitro experiments, IL-1β and IL-18 secreted from RAW264.7 mouse macrophages treated with paraquat were attenuated by glybenclamide. In conclusion, paraquat can induce IL-1β/IL-18 secretion via NLRP3-ASC-caspase-1 pathway, and the NLRP3 inflammasome is essential for paraquat-induced acute lung injury.
Collapse
Affiliation(s)
- Zhenning Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | | | | | | | | | | |
Collapse
|
17
|
Liu C, Liu Y, Shen Z, Miao L, Zhang K, Wang F, Li Y. Sevoflurane Preconditioning Reduces Intestinal Ischemia-Reperfusion Injury: Role of Protein Kinase C and Mitochondrial ATP-Sensitive Potassium Channel. PLoS One 2015; 10:e0141426. [PMID: 26505750 PMCID: PMC4624762 DOI: 10.1371/journal.pone.0141426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/06/2015] [Indexed: 12/21/2022] Open
Abstract
Ischemic preconditioning (IPC) has been considered to be a potential therapy to reduce ischemia-reperfusion injury (IRI) since the 1980s. Our previous study indicated that sevoflurane preconditioning (SPC) also reduced intestinal IRI in rats. However, whether the protective effect of SPC is similar to IPC and the mechanisms of SPC are unclear. Thus, we compared the efficacy of SPC and IPC against intestinal IRI and the role of protein kinase C (PKC) and mitochondrial ATP-sensitive potassium channel (mKATP) in SPC. A rat model of intestinal IRI was used in this study. The superior mesenteric artery (SMA) was clamped for 60 min followed by 120 min of reperfusion. Rats with IPC underwent three cycles of SMA occlusion for 5 min and reperfusion for 5 min before intestinal ischemia. Rats with SPC inhaled sevoflurane at 0.5 minimum alveolar concentration (MAC) for 30 min before the intestinal ischemic insult. Additionally, the PKC inhibitor Chelerythrine (CHE) or mKATP inhibitor 5-Hydroxydecanoic (5-HD) was injected intraperitoneally before sevoflurane inhalation. Both SPC and IPC ameliorated intestinal IRI-induced histopathological changes, decreased Chiu’s scores, reduced terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling (TUNEL) positive cells in the epithelium, and inhibited the expression of malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α). These protective effects of SPC were similar to those of IPC. Pretreatment with PKC or mKATP inhibitor abolished SPC—induced protective effects by increasing Chiu’s scores, down-regulated the expression of Bcl-2 and activated caspase-3. Our results suggest that pretreatment with 0.5 MAC sevoflurane is as effective as IPC against intestinal IRI. The activation of PKC and mKATP may be involved in the protective mechanisms of SPC.
Collapse
Affiliation(s)
- Chuiliang Liu
- Department of Anesthesiology, ChanCheng Center Hospital, Foshan, Guangdong, China
| | - Yanhui Liu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiwen Shen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liping Miao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kun Zhang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fei Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (YJL); (FW)
| | - Yujuan Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (YJL); (FW)
| |
Collapse
|
18
|
Simard JM, Sheth KN, Kimberly WT, Stern BJ, del Zoppo GJ, Jacobson S, Gerzanich V. Glibenclamide in cerebral ischemia and stroke. Neurocrit Care 2014; 20:319-33. [PMID: 24132564 DOI: 10.1007/s12028-013-9923-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The sulfonylurea receptor 1 (Sur1)-transient receptor potential 4 (Trpm4) channel is an important molecular element in focal cerebral ischemia. The channel is upregulated in all cells of the neurovascular unit following ischemia, and is linked to microvascular dysfunction that manifests as edema formation and secondary hemorrhage, which cause brain swelling. Activation of the channel is a major molecular mechanism of cytotoxic edema and "accidental necrotic cell death." Blockade of Sur1 using glibenclamide has been studied in different types of rat models of stroke: (i) in conventional non-lethal models (thromboembolic, 1-2 h temporary, or permanent middle cerebral artery occlusion), glibenclamide reduces brain swelling and infarct volume and improves neurological function; (ii) in lethal models of malignant cerebral edema, glibenclamide reduces edema, brain swelling, and mortality; (iii) in models with rtPA, glibenclamide reduces swelling, hemorrhagic transformation, and death. Retrospective studies of diabetic patients who present with stroke have shown that those whose diabetes is managed with a sulfonylurea drug and who are maintained on the sulfonylurea drug during hospitalization for stroke have better outcomes at discharge and are less likely to suffer hemorrhagic transformation. Here, we provide a comprehensive review of the basic science, preclinical experiments, and retrospective clinical studies on glibenclamide in focal cerebral ischemia and stroke. We also compare the preclinical work in stroke models to the updated recommendations of the Stroke Therapy Academic Industry Roundtable (STAIR). The findings reviewed here provide a strong foundation for a translational research program to study glibenclamide in patients with ischemic stroke.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA,
| | | | | | | | | | | | | |
Collapse
|
19
|
Cai J, Lu S, Yao Z, Deng YP, Zhang LD, Yu JW, Ren GF, Shen FM, Jiang GJ. Glibenclamide attenuates myocardial injury by lipopolysaccharides in streptozotocin-induced diabetic mice. Cardiovasc Diabetol 2014; 13:106. [PMID: 25077824 PMCID: PMC4147163 DOI: 10.1186/s12933-014-0106-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 01/25/2014] [Accepted: 06/22/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Sepsis is a common disease that continues to increase in incidence in the world. Diseases, such as diabetes mellitus, may make the situation worse. Diabetic patients are at increased risk for common infections. This study was designed to investigate the role of glibenclamide on myocardial injury by lipopolysaccharides (LPS) in streptozotocin induced diabetic mice (STZ-mice). METHODS LPS was used to induce endotoxemia in STZ-mice. Heart rate and mean arterial pressure were measured by MPA-HBBS. Serum epinephrine level was measured by enzyme-linked immunosorbent assays (ELISA). Myocardial injury was examined by light and transmission electron microscope and TUNEL staining. Macrophage infiltration was measured by immunohistochemistry. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) levels in myocardial tissue and serum in STZ-mice, and in conditional medium of primary cultured peritoneal macrophages were determined by ELISA. Nalp3 and Caspase-1 protein levels were measured by Western blotting analysis. RESULTS STZ administration decreased body weight and increased blood glucose in C57BL/6 mice. LPS injection caused decreases of heart rate and mean arterial pressure, and elevated serum epinephrine level in C57BL/6 mice. Compared with control mice without STZ treatment, LPS induced more severe myocardial injury and macrophage infiltration in STZ-mice, which was attenuated by pretreatment of glibenclamide. LPS stimulation enhanced the levels of IL-1β and TNF-α in both cardiac tissue and serum. Glibenclamide pretreatment significantly inhibited the serum levels of pro-inflammatory cytokines. Either high glucose or LPS increased the levels of IL-1β and TNF-α in the conditional medium of peritoneal macrophages. Glibenclamide treatment suppressed the increase of IL-1β level induced by high glucose and LPS. Furthermore, Nalp3 and Caspase-1 levels were markedly increased by high glucose plus LPS, and both proteins were significantly inhibited by glibenclamide treatment. CONCLUSIONS We conclude that glibenclamide could attenuate myocardial injury induced by LPS challenge in STZ-mice, which was possibly related to inhibiting inflammation through Nalp3 inflammasomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fu-Ming Shen
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou 311202, Zhejiang, China.
| | | |
Collapse
|
20
|
|
21
|
Shimizu S, Oikawa R, Tsounapi P, Inoue K, Shimizu T, Tanaka K, Martin DT, Honda M, Sejima T, Tomita S, Saito M. Blocking of the ATP sensitive potassium channel ameliorates the ischaemia-reperfusion injury in the rat testis. Andrology 2014; 2:458-65. [PMID: 24604784 DOI: 10.1111/j.2047-2927.2014.00199.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/21/2014] [Accepted: 02/01/2014] [Indexed: 12/17/2022]
Abstract
There is increasing evidence that the effects of administered ATP sensitive potassium (KATP ) channel openers or blockers during ischaemia are still controversial in many organs/tissues. Testicular torsion detorsion which causes ischaemia-reperfusion (IR) injury, cannot be predicted, thus an effective drug should be administered during or after the ischaemia. The aim of this study was to examine whether the administration of KATP channel openers or blockers during ischaemia ameliorates IR injury in the testis. Eight-week-old male Sprague-Dawley rats were subjected to 2 h right testicular ischaemia followed by 24 h reperfusion. The selective mitochondrial (mito) KATP channel blocker, 5-hydroxydecanoate (5-HD) (40 mg/kg), the non-selective KATP channel blocker glibenclamide (5 mg/kg), the selective mito KATP channel opener diazoxide (10 mg/kg) and the non-selective KATP channel opener cromakalim (300 μg/kg) were administered intraperitoneally 15 min prior to the ischaemia or 75 min after the induction of ischaemia. Tissue damage was evaluated by malondialdehyde concentration, myeloperoxidase activity, histological evaluation and TdT-mediated dUTP nick end labelling assay in the testis. There was a significant increase in oxidative stress, neutrophil infiltration, histological damage and apoptosis in the testicular IR model. A significant reduction in the testicular IR injury was observed with the administration of glibenclamide, but not 5-HD, diazoxide or cromakalim during ischaemia. The administration of non-selective KATP channel blocker glibenclamide ameliorated the testicular IR injury. On the other hand, the selective mito KATP channel blocker, 5-HD and KATP channel openers did not reduce the testicular IR injury. These data suggest that blocking of the membrane KATP channel may have a protective effect during the testicular ischaemia. Glibenclamide could be an effective drug to manage the post-ischaemic injury caused by the testicular torsion-detorsion.
Collapse
Affiliation(s)
- S Shimizu
- Division of Molecular Pharmacology, Tottori University School of Medicine, Yonago, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Supplemental Digital Content is available in the article. In animal models of stroke, sulfonylurea receptor 1 (Sur1), a member of the adenosine triphosphate binding cassette transporter gene family, is transcriptionally upregulated in neural and vascular cells in which it plays a leading role in edema formation and necrotic cell death. To date, expression of Sur1 in the brains of humans with cerebral infarcts has not been systematically evaluated. We examined Sur1 expression in postmortem specimens obtained from 13 patients within the first 31 days after focal infarcts, 5 patients with lacunar infarcts, and 6 normal control brains using immunohistochemistry. Elevated immunoreactivity for Sur1 was detected in all cases of focal infarcts, with 3 distinct temporal patterns of expression: 1) neurons and endothelium showed the greatest elevation during the first week, after which levels declined; 2) astrocytes and microglia/macrophages showed progressive increases during the first 31 days; and 3) neutrophils near the infarct showed prominent immunoreactivity that did not change over time. Upregulation of Sur1 was corroborated using in situ hybridization for Abcc8 mRNA. Sulfonylurea receptor 1 immunoreactivity in lacunar infarcts was less prominent and more sporadic than in nonlacunar infarcts. In conjunction with previous studies, these data suggest that Sur1 may be a promising treatment target in patients with acute cerebral infarction.
Collapse
|
23
|
Glyburide reduces bacterial dissemination in a mouse model of melioidosis. PLoS Negl Trop Dis 2013; 7:e2500. [PMID: 24147174 PMCID: PMC3798430 DOI: 10.1371/journal.pntd.0002500] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/09/2013] [Indexed: 12/27/2022] Open
Abstract
Background Burkholderia pseudomallei infection (melioidosis) is an important cause of community-acquired Gram-negative sepsis in Northeast Thailand, where it is associated with a ∼40% mortality rate despite antimicrobial chemotherapy. We showed in a previous cohort study that patients taking glyburide ( = glibenclamide) prior to admission have lower mortality and attenuated inflammatory responses compared to patients not taking glyburide. We sought to define the mechanism underlying this observation in a murine model of melioidosis. Methods Mice (C57BL/6) with streptozocin-induced diabetes were inoculated with ∼6×102 cfu B. pseudomallei intranasally, then treated with therapeutic ceftazidime (600 mg/kg intraperitoneally twice daily starting 24 h after inoculation) in order to mimic the clinical scenario. Glyburide (50 mg/kg) or vehicle was started 7 d before inoculation and continued until sacrifice. The minimum inhibitory concentration of glyburide for B. pseudomallei was determined by broth microdilution. We also examined the effect of glyburide on interleukin (IL) 1β by bone-marrow-derived macrophages (BMDM). Results Diabetic mice had increased susceptibility to melioidosis, with increased bacterial dissemination but no effect was seen of diabetes on inflammation compared to non-diabetic controls. Glyburide treatment did not affect glucose levels but was associated with reduced pulmonary cellular influx, reduced bacterial dissemination to both liver and spleen and reduced IL1β production when compared to untreated controls. Other cytokines were not different in glyburide-treated animals. There was no direct effect of glyburide on B. pseudomallei growth in vitro or in vivo. Glyburide directly reduced the secretion of IL1β by BMDMs in a dose-dependent fashion. Conclusions Diabetes increases the susceptibility to melioidosis. We further show, for the first time in any model of sepsis, that glyburide acts as an anti-inflammatory agent by reducing IL1β secretion accompanied by diminished cellular influx and reduced bacterial dissemination to distant organs. We found no evidence for a direct effect of glyburide on the bacterium. Burkholderia pseudomallei infection (also called melioidosis) is a common cause of bacterial infection in Northeast Thailand, where the mortality rate is 43% despite appropriate antibiotic treatment. We showed previously that patients taking glyburide ( = glibenclamide) prior to admission have lower mortality rates and lower levels of inflammation in the blood. In this study, we used a mouse model to better understand the mechanism underlying this observation. In this study, we used a mouse model of diabetes and infected the mice with B. pseudomallei. Half the mice were treated with glyburide and half were not. We also performed in vitro experiments to find the minimum concentration of glyburide that would inhibit the growth of B. pseudomallei. We found that glyburide treatment was associated with reduced inflammation (as measured by the flow of cells into the lungs and by interleukin-1β production) and reduced spread of the bacterium to liver and spleen when compared to untreated controls. There was no direct effect of glyburide on B. pseudomallei growth in vitro or in vivo. Because the effect of glyburide is on the host and not on the bacterium, it is possible that this effect will be seen in other causes of sepsis, not just melioidosis.
Collapse
|
24
|
Redondo-Castro E, Hernández J, Mahy N, Navarro X. Phagocytic microglial phenotype induced by glibenclamide improves functional recovery but worsens hyperalgesia after spinal cord injury in adult rats. Eur J Neurosci 2013; 38:3786-98. [PMID: 24112298 DOI: 10.1111/ejn.12382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/30/2013] [Accepted: 09/05/2013] [Indexed: 11/30/2022]
Abstract
Microglial cell plays a crucial role in the development and establishment of chronic neuropathic pain after spinal cord injuries. As neuropathic pain is refractory to many treatments and some drugs only present partial efficacy, it is essential to study new targets and mechanisms to ameliorate pain signs. For this reason we have used glibenclamide (GB), a blocker of KATP channels that are over expressed in microglia under activation conditions. GB has already been used to trigger the early scavenger activity of microglia, so we administer it to promote a better removal of dead cells and myelin debris and support the microglia neuroprotective phenotype. Our results indicate that a single dose of GB (1 μg) injected after spinal cord injury is sufficient to promote long-lasting functional improvements in locomotion and coordination. Nevertheless, the Randall-Selitto test measurements indicate that these improvements are accompanied by enhanced mechanical hyperalgesia. In vitro results indicate that GB may influence microglial phagocytosis and therefore this action may be at the basis of the results obtained in vivo.
Collapse
Affiliation(s)
- Elena Redondo-Castro
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), E-08193, Bellaterra, Spain
| | | | | | | |
Collapse
|
25
|
dos Santos RMS, Oliveira SM, Silva CR, Hoffmeister C, Ferreira J, Assreuy J. Anti-nociceptive and anti-edematogenic effects of glibenclamide in a model of acute gouty attack in rats. Inflamm Res 2013; 62:617-25. [PMID: 23543229 DOI: 10.1007/s00011-013-0615-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 01/14/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE AND DESIGN We investigated the effect of glibenclamide on inflammatory parameters in a model of acute gouty attack in rats. TREATMENT Intra-articular injection of 50 μl of monosodium urate (MSU) crystals (1.25 mg/site) was used to induce gout-related inflammation. The effects of glibenclamide (1-10 mg/kg, s.c.) or dexamethasone (8 mg/kg, s.c., positive control) were assessed on several inflammation parameters. METHODS Spontaneous nociception assessment, edema measurement, total and differential leucocyte counts, interleukin (IL)-1β release, prostaglandin E2 production and determination of blood glucose levels were analyzed. Peritoneal macrophages were incubated with MSU and levels of IL-1β were measured. Statistical significance was assessed by one- or two-way analysis of variance. RESULTS Glibenclamide (3 mg/kg) or dexamethasone (8 mg/kg) prevented nociception and edema induced by MSU injection in rats. Glibenclamide did not affect leukocyte infiltration, IL-1β release and PGE2 production, but only reduced IL-1β production by MSU-stimulated macrophages at very high concentration (200 μM). Dexamethasone significantly reduced leukocyte infiltration, IL-1β release and PGE2 production. Glibenclamide reduced whereas dexamethasone increased blood glucose levels of MSU-injected rats. CONCLUSIONS Glibenclamide reduced nociception and edema, but not leukocyte infiltration, IL-1β release and PGE2 production. However, its substantial effect on nociception and edema suggests that glibenclamide can be an interesting option as an adjuvant treatment for pain induced by acute attacks of gout.
Collapse
Affiliation(s)
- Rosane M S dos Santos
- Laboratório de Neurotoxicidade e Psicofarmacologia, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Kim YS, Kang E, Makino Y, Park S, Shin JH, Song H, Launay P, Linden DJ. Characterizing the conductance underlying depolarization-induced slow current in cerebellar Purkinje cells. J Neurophysiol 2012. [PMID: 23197456 DOI: 10.1152/jn.01168.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Brief strong depolarization of cerebellar Purkinje cells produces a slow inward cation current [depolarization-induced slow current (DISC)]. Previous work has shown that DISC is triggered by voltage-sensitive Ca influx in the Purkinje cell and is attenuated by blockers of vesicular loading and fusion. Here, we have sought to characterize the ion channel(s) underlying the DISC conductance. While the brief depolarizing steps that triggered DISC were associated with a large Ca transient, the onset of DISC current corresponded only with the Ca transient decay phase. Furthermore, substitution of external Na with the impermeant cation N-methyl-d-glucamine produced a complete and reversible block of DISC, suggesting that the DISC conductance was not Ca permeant. Transient receptor potential cation channel, subfamily M, members 4 (TRPM4) and 5 (TRPM5) are nonselective cation channels that are opened by Ca transients but do not flux Ca. They are expressed in Purkinje cells of the posterior cerebellum, where DISC is large, and, in these cells, DISC is strongly attenuated by nonselective blockers of TRPM4/5. However, measurement of DISC currents in Purkinje cells derived from TRPM4 null, TRPM5 null, and double null mice as well as wild-type mice with TRPM4 short hairpin RNA knockdown showed a partial attenuation with 35-46% of current remaining. Thus, while the DISC conductance is Ca triggered, Na permeant, and Ca impermeant, suggesting a role for TRPM4 and TRPM5, these ion channels are not absolutely required for DISC.
Collapse
Affiliation(s)
- Yu Shin Kim
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Glibenclamide Administration Attenuates Infarct Volume, Hemispheric Swelling, and Functional Impairments following Permanent Focal Cerebral Ischemia in Rats. Stroke Res Treat 2012; 2012:460909. [PMID: 22988544 PMCID: PMC3440943 DOI: 10.1155/2012/460909] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/22/2022] Open
Abstract
Studies from a single laboratory have shown that in rodent models of permanent stroke, administration of the sulfonylurea glibenclamide (Glib) is highly effective in reducing edema, mortality, and lesion volume. The Stroke Therapy Academic Industry Roundtable (STAIR) recommends that new acute treatments for ischemic stroke to be replicated across different laboratories. Accordingly, we examined the effect of low-dose Glib in a permanent suture occlusion model of stroke. Male Sprague-Dawley rats underwent permanent middle cerebral artery occlusion (pMCAO) followed by an initial intraperitoneal injection of Glib (10 μg/kg) and the start of a constant infusion (200 ng/h) via miniosmotic pump at the onset of ischemia. Functional deficits were assessed by Neurological Severity Score (NSS) and grip-strength meter at 24 and 48 h after pMCAO. Glib-treated rats showed a significant reduction in infarct volume, lower NSS, and less hemispheric swelling compared to vehicle. Grip strength was decreased significantly in pMCAO rats compared to shams and significantly improved by treatment with Glib. Taken together, these data indicate that Glib has strong neuroprotective effects following ischemic stroke and may warrant further testing in future clinical trials for human stroke.
Collapse
|
28
|
Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab 2012; 32:1699-717. [PMID: 22714048 PMCID: PMC3434627 DOI: 10.1038/jcbfm.2012.91] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/03/2012] [Accepted: 05/09/2012] [Indexed: 01/13/2023]
Abstract
The sulfonylurea receptor 1 (Sur1)-regulated NC(Ca-ATP) channel is a nonselective cation channel that is regulated by intracellular calcium and adenosine triphosphate. The channel is not constitutively expressed, but is transcriptionally upregulated de novo in all cells of the neurovascular unit, in many forms of central nervous system (CNS) injury, including cerebral ischemia, traumatic brain injury (TBI), spinal cord injury (SCI), and subarachnoid hemorrhage (SAH). The channel is linked to microvascular dysfunction that manifests as edema formation and delayed secondary hemorrhage. Also implicated in oncotic cell swelling and oncotic (necrotic) cell death, the channel is a major molecular mechanism of 'accidental necrotic cell death' in the CNS. In animal models of SCI, pharmacological inhibition of Sur1 by glibenclamide, as well as gene suppression of Abcc8, prevents delayed capillary fragmentation and tissue necrosis. In models of stroke and TBI, glibenclamide ameliorates edema, secondary hemorrhage, and tissue damage. In a model of SAH, glibenclamide attenuates the inflammatory response due to extravasated blood. Clinical trials of an intravenous formulation of glibenclamide in TBI and stroke underscore the importance of recent advances in understanding the role of the Sur1-regulated NC(Ca-ATP) channel in acute ischemic, traumatic, and inflammatory injury to the CNS.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201-1595, USA.
| | | | | | | |
Collapse
|
29
|
Glibenclamide ameliorates ischemia-reperfusion injury via modulating oxidative stress and inflammatory mediators in the rat hippocampus. Brain Res 2011; 1385:257-62. [PMID: 21316351 DOI: 10.1016/j.brainres.2011.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 12/24/2022]
Abstract
Stroke remains a debilitating disease with high incidence of morbidity and mortality, where many reports provide promising venues for prevention/treatment of such ailment. Glibenclamide, a selective blocker of KATP channels, was reported to protect against ischemia and ischemia-reperfusion (IR) injury in several experimental models. Hence, the present study aimed to investigate the possible involvement of free radicals as well as inflammatory and anti-inflammatory mediators in the hippocampus of rats exposed to IR. To this end, male Wistar rats were divided into 3 groups: group I served as sham operated controls; group II was subjected to 15 min ischemia by occlusion of both common carotid arteries, followed by 60 min reperfusion; group III was injected with glibenclamide (1mg/kg, i.p.) 10 min before ischemic-reperfusion injury. IR increased lipid peroxides, myeloperoxidase activity, TNF-α and PGE(2), while decreasing glutathione, total antioxidant capacity, nitric oxide and IL-10 levels in the hippocampus. Glibenclamide reversed all the former alterations, thus highlighting a potential therapeutic utility for this sulphonyl urea in IR brain injury via modulating oxidative stress and inflammatory mediators.
Collapse
|
30
|
Koh GCKW, Maude RR, Schreiber MF, Limmathurotsakul D, Wiersinga WJ, Wuthiekanun V, Lee SJ, Mahavanakul W, Chaowagul W, Chierakul W, White NJ, van der Poll T, Day NPJ, Dougan G, Peacock SJ. Glyburide is anti-inflammatory and associated with reduced mortality in melioidosis. Clin Infect Dis 2011; 52:717-25. [PMID: 21293047 PMCID: PMC3049341 DOI: 10.1093/cid/ciq192] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Patients with diabetes have better survival from septic melioidosis than patients who without diabetes. This difference was seen only in patients taking glyburide prior to presentation and was associated with an anti-inflammatory effect of glyburide. Background. Patients with diabetes mellitus are more prone to bacterial sepsis, but there are conflicting data on whether outcomes are worse in diabetics after presentation with sepsis. Glyburide is an oral hypoglycemic agent used to treat diabetes mellitus. This KATP-channel blocker and broad-spectrum ATP-binding cassette (ABC) transporter inhibitor has broad-ranging effects on the immune system, including inhibition of inflammasome assembly and would be predicted to influence the host response to infection. Methods. We studied a cohort of 1160 patients with gram-negative sepsis caused by a single pathogen (Burkholderia pseudomallei), 410 (35%) of whom were known to have diabetes. We subsequently studied prospectively diabetics with B. pseudomallei infection (n = 20) to compare the gene expression profile of peripheral whole blood leukocytes in patients who were taking glyburide against those not taking any sulfonylurea. Results. Survival was greater in diabetics than in nondiabetics (38% vs 45%, respectively, P = .04), but the survival benefit was confined to the patient group taking glyburide (adjusted odds ratio .47, 95% confidence interval .28–.74, P = .005). We identified differential expression of 63 immune-related genes (P = .001) in patients taking glyburide, the sum effect of which we predict to be antiinflammatory in the glyburide group. Conclusions. We present observational evidence for a glyburide-associated benefit during human melioidosis and correlate this with an anti-inflammatory effect of glyburide on the immune system.
Collapse
Affiliation(s)
- Gavin C K W Koh
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sato Y, Itagaki S, Oikawa S, Ogura J, Kobayashi M, Hirano T, Sugawara M, Iseki K. Protective Effect of Soy Isoflavone Genistein on Ischemia-Reperfusion in the Rat Small Intestine. Biol Pharm Bull 2011; 34:1448-54. [DOI: 10.1248/bpb.34.1448] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuki Sato
- Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Shirou Itagaki
- Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Setsu Oikawa
- Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Jiro Ogura
- Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Masaki Kobayashi
- Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Takeshi Hirano
- Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Mitsuru Sugawara
- Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Ken Iseki
- Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
32
|
Intestinal ischemia/reperfusion: microcirculatory pathology and functional consequences. Langenbecks Arch Surg 2010; 396:13-29. [PMID: 21088974 DOI: 10.1007/s00423-010-0727-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/03/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intestinal ischemia and reperfusion (I/R) is a challenging and life-threatening clinical problem with diverse causes. The delay in diagnosis and treatment contributes to the continued high in-hospital mortality rate. RESULTS Experimental research during the last decades could demonstrate that microcirculatory dysfunctions are determinants for the manifestation and propagation of intestinal I/R injury. Key features are nutritive perfusion failure, inflammatory cell response, mediator surge and breakdown of the epithelial barrier function with bacterial translocation, and development of a systemic inflammatory response. This review provides novel insight into the basic mechanisms of damaged intestinal microcirculation and covers therapeutic targets to attenuate intestinal I/R injury. CONCLUSION The opportunity now exists to apply this insight into the translation of experimental data to clinical trial-based research. Understanding the basic events triggered by intestinal I/R may offer new diagnostic and therapeutic options in order to achieve improved outcome of patients with intestinal I/R injury.
Collapse
|
33
|
Protective effects of quercetin-3-rhamnoglucoside (rutin) on ischemia-reperfusion injury in rat small intestine. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.04.103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Abstract
Transcripts of more than 30 different K(+) channels have been detected in the respiratory epithelium lining airways and alveoli. These channels belong to the 3 main classes of K(+) channels, i.e. i) voltage-dependent or calcium-activated, 6 transmembrane segments (TM), ii) 2-pores 4-TM and iii) inward-rectified 2-TM channels. The physiological and functional significance of this high molecular diversity of lung epithelial K(+) channels is not well understood. Surprisingly, relatively few studies are focused on K(+) channel function in lung epithelial physiology. Nevertheless, several studies have shown that KvLQT1, KCa and K(ATP) K(+) channels play a crucial role in ion and fluid transport, contributing to the control of airway and alveolar surface liquid composition and volume. K(+) channels are involved in other key functions, such as O(2) sensing or the capacity of the respiratory epithelia to repair after injury. This mini-review aims to discuss potential functions of lung K(+) channels.
Collapse
Affiliation(s)
- Olivier Bardou
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Hôtel-Dieu, 3840, St-Urbain, Montréal, Québec, H2W 1T8 Canada
| | | | | |
Collapse
|
35
|
Liu KX, Chen SQ, Zhang H, Guo JY, Li YS, Huang WQ. Intestinal ischaemia/reperfusion upregulates beta-defensin-2 expression and causes acute lung injury in the rat. Injury 2009; 40:950-5. [PMID: 19486970 DOI: 10.1016/j.injury.2009.01.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/12/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Human beta-defensin-2 (BD-2) is a positive ion antimicrobial peptide. We investigated the effects of intestinal ischaemia/reperfusion (II/R) on rat BD-2 mRNA and protein expressions in rat lung to address the potential role of BD-2 in acute lung injury (ALI) induced by II/R. METHODS Rats were randomly divided into two groups (n=36 each). (i) Sham control and (ii) II/R group (1h superior mesenteric artery clamping, followed by reperfusion of different durations). In II/R group, 6 animals were sacrificed at 0min, 15min, 30min, 60min, 3h and 6h after reperfusion, and serum, lung tissue and bronchoalveolar lavage fluid were harvested. Samples were taken at the corresponding time points in the sham group. Lung histological changes were observed under microscope and the pulmonary permeability index (PPI) was calculated. The lung tissue levels of TNFalpha were detected by ELISA. BD-2 mRNA and protein expressions were examined by RT-PCR and western blotting techniques, respectively. RESULTS ALI induced by II/R was confirmed by pathological examination and significantly increased PPI (P<0.05 or 0.01). II/R significantly increased the lung TNFalpha levels and upregulated the expressions of BD-2 mRNA and protein expressions (P<0.05 or 0.01). BD-2 mRNA expression was significantly positively correlated to the lung TNFalpha level (r=0.823, P<0.01) and negatively correlated to PPI (r=-0.615, P<0.05). CONCLUSION II/R can upregulate BD-2 mRNA and protein expressions in rat lung. BD-2 could be an innate protective factor against II/R-induced lung injury.
Collapse
Affiliation(s)
- Ke-Xuan Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
36
|
Figura M, Chilton L, Liacini A, Viskovic MM, Phan V, Knight D, Millar TM, Patel K, Kubes P, Giles WR, Tibbles LA. Blockade of K(ATP) channels reduces endothelial hyperpolarization and leukocyte recruitment upon reperfusion after hypoxia. Am J Transplant 2009; 9:687-96. [PMID: 19292831 DOI: 10.1111/j.1600-6143.2009.02553.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ischemia/reperfusion injury in renal transplantation leads to slow or initial nonfunction, and predisposes to acute and chronic rejection. In fact, severe ischemia reperfusion injury can significantly reduce graft survival, even with modern immunosuppressive agents. One of the mechanisms by which ischemia/reperfusion causes injury is activation of endothelial cells resulting in inflammation. Although several therapies can be used to prevent leukocyte recruitment to ischemic vessels (e.g. antiadhesion molecule antibodies), there have been no clinical treatments reported that can prevent initial immediate neutrophil recruitment upon reperfusion. Using intravital microscopy, we describe abrogation of immediate neutrophil recruitment to ischemic microvessels by the K(ATP) antagonist glibenclamide (Glyburide). Further, we show that glibenclamide can reduce leukocyte recruitment in vitro under physiologic flow conditions. ATP-regulated potassium channels (K(ATP)) are important in the control of cell membrane polarization. Here we describe profound hyperpolarization of endothelial cells during hypoxia, and the reduction of this hyperpolarization using glibenclamide. These findings suggest that control of endothelial membrane potential during ischemia may be an important therapeutic tool in avoiding ischemia/reperfusion injury, and therefore, enhancing transplant long-term function.
Collapse
Affiliation(s)
- M Figura
- Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
AbstractInflammatory bowel disease (IBD) is a chronic inflammatory condition with an unknown etiology. Nicorandil, a potassium channel opener, has been used for many years for the treatment of angina. Recently, it has been shown that nicorandil possesses some novel traits such as anti-apoptotic, gastroprotective, free radical scavenging, and anti-inflammatory properties. Therefore, we set out to examine the possible beneficial effect of nicorandil in a rat model of IBD. Colitis was induced by rectal administration of 2,4,6-trintrobenzene sulphonic acid (TNBS) into rats. Groups of animals used in this study were sham, control, and exposure to dexamethasone, nicorandil, glibenclamid (a pure adenosine triphosphate sensitive potassium channel (KATP) blocker), or nicorandil plus glibenclamid. Drugs were administered by gavage and animals were sacrificed after 7 days. Biochemical markers, including TNF-α and IL-1β, ferric reducing/antioxidant power (FRAP), myeloperoxidase (MPO) activity and thiobarbitoric acid-reactive substance (TBARS), were measured in the homogenate of colonic tissue. Results indicate that nicorandil significantly reduces macroscopic and histological damage induced by TNBS. Nicorandil diminishes MPO activity and levels of TBARS, TNF-∢, and IL-1β in damaged colonic tissue with a concomitant increase in FRAP value (P<0.01). These effects were not reversed by coadministration of glibenclamide. In conclusion, nicorandil is able to ameliorate experimental IBD with a dose in which it does not show any anti-hypertensive effect, and the mechanism of which is partially or totally independent from KATP channels. It is hypothesized that nitric oxide donation and free-radical scavenging properties of nicorandil upregulate endothelial nitric oxide synthase may be responsible for this phenomenon. These findings suggest that nicorandil can be useful in treatment of IBD, although further investigations are needed to elucidate the mechanisms involved.
Collapse
|
38
|
Bardou O, Trinh NTN, Brochiero E. Molecular diversity and function of K+ channels in airway and alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2008; 296:L145-55. [PMID: 19060226 DOI: 10.1152/ajplung.90525.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multiple K(+) channels are expressed in the respiratory epithelium lining airways and alveoli. Of the three main classes [1) voltage-dependent or Ca(2+)-activated, 6-transmembrane domains (TMD), 2) 2-pores 4-TMD, and 3) inward-rectified 2-TMD K(+) channels], almost 40 different transcripts have already been detected in the lung. The physiological and functional significance of this high molecular diversity of lung epithelial K(+) channels is intriguing. As detailed in the present review, K(+) channels are located at both the apical and basolateral membranes in the respiratory epithelium, where they mediate K(+) currents of diverse electrophysiological and regulatory properties. The main recognized function of K(+) channels is to control membrane potential and to maintain the driving force for transepithelial ion and liquid transport. In this manner, KvLQT1, KCa and K(ATP) channels, for example, contribute to the control of airway and alveolar surface liquid composition and volume. Thus, K(+) channel activation has been identified as a potential therapeutic strategy for the resolution of pathologies characterized by ion transport dysfunction. K(+) channels are also involved in other key functions in lung physiology, such as oxygen-sensing, inflammatory responses and respiratory epithelia repair after injury. The purpose of this review is to summarize and discuss what is presently known about the molecular identity of lung K(+) channels with emphasis on their role in lung epithelial physiology.
Collapse
Affiliation(s)
- Olivier Bardou
- Centre de recherche du CHUM, Hôtel-Dieu, 3840, Saint-Urbain, Montréal, Québec H2W 1T8, Canada
| | | | | |
Collapse
|
39
|
Coelho FR, Cavriani G, Soares AL, Teixeira SA, Almeida PCL, Sudo-Hayashi LS, Muscará MN, Oliveira-Filho RM, Vargaftig BB, Tavares-de-Lima W. Lymphatic-borne IL-1beta and the inducible isoform of nitric oxide synthase trigger the bronchial hyporesponsiveness after intestinal ischema/reperfusion in rats. Shock 2008; 28:694-9. [PMID: 17607157 DOI: 10.1097/shk.0b013e318053621d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intestinal I/R (i-I/R) is an insult associated to further adult respiratory distress syndrome and multiple organ failure. This study was designed to evaluate the repercussions of i-I/R on bronchial reactivity to the cholinergic agent methacholine. Anesthetized rats were subjected to superior mesenteric artery occlusion (45 min) and killed after clamp release and defined intestinal reperfusion periods (30 min, 2, 4, or 24 h). Intestinal I/R caused a progressive bronchial hyporesponsiveness (BHR) that was maximal upon 2 h but reverted within 24 h of intestinal reperfusion. The BHR observed at 2-h i-I/R was prevented by NOS inhibitors (N-L-nitroarginine methyl ester and aminoguanidine) or the KATP channel blocker glibenclamide. Moreover, 2-h i-I/R increased the pulmonary iNOS mRNA expression, a fact prevented by lymphatic thoracic duct ligation. The methacholine reactivity of 2-h i-I/R bronchial segments incubated with NOS inhibitors or glibenclamide was similar to that of naive tissues. In vivo blockade of IL-1beta receptors or lymphatic duct ligation before 2-h i-I/R both abolished BHR. Incubation of naive bronchial segments with lymph collected from 2-h i-I/R rats determined BHR, an effect fully preventable by ex vivo blockade of IL-1beta receptors. Incubation of naive bronchial segments with IL-1beta, but not with IL-10 or TNF-alpha, significantly induced BHR that was prevented by N-L-nitroarginine methyl ester. Our data suggest that a gut ischemic insult generates IL-1beta that, upon reperfusion, travels through the lymph into the lungs. In this tissue, IL-1beta would stimulate the generation of NO that orchestrates the ensuing BHR for which the opening of KATP channels seems to play a pivotal role.
Collapse
Affiliation(s)
- Fernando Rodrigues Coelho
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Effects of the TREM-1 pathway modulation during mesenteric ischemia-reperfusion in rats. Crit Care Med 2008; 36:504-10. [DOI: 10.1097/01.ccm.0b013e318161faf3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
An S, Hishikawa Y, Liu J, Koji T. Lung injury after ischemia-reperfusion of small intestine in rats involves apoptosis of type II alveolar epithelial cells mediated by TNF-alpha and activation of Bid pathway. Apoptosis 2007; 12:1989-2001. [PMID: 17786556 DOI: 10.1007/s10495-007-0125-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although ischemia-reperfusion (I/R) of small intestine is known to induce lung cell apoptosis, there is little information on intracellular and extracellular molecular mechanisms. Here, we investigated the mechanisms of apoptosis including the expression of Fas, Fas ligand (FasL), Bid, Bax, Bcl-2, cytochrome c, and activated caspase-3 in the rat lung at various time-points (0-24 h) of reperfusion after 1-h ischemia of small intestine. As assessed by TUNEL, the number of apoptotic epithelial cells, which were subsequently identified as type II alveolar epithelial cells by electron microscopy and immunohistochemical double-staining, increased at 3 h of reperfusion in the lung. However, intravenous injections of anti-TNF-alpha antibody decreased the number of TUNEL-positive cells, indicating involvement of tumor necrosis factor-alpha (TNF-alpha) in the induction of lung cell apoptosis. Western blotting and/or immunohistochemistry revealed a marked up-regulation of Fas, FasL, Bid, Bax, cytochrome c and activated caspase-3 and down-regulation of Bcl-2 in lung epithelial and stromal cells at 3 h of reperfusion. Our results indicate that I/R of small intestine results in apoptosis of rat alveolar type II cells through a series of events including systemic TNF-alpha, activation of two apoptotic signaling pathways and mitochondrial translocation of Bid.
Collapse
Affiliation(s)
- Shucai An
- Department of Histology and Cell Biology, Unit of Basic Medical Science, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | | | | | | |
Collapse
|