1
|
Gędek A, Modrzejewski S, Materna M, Szular Z, Wichniak A, Mierzejewski P, Dominiak M. Efficacy and Safety of Agomelatine in Depressed Patients with Diabetes: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:12631. [PMID: 39684343 DOI: 10.3390/ijms252312631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Major depressive disorder (MDD) and diabetes mellitus (DM) remain among the most prevalent diseases and the most significant challenges faced by medicine in the 21st century. The frequent co-occurrence and bidirectional relationship between the two conditions necessitates the identification of treatment strategies that benefit both. The purpose of this study was to systematically review and meta-analyze data on the efficacy and safety of agomelatine (AGO) in the treatment of patients with depression with comorbid diabetes to explore its potential mechanism of action in both diseases and its impact on diabetic parameters. Following PRISMA guidelines, a total of 11 studies were identified, both preclinical and clinical trials. Agomelatine has shown great potential as a treatment option for patients with diabetes and comorbid depression and anxiety. In addition to improving depressive and anxiety symptoms, it is also beneficial in glycemic control. A meta-analysis demonstrated a statistically significant reduction in glycated hemoglobin (HbA1C) and fasting blood glucose (FBG) levels following AGO administration over a period of 8-16 weeks. The administration of agomelatine was found to result in a significantly greater reduction in HbA1C than that observed with the selective serotonin reuptake inhibitor (SSRI) medications (namely fluoxetine, sertraline, and paroxetine) during 12-16 weeks of therapy. Furthermore, AGO has been found to be at least as effective as SSRIs in reducing depressive symptoms and more effective than SSRIs in reducing anxiety symptoms. The safety of such treatment is similar to SSRIs; no severe adverse events were reported, and the incidence of some side effects, such as insomnia and sexual dysfunction, are even less often reported. Particularly promising is also its potential action in improving some diabetic complications reported in preclinical trials. This might be through mechanisms involving the reduction in oxidative stress, anti-inflammatory effects, and potentially noradrenergic or NMDA receptor modulation. Further clinical studies on larger sample sizes, as well as elucidating its mechanisms of action, especially in the context of diabetic complications, are needed. Research should also focus on identifying the patient subpopulations most likely to benefit from agomelatine treatment.
Collapse
Affiliation(s)
- Adam Gędek
- Department of Pharmacology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
- Third Department of Psychiatry, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | | | | - Zofia Szular
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Adam Wichniak
- Third Department of Psychiatry, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Paweł Mierzejewski
- Department of Pharmacology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Monika Dominiak
- Department of Pharmacology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| |
Collapse
|
2
|
Huang Y, Chen H, Chen SR, Pan HL. Duloxetine and Amitriptyline Reduce Neuropathic Pain by Inhibiting Primary Sensory Input to Spinal Dorsal Horn Neurons via α1- and α2-Adrenergic Receptors. ACS Chem Neurosci 2023; 14:1261-1277. [PMID: 36930958 DOI: 10.1021/acschemneuro.2c00780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Antidepressants, such as duloxetine and amitriptyline, are effective for treating patients with chronic neuropathic pain. Inhibiting norepinephrine and serotonin transporters at presynaptic terminals raises extracellular concentrations of norepinephrine. The α1- and α2-adrenergic receptor agonists inhibit glutamatergic input from primary afferent nerves to the spinal dorsal horn. However, the contribution of spinal α1- and α2-adrenergic receptors to the analgesic effect of antidepressants and associated synaptic plasticity remains uncertain. In this study, we showed that systemic administration of duloxetine or amitriptyline acutely reduced tactile allodynia and mechanical and thermal hyperalgesia caused by spinal nerve ligation in rats. In contrast, duloxetine or amitriptyline had no effect on nociception in sham rats. Blocking α1-adrenergic receptors with WB-4101 or α2-adrenergic receptors with yohimbine at the spinal level diminished the analgesic effect of systemically administered duloxetine and amitriptyline. Furthermore, intrathecal injection of duloxetine or amitriptyline similarly attenuated pain hypersensitivity in nerve-injured rats; the analgesic effect was abolished by intrathecal pretreatment with both WB-4101 and yohimbine. In addition, whole-cell patch-clamp recordings in spinal cord slices showed that duloxetine or amitriptyline rapidly inhibited dorsal root-evoked excitatory postsynaptic currents in dorsal horn neurons in nerve-injured rats but had no such effect in sham rats. The inhibitory effect of duloxetine and amitriptyline was abolished by the WB-4101 and yohimbine combination. Therefore, antidepressants attenuate neuropathic pain predominantly by inhibiting primary afferent input to the spinal cord via activating both α1- and α2-adrenergic receptors. This information helps the design of new strategies to improve the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
3
|
Tao ZY, Qiu XY, Wei SQ, Bai G, Li JF, Cao DY. SAHA Inhibits Somatic Hyperalgesia Induced by Stress Combined with Orofacial Inflammation Through Targeting Different Spinal 5-HT Receptor Subtypes. Neurochem Res 2022; 47:1405-1418. [PMID: 35092569 DOI: 10.1007/s11064-022-03540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 11/24/2022]
Abstract
Epigenetic regulation of gene expression has been implicated in the development of chronic pain. However, little is known about whether this regulation is involved in the development and treatment of chronic pain comorbidities such as fibromyalgia syndrome (FMS) and temporomandibular disorder (TMD), a comorbidity predominantly occurring among women. Here we explored the impact of the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) on somatic hyperalgesia induced by stress or stress combined with orofacial inflammation, which mimicked the comorbidity of FMS and TMD in rats. Our data showed that somatic thermal hyperalgesia and mechanical allodynia induced by both conditions were completely prevented by intrathecal injection of SAHA, which upregulated 5-HT2C receptors but downregulated 5-HT3 receptors in the spinal dorsal horn. Subsequent spinal administration of RS102221 to inhibit 5-HT2C receptors or SR57227 to activate 5-HT3 receptors reversed the analgesic effect of SAHA under both conditions. These results indicate that SAHA attenuates the pro-nociceptive effects of stress combined with orofacial inflammation and the effects of stress alone. This likely occurs through epigenetic regulation of spinal 5-HT2C and 5-HT3 receptor expression, suggesting that SAHA has potential therapeutic value in FMS or comorbid FMS-TMD patients with somatic hyperalgesia.
Collapse
Affiliation(s)
- Zhuo-Ying Tao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, 710004, Shaanxi, China.,Department of Cleft Palate-Craniofacial Surgery, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, 710004, Shaanxi, China
| | - Xin-Yi Qiu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, 710004, Shaanxi, China
| | - Si-Qi Wei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, 710004, Shaanxi, China
| | - Guang Bai
- Department of Neural and Pain Sciences, UM Center to Advance Chronic Pain Research, University of Maryland School of Dentistry, 650 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Jin-Feng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, 710004, Shaanxi, China. .,Department of Cleft Palate-Craniofacial Surgery, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, 710004, Shaanxi, China.
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, 710004, Shaanxi, China. .,Department of Neural and Pain Sciences, UM Center to Advance Chronic Pain Research, University of Maryland School of Dentistry, 650 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Xue Y, Wei SQ, Wang PX, Wang WY, Liu EQ, Traub RJ, Cao DY. Down-regulation of Spinal 5-HT 2A and 5-HT 2C Receptors Contributes to Somatic Hyperalgesia induced by Orofacial Inflammation Combined with Stress. Neuroscience 2020; 440:196-209. [PMID: 32497757 DOI: 10.1016/j.neuroscience.2020.05.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/04/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022]
Abstract
Patients suffering with functional somatic pain syndromes such as temporomandibular disorders (TMD) and fibromyalgia syndrome (FMS) have some similar symptoms, but the underlying cause is still unclear. The purpose of this study was to investigate whether 5-HT2A and 5-HT2C receptors in the spinal cord contribute to somatic hyperalgesia induced by orofacial inflammation combined with different modes of stress. Ovariectomized rats were injected subcutaneously with estradiol and bilateral masseter muscles were injected with complete Freund's adjuvant followed by stress. Somatic sensitivity was assessed with thermal and mechanical stimulation. The anxiety- and depression-like behaviors were measured by immobility time, sucrose preference, elevated plus maze and open field tests. The expression of 5-HT2A and 5-HT2C receptors in the spinal cord was examined by Western blot. Orofacial inflammation combined with 11 day forced swim stress (FSS) induced persistent mechanical allodynia for 15 days and thermal hyperalgesia for 2 days. The mechanical and thermal hyperalgesia lasted for 43 days and 30 days respectively following orofacial inflammation combined with 11 day heterotypic stress. Orofacial inflammation combined with stress induced anxiety- and depression-like behaviors. The expression of 5-HT2A and 5-HT2C receptors significantly decreased in the orofacial inflammation combined with stress groups. Intrathecal injection of 5-HT2A or 5-HT2C receptor agonist reversed somatic hyperalgesia. The results suggest that down-regulation of 5-HT2A and 5-HT2C receptors in the spinal cord contributes to somatic hyperalgesia induced by orofacial inflammation combined with stress, indicating that 5-HT2A and 5-HT2C receptors may be potential targets in the treatment of TMD comorbid with FMS.
Collapse
Affiliation(s)
- Yang Xue
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China
| | - Si-Qi Wei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China
| | - Pei-Xing Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China
| | - Wu-Yin Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China
| | - En-Qi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | - Richard J Traub
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, UM Center to Advance Chronic Pain Research, 650 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
5
|
Liu QQ, Yao XX, Gao SH, Li R, Li BJ, Yang W, Cui RJ. Role of 5-HT receptors in neuropathic pain: potential therapeutic implications. Pharmacol Res 2020; 159:104949. [PMID: 32464329 DOI: 10.1016/j.phrs.2020.104949] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
5-HT plays a crucial role in the progress and adjustment of pain both centrally and peripherally. The therapeutic action of the 5-HT receptors` agonist and antagonist in neuropathic pain have been widely reported in many studies. However, the specific roles of 5-HT subtype receptors have not been reviewed comprehensively. Therefore, we summarized the recent findings on multiple subtypes of 5-HT receptors in both central and peripheral nervous system in neuropathic pain, particularly, 5-HT1, 5-HT2, 5-HT3 and 5-HT7 receptors. In addition, 5-HT4, 5-HT5 and 5-HT6 receptors were also reviewed. Most of studies focused on the function of 5-HT subtype receptors in spinal level compared to brain areas. Based on these evidences, the pain process can be facilitated or inhibited that depending on the specific subtypes and the distribution of 5-HT receptors. Therefore, this review may provide potential therapeutic implications in treatment of neuropathic pain.
Collapse
Affiliation(s)
- Qian Qian Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China; Hand Surgery Department, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiao Xiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Shuo Hui Gao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China; Hand Surgery Department, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Higgins GA, Fletcher PJ, Shanahan WR. Lorcaserin: A review of its preclinical and clinical pharmacology and therapeutic potential. Pharmacol Ther 2020; 205:107417. [DOI: 10.1016/j.pharmthera.2019.107417] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
|
7
|
Valproate reverses stress-induced somatic hyperalgesia and visceral hypersensitivity by up-regulating spinal 5-HT 2C receptor expression in female rats. Neuropharmacology 2019; 165:107926. [PMID: 31883927 DOI: 10.1016/j.neuropharm.2019.107926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Sodium valproate (VPA) has analgesic effects in clinical and experimental studies, but the mechanisms are still unclear. The present study examined the effects of VPA on stress-induced somatic hyperalgesia and visceral hypersensitivity and the role of 5-HT2C receptors in the spinal cord. Repeated 3 day forced swim (FS) significantly reduced the thermal withdrawal latency and mechanical withdrawal threshold, and increased the magnitude of the visceromotor response to colorectal distention compared to the baseline values in rats. The somatic hyperalgesia and visceral hypersensitivity were accompanied by significant down-regulation of 5-HT2C receptor expression in the L4-L5 and L6-S1 dorsal spinal cord. Intraperitoneal administration of VPA (300 mg/kg) before each FS and 1 day post FS prevented the development of somatic hyperalgesia and visceral hypersensitivity induced by FS stress, as well as down-regulation of 5-HT2C receptors in the spinal cord. The reversal of somatic hyperalgesia and visceral hypersensitivity by VPA in FS rats was blocked by intrathecal administration of the selective 5-HT2C receptor antagonist RS-102221 (30 μg/10 μL) 30 min after each VPA injection. The results suggest that VPA attenuates FS-induced somatic hyperalgesia and visceral hypersensitivity by restoring down-regulated function of 5-HT2C receptors in the spinal cord.
Collapse
|
8
|
The Role of Descending Pain Modulation in Chronic Primary Pain: Potential Application of Drugs Targeting Serotonergic System. Neural Plast 2019; 2019:1389296. [PMID: 31933624 PMCID: PMC6942873 DOI: 10.1155/2019/1389296] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/02/2019] [Accepted: 11/27/2019] [Indexed: 11/24/2022] Open
Abstract
Chronic primary pain (CPP) is a group of diseases with long-term pain and functional disorders but without structural or specific tissue pathologies. CPP is becoming a serious health problem in clinical practice due to the unknown cause of intractable pain and high cost of health care yet has not been satisfactorily addressed. During the past decades, a significant role for the descending pain modulation and alterations due to specific diseases of CPP has been emphasized. It has been widely established that central sensitization and alterations in neuroplasticity induced by the enhancement of descending pain facilitation and/or the impairment of descending pain inhibition can explain many chronic pain states including CPP. The descending serotonergic neurons in the raphe nuclei target receptors along the descending pain circuits and exert either pro- or antinociceptive effects in different pain conditions. In this review, we summarize the possible underlying descending pain regulation mechanisms in CPP and the role of serotonin, thus providing evidence for potential application of analgesic medications based on the serotonergic system in CPP patients.
Collapse
|
9
|
Baptista-de-Souza D, Pelarin V, Canto-de-Souza L, Nunes-de-Souza RL, Canto-de-Souza A. Interplay between 5-HT 2C and 5-HT 1A receptors in the dorsal periaqueductal gray in the modulation of fear-induced antinociception in mice. Neuropharmacology 2018; 140:100-106. [PMID: 30056125 DOI: 10.1016/j.neuropharm.2018.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/05/2018] [Accepted: 07/23/2018] [Indexed: 11/27/2022]
Abstract
The confinement of rodents to the open arm of the elevated-plus maze provokes antinociception (OAA). As a type of defensive reaction, the OAA has been investigated through systemic and intramesencephalic (e.g., dorsal portion of the periaqueductal gray - dPAG) injections of anxiolytic-like drugs [e.g., serotonergic (5-HT) receptor agonists or antagonists]. Here we investigated the effects of (i) intra-dPAG injections of a 5HT2C receptor agonist (MK-212; 0.21 or 0.63 nmol) and antagonist (SB 242084; 0.01, 0.1 or 1.0 nmol); (ii) combined injections of SB 242084 and MK-212 into the dPAG; (iii) combined injections of SB 242084 with 8-OHDPAT (10 nmol) into the dPAG on the OAA in male Swiss mice. Nociception was assessed with the writhing test induced by acetic acid injection. Results showed that (i) intra-dPAG injection of MK-212 (0.63 nmol) increased the OAA; (ii) intra-dPAG SB 242084 (1.0 nmol) prevented the OAA; (iii) SB 242084 (0.1 nmol, a dose devoid of intrinsic effect on nociception) blocked the OAA enhancement provoked by MK-212 and enabled 8-OH-DPAT to prevent the OAA. These results suggest that OAA is mediated by 5-HT2C receptors within the dPAG. Intra-dPAG SB242084 administration provoked similar results on the effects produced by MK-212 and 8-OH-DPAT on OAA. In addition, the dPAG 5-HT1A and 5-HT2C receptors interact each other in the modulation of OAA.
Collapse
Affiliation(s)
- Daniela Baptista-de-Souza
- Dept. Psychology, Federal University of São Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP, 13565-905, Brazil; Institute of Neuroscience and Behavior, Av. Do Café, 2.450, 14050-220, Ribeirão Preto, SP, Brazil
| | - Vinícius Pelarin
- Dept. Psychology, Federal University of São Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP, 13565-905, Brazil
| | - Lucas Canto-de-Souza
- Lab. Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, Araraquara, SP, 14800-903, Brazil; Institute of Neuroscience and Behavior, Av. Do Café, 2.450, 14050-220, Ribeirão Preto, SP, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Lab. Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, Araraquara, SP, 14800-903, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP, 13565-905, Brazil; Institute of Neuroscience and Behavior, Av. Do Café, 2.450, 14050-220, Ribeirão Preto, SP, Brazil
| | - Azair Canto-de-Souza
- Dept. Psychology, Federal University of São Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP, 13565-905, Brazil; Graduate Program in Psychology UFSCar, Rod. Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil; Institute of Neuroscience and Behavior, Av. Do Café, 2.450, 14050-220, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
10
|
Chenaf C, Chapuy E, Libert F, Marchand F, Courteix C, Bertrand M, Gabriel C, Mocaër E, Eschalier A, Authier N. Agomelatine: a new opportunity to reduce neuropathic pain-preclinical evidence. Pain 2017; 158:149-160. [PMID: 27984527 DOI: 10.1097/j.pain.0000000000000738] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Antidepressants are first-line treatments of neuropathic pain but not all these drugs are really effective. Agomelatine is an antidepressant with a novel mode of action, acting as an MT1/MT2 melatonergic receptor agonist and a 5-HT2C receptor antagonist that involves indirect norepinephrine release. Melatonin, serotonin, and norepinephrine have been involved in the pathophysiology of neuropathic pain. Yet, no study has been conducted to determine agomelatine effects on neuropathic pain in animal models. Using 3 rat models of neuropathic pain of toxic (oxaliplatin/OXA), metabolic (streptozocin/STZ), and traumatic (sciatic nerve ligation/CCI [chronic constriction nerve injury]) etiologies, we investigated the antihypersensitivity effect of acute and repeated agomelatine administration. We then determined the influence of melatonergic, 5-HT2C, α-2 and β-1/2 adrenergic receptor antagonists in the antihypersensitivity effect of agomelatine. The effect of the combination of agomelatine + gabapentin was evaluated using an isobolographic approach. In STZ and CCI models, single doses of agomelatine significantly and dose dependently reduced mechanical hypersensitivity. After daily administrations for 2 weeks, this effect was confirmed in the CCI model and agomelatine also displayed a marked antihypersensitivity effect in the OXA model. The antihypersensitivity effect of agomelatine involved melatonergic, 5-HT2C, and α-2 adrenergic receptors but not beta adrenoceptors. The isobolographic analysis demonstrated that the combination of agomelatine + gabapentin had additive effects. Agomelatine exerts a clear-cut antihypersensitivity effect in 3 different neuropathic pain models. Its effect is mediated by melatonergic and 5-HT2C receptors and, although agomelatine has no affinity, also by α-2 adrenergic receptors. Finally, agomelatine combined with gabapentin produces an additive antihypersensitivity effect.
Collapse
Affiliation(s)
- Chouki Chenaf
- Université Clermont Auvergne, Université d'Auvergne, INSERM UMR 1107 Neuro-Dol Equipe Pharmacologie Fondamentale et Clinique de la Douleur, CHU Clermont-Ferrand Service de Pharmacologie Médicale, Institut Analgesia, Faculté de Médecine, Clermont-Ferrand, France
| | - Eric Chapuy
- Université Clermont Auvergne, Université d'Auvergne, INSERM UMR 1107 Neuro-Dol Equipe Pharmacologie Fondamentale et Clinique de la Douleur, Institut Analgesia, Faculté de Médecine, Clermont-Ferrand, France
| | - Frédéric Libert
- Université Clermont Auvergne, Université d'Auvergne, INSERM UMR 1107 Neuro-Dol Equipe Pharmacologie Fondamentale et Clinique de la Douleur, CHU Clermont-Ferrand Service de Pharmacologie Médicale, Institut Analgesia, Faculté de Médecine, Clermont-Ferrand, France
| | - Fabien Marchand
- Université Clermont Auvergne, Université d'Auvergne, INSERM UMR 1107 Neuro-Dol Equipe Pharmacologie Fondamentale et Clinique de la Douleur, Institut Analgesia, Faculté de Médecine, Clermont-Ferrand, France
| | - Christine Courteix
- Université Clermont Auvergne, Université d'Auvergne, INSERM UMR 1107 Neuro-Dol Equipe Pharmacologie Fondamentale et Clinique de la Douleur, Institut Analgesia, Faculté de Médecine, Clermont-Ferrand, France
| | - Marianne Bertrand
- Neuropsychiatry Division, Institut de Recherches Internationales Servier, Suresnes, France
| | - Cecilia Gabriel
- Neuropsychiatry Division, Institut de Recherches Internationales Servier, Suresnes, France
| | - Elisabeth Mocaër
- Neuropsychiatry Division, Institut de Recherches Internationales Servier, Suresnes, France
| | - Alain Eschalier
- Université Clermont Auvergne, Université d'Auvergne, INSERM UMR 1107 Neuro-Dol Equipe Pharmacologie Fondamentale et Clinique de la Douleur, CHU Clermont-Ferrand Service de Pharmacologie Médicale, Institut Analgesia, Faculté de Médecine, Clermont-Ferrand, France
| | - Nicolas Authier
- Université Clermont Auvergne, Université d'Auvergne, INSERM UMR 1107 Neuro-Dol Equipe Pharmacologie Fondamentale et Clinique de la Douleur, CHU Clermont-Ferrand Service de Pharmacologie Médicale, Institut Analgesia, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
11
|
Martins DF, Emer AA, Batisti AP, Donatello N, Carlesso MG, Mazzardo-Martins L, Venzke D, Micke GA, Pizzolatti MG, Piovezan AP, dos Santos ARS. Inhalation of Cedrus atlantica essential oil alleviates pain behavior through activation of descending pain modulation pathways in a mouse model of postoperative pain. JOURNAL OF ETHNOPHARMACOLOGY 2015; 175:30-38. [PMID: 26344850 DOI: 10.1016/j.jep.2015.08.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/18/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cedrus atlantica essential oil (CaEO) presents analgesic and anti-inflammatory sedative properties. However, it remains unknown whether CaEO alleviates acute postoperative pain. MATERIALS AND METHODS Here, we investigated the effect of CaEO on postoperative pain and its mechanisms related to the descending pain control in Swiss males mice induced by a plantar incision surgery (PIS) in the hindpaw. RESULTS Inhalation of CaEO (5', 30' or 60') markedly reduced mechanical hypersensitivity. This effect was prevented by pre-treatment with naloxone or p-chlorophenylalanine methyl ester (PCPA, 100mg/kg, i.p.)-induced depletion of serotonin. In addition, p-alpha-methyl-para-tyrosin (AMPT, 100mg/kg, i.p.)-induced depletion of norepinephrine, intraperitoneal injection of the α2-adrenergic receptor antagonist yohimbine (0.15 mg/kg, i.p.) or haloperidol (1mg/kg, i.p.) an antagonist of dopaminergic (D1 and D2) receptors prevented the effect of CaEO on hypersensitivity. CONCLUSIONS These findings suggest that CaEO alleviates postoperative pain by activating the descending pain modulation pathways on the opioidergic, serotonergic, noradrenergic (α2-adrenergic) and dopaminergic (dopamine D1 and D2 receptors) systems.
Collapse
Affiliation(s)
- Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina at Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Palhoça, Santa Catarina, Brazil.
| | - Aline A Emer
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina at Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Palhoça, Santa Catarina, Brazil
| | - A P Batisti
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina at Palhoça, Santa Catarina, Brazil
| | - Nathalia Donatello
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina at Palhoça, Santa Catarina, Brazil
| | - Mariana G Carlesso
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina at Palhoça, Santa Catarina, Brazil
| | - Leidiane Mazzardo-Martins
- Department of Morphological Sciences, Centre of Biological Sciences, University Federal of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Dalila Venzke
- Department of Chemistry, University Federal of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Gustavo A Micke
- Department of Chemistry, University Federal of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Moacir G Pizzolatti
- Department of Chemistry, University Federal of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - A P Piovezan
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina at Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Palhoça, Santa Catarina, Brazil
| | - A R S dos Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Centre of Biological Sciences, University Federal of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
12
|
Di Giovanni G, De Deurwaerdère P. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacol Ther 2015; 157:125-62. [PMID: 26617215 DOI: 10.1016/j.pharmthera.2015.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 5-HT2C receptor (R) displays a widespread distribution in the CNS and is involved in the action of 5-HT in all brain areas. Knowledge of its functional role in the CNS pathophysiology has been impaired for many years due to the lack of drugs capable of discriminating among 5-HT2R subtypes, and to a lesser extent to the 5-HT1B, 5-HT5, 5-HT6 and 5-HT7Rs. The situation has changed since the mid-90s due to the increased availability of new and selective synthesized compounds, the creation of 5-HT2C knock out mice, and the progress made in molecular biology. Many pharmacological classes of drugs including antipsychotics, antidepressants and anxiolytics display affinities toward 5-HT2CRs and new 5-HT2C ligands have been developed for various neuropsychiatric disorders. The 5-HT2CR is presumed to mediate tonic/constitutive and phasic controls on the activity of different central neurobiological networks. Preclinical data illustrate this complexity to a point that pharmaceutical companies developed either agonists or antagonists for the same disease. In order to better comprehend this complexity, this review will briefly describe the molecular pharmacology of 5-HT2CRs, as well as their cellular impacts in general, before addressing its central distribution in the mammalian brain. Thereafter, we review the preclinical efficacy of 5-HT2C ligands in numerous behavioral tests modeling human diseases, highlighting the multiple and competing actions of the 5-HT2CRs in neurobiological networks and monoaminergic systems. Notably, we will focus this evidence in the context of the physiopathology of psychiatric and neurological disorders including Parkinson's disease, levodopa-induced dyskinesia, and epilepsy.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293) 33076 Bordeaux Cedex, France.
| |
Collapse
|
13
|
Sun YH, Li HS, Zhu C, Hu W, Yang J, Zhao GL, Lu GJ, Wu SX, Dong YL. The analgesia effect of duloxetine on post-operative pain via intrathecal or intraperitoneal administration. Neurosci Lett 2014; 568:6-11. [DOI: 10.1016/j.neulet.2014.03.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/11/2014] [Accepted: 03/19/2014] [Indexed: 11/29/2022]
|
14
|
Baptista-de-Souza D, Di Cesare Mannelli L, Zanardelli M, Micheli L, Nunes-de-Souza RL, Canto-de-Souza A, Ghelardini C. Serotonergic modulation in neuropathy induced by oxaliplatin: effect on the 5HT2C receptor. Eur J Pharmacol 2014; 735:141-9. [PMID: 24786153 DOI: 10.1016/j.ejphar.2014.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/23/2023]
Abstract
Fluoxetine has been shown to be effective in clinical and experimental studies of neuropathic pain. Besides to increase serotonin levels in the synaptic cleft, fluoxetine is able to block the serotonergic 5-HT2C receptor subtype, which in turn has been involved in the modulation of neuropathic pain. This study investigated the effect of repeated treatments with fluoxetine on the neuropathic nociceptive response induced by oxaliplatin and the effects of both treatments on 5-HT2C receptor mRNA expression and protein levels in the rat spinal cord (SC), rostral ventral medulla (RVM), midbrain periaqueductal gray (PAG) and amygdala (Amy). Nociception was assessed by paw-pressure, cold plate and Von Frey tests. Fluoxetine prevented mechanical hypersensitivity and pain threshold alterations induced by oxaliplatin but did not prevent the impairment in weight gain induced by this anticancer drug. Ex vivo analysis revealed that oxaliplatin increased the 5-HT2C receptor mRNA expression and protein levels in the SC and PAG. Similar effects were observed in fluoxetine-treated animals but only within the PAG. While oxaliplatin decreased the 5-HT2C mRNA expression levels in the Amy, fluoxetine increased their protein levels in this area. Fluoxetine impaired the oxaliplatin effects on the 5-HT2C receptor mRNA expression in the SC and Amy and protein levels in the SC. All treatments increased of 5-HT2C receptor mRNA expression and protein levels in the PAG. These results suggest that the effects of fluoxetine on neuropathic pain induced by oxaliplatin are associated with quantitative changes in the 5-HT2C receptors located within important areas of the nociceptive system.
Collapse
Affiliation(s)
- Daniela Baptista-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP., São Carlos, SP 13565-905, Brazil; Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Matteo Zanardelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | | - Azair Canto-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP., São Carlos, SP 13565-905, Brazil
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
15
|
Aira Z, Buesa I, García del Caño G, Bilbao J, Doñate F, Zimmermann M, Azkue JJ. Transient, 5-HT2B receptor–mediated facilitation in neuropathic pain: Up-regulation of PKCγ and engagement of the NMDA receptor in dorsal horn neurons. Pain 2013; 154:1865-1877. [DOI: 10.1016/j.pain.2013.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 12/22/2022]
|
16
|
Grégoire S, Neugebauer V. 5-HT2CR blockade in the amygdala conveys analgesic efficacy to SSRIs in a rat model of arthritis pain. Mol Pain 2013; 9:41. [PMID: 23937887 PMCID: PMC3751088 DOI: 10.1186/1744-8069-9-41] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/09/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pain, including arthritic pain, has a negative affective component and is often associated with anxiety and depression. However, selective serotonin reuptake inhibitor antidepressants (SSRIs) show limited effectiveness in pain. The amygdala plays a key role in the emotional-affective component of pain, pain modulation and affective disorders. Neuroplasticity in the basolateral and central amygdala (BLA and CeA, respectively) correlate positively with pain behaviors. Evidence suggests that serotonin receptor subtype 5-HT2CR in the amygdala contributes critically to anxiogenic behavior and anxiety disorders. In this study, we tested the hypothesis that 5-HT2CR in the amygdala accounts for the limited effectiveness of SSRIs in reducing pain behaviors and that 5-HT2CR blockade in the amygdala renders SSRIs effective. RESULTS Nocifensive reflexes, vocalizations and anxiety-like behavior were measured in adult male Sprague-Dawley rats. Behavioral experiments were done in sham controls and in rats with arthritis induced by kaolin/carrageenan injections into one knee joint. Rats received a systemic (i.p.) administration of an SSRI (fluvoxamine, 30 mg/kg) or vehicle (sterile saline) and stereotaxic application of a selective 5-HT2CR antagonist (SB242084, 10 μM) or vehicle (ACSF) into BLA or CeA by microdialysis. Compared to shams, arthritic rats showed decreased hindlimb withdrawal thresholds (increased reflexes), increased duration of audible and ultrasonic vocalizations, and decreased open-arm choices in the elevated plus maze test suggesting anxiety-like behavior. Fluvoxamine (i.p.) or SB242084 (intra-BLA) alone had no significant effect, but their combination inhibited the pain-related increase of vocalizations and anxiety-like behavior without affecting spinal reflexes. SB242084 applied into the CeA in combination with systemic fluvoxamine had no effect on vocalizations and spinal reflexes. CONCLUSIONS The data suggest that 5-HT2CR in the amygdala, especially in the BLA, limits the effectiveness of SSRIs to inhibit pain-related emotional-affective behaviors.
Collapse
Affiliation(s)
- Stéphanie Grégoire
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston Texas 77555-1069, USA
| | - Volker Neugebauer
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston Texas 77555-1069, USA
| |
Collapse
|
17
|
Ogino S, Nagakura Y, Tsukamoto M, Watabiki T, Ozawa T, Oe T, Shimizu Y, Ito H. Systemic administration of 5-HT2C receptor agonists attenuates muscular hyperalgesia in reserpine-induced myalgia model. Pharmacol Biochem Behav 2013; 108:8-15. [DOI: 10.1016/j.pbb.2013.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/08/2013] [Accepted: 04/12/2013] [Indexed: 01/16/2023]
|
18
|
Ohnami S, Kato A, Ogawa K, Shinohara S, Ono H, Tanabe M. Effects of milnacipran, a 5-HT and noradrenaline reuptake inhibitor, on C-fibre-evoked field potentials in spinal long-term potentiation and neuropathic pain. Br J Pharmacol 2013; 167:537-47. [PMID: 22537101 DOI: 10.1111/j.1476-5381.2012.02007.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE The analgesic action of 5-HT and noradrenaline reuptake inhibitors (SNRIs) on nociceptive synaptic transmission in the spinal cord is poorly understood. We investigated the effects of milnacipran, an SNRI, on C-fibre-evoked field potentials (FPs) in spinal long-term potentiation (LTP), a proposed synaptic mechanism of hypersensitivity, and on the FPs in a neuropathic pain model. EXPERIMENTAL APPROACH C-fibre-evoked FPs by electrical stimulation of the sciatic nerve fibres were recorded in the spinal dorsal horn of anaesthetized adult rats, and LTP was induced by high-frequency stimulation of the sciatic nerve fibres. A rat model of neuropathic pain was produced by L5 spinal nerve ligation and transection. KEY RESULTS Milnacipran produced prolonged inhibition of C-fibre-evoked FPs when applied spinally after the establishment of LTP of C-fibre-evoked FPs in naïve animals. In the neuropathic pain model, spinal administration of milnacipran clearly reduced the basal C-fibre-evoked FPs. These inhibitory effects of milnacipran were blocked by spinal administration of methysergide, a 5-HT½ receptor antagonist, and yohimbine or idazoxan, α₂-adrenoceptor antagonists. However, spinal administration of milnacipran in naïve animals did not affect the basal C-fibre-evoked FPs and the induction of spinal LTP. CONCLUSION AND IMPLICATIONS Milnacipran inhibited C-fibre-mediated nociceptive synaptic transmission in the spinal dorsal horn after the establishment of spinal LTP and in the neuropathic pain model, by activating both spinal 5-hydroxytryptaminergic and noradrenergic systems. The condition-dependent inhibition of the C-fibre-mediated transmission by milnacipran could provide novel evidence regarding the analgesic mechanisms of SNRIs in chronic pain.
Collapse
Affiliation(s)
- S Ohnami
- Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Eto K, Kim SK, Nabekura J, Ishibashi H. Taltirelin, a thyrotropin-releasing hormone analog, alleviates mechanical allodynia through activation of descending monoaminergic neurons in persistent inflammatory pain. Brain Res 2011; 1414:50-7. [PMID: 21872219 DOI: 10.1016/j.brainres.2011.07.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/23/2011] [Accepted: 07/30/2011] [Indexed: 02/08/2023]
Abstract
Thyrotropin-releasing hormone (TRH) and its analogs have been reported to modulate descending monoaminergic inhibitory neurons, resulting in antinociception. However, it remains unknown whether TRH exerts an antiallodynic effect during persistent pain. Here, we investigated the action of taltirelin, a stable TRH analog, on mechanical allodynia in mice with inflammatory persistent pain induced by an injection of complete Freund's adjuvant into the hindpaw. Systemic administration of 1.0 mg/kg taltirelin markedly reduced mechanical allodynia. This effect was abolished by the 6-hydroxydopamine (6-OHDA)-induced depletion of central noradrenaline. While intraperitoneal injection of the α₁-adrenoceptor antagonist prazosin had no effect, intraperitoneal and intrathecal administration of the α₂-adrenoceptor antagonist yohimbine prevented the antiallodynic action of taltirelin. In addition, DL-p-chlorophenylalanine (PCPA)-induced depletion of serotonin (5-HT) and intraperitoneal and intrathecal injection of the 5-HT(1A) receptor antagonist WAY-100635 blocked the effect of taltirelin on allodynia. These findings suggest that taltirelin alleviates mechanical allodynia in inflammatory persistent pain by modulating the descending noradrenergic and serotonergic neuronal pathways via indirect activation of spinal α₂-adrenergic and 5-HT(1A) receptors.
Collapse
Affiliation(s)
- Kei Eto
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|
20
|
Rahman W, Bannister K, Bee LA, Dickenson AH. A pronociceptive role for the 5-HT2 receptor on spinal nociceptive transmission: an in vivo electrophysiological study in the rat. Brain Res 2011; 1382:29-36. [PMID: 21276431 PMCID: PMC3142932 DOI: 10.1016/j.brainres.2011.01.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 12/13/2022]
Abstract
Serotonin (5-HT) plays a major yet complex role in modulating spinal nociceptive transmission as a consequence of the number of 5-HT receptor subtypes. These include the 5-HT2 receptor, which is further sub classified into 5-HT2A, B and C. Studies have described both a pro- and antinociceptive action following 5-HT2A-receptor activation; therefore, to shed light on the directional nature of spinal 5-HT2A receptor activity, we investigated the effects of spinal administration of the 5-HT2A receptor antagonist, ketanserin, on the evoked responses of dorsal horn neurones to electrical, mechanical and thermal stimulation. We also assessed the effects of systemic administration of ritanserin, a 5-HT2A/2C receptor antagonist and spinal application of (±)-2,5-Dimethoxy-4-iodoamphetamine hydrochloride (DOI) (3.6 and 17.8 μg/50 μl), a 5-HT2A/2C agonist, on the same evoked neuronal responses. Ketanserin (1, 10 and 100 μg/50 μl) produced a dose related inhibition of the evoked responses to noxious mechanical punctate and thermal stimuli only. Ritanserin (2 mg/kg) replicated the inhibitory effects seen with ketanserin on the natural evoked neuronal responses and also potently inhibited the C-fibre, post discharge, input and wind-up evoked responses. DOI increased the mechanical and thermal evoked responses, an effect reversed by ketanserin. Thus, our findings show that spinal ketanserin (1–100 μg/50 μl) and systemic ritanserin (2 mg/kg), at these doses, have similar antinociceptive effects, whereas the agonist, DOI, produced excitatory effects, on spinal neuronal activity. Our data, therefore, supports a pronociceptive role for 5-HT2 receptors, most likely through modulation of 5-HT2A receptor activity, on spinal nociceptive transmission under normal conditions.
Collapse
Affiliation(s)
- Wahida Rahman
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
21
|
Nakai K, Nakae A, Oba S, Mashimo T, Ueda K. 5-HT2C receptor agonists attenuate pain-related behaviour in a rat model of trigeminal neuropathic pain. Eur J Pain 2010; 14:999-1006. [PMID: 20488736 DOI: 10.1016/j.ejpain.2010.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 03/19/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
Abstract
Peripheral branches of the trigeminal nerve may be damaged during maxillofacial injury or surgical procedures and trigeminal trauma may induce severe pain that is very challenging to treat. Chronic constriction injury to the infraorbital nerve (ION-CCI) by loose ligatures has proven a useful model for some types of trigeminal neuropathic pain disorder. Using ION-CCI rats, we examined the antiallodynic effects of intrathecally administered agents which are selective for 5-HT2C receptors. Allodynia was evaluated by applying von Frey filaments to skin innervated by the injured ION. Dose-dependent antiallodynic effects followed administration of three 5-HT2C receptor agonists, 6-chloro-2-(1-piperazinyl)-pyrazine (MK212: 10, 30, and 100 μg); (S)-2-(chloro-5-fluoro-indol-l-yl)-1-methyamine fumarate (RO 60-0175: 10, 30, and 100 μg); (AaR)-8,9-dichloro-2,3,4,4a-tetrahydro-1H-pyrazino[1,2-a]quinoxalin-5(6H)-one (WAY-161503: 10, 30, and 100 μg). ED50 values for antiallodynic effects of MK212, RO 60-0175, and WAY-161503 were 39.62, 46.67, and 51.22 μg, respectively. Intrathecal administration of the 5-HT2C receptor antagonist, 8-[5-2,4-dimethoxy-5-(4-trifluoromethylphenylsulphonamido)phenyl-5-oxopentyl]-1,3,8-triazaspiro[4,5]decane-2,4-dione (RS-102221: 30 μg) did not alter the mechanical threshold. Intrathecal pretreatment with RS-102221 (10 and 30 μg) reduced the antiallodynic effects of the highest dose of 5-HT2C agonists. These results indicated that, in this rat model, the 5-HT2C receptor plays a role in spinal inhibition of trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Kunihiro Nakai
- Department of Plastic & Reconstructive Surgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | | | | | | | | |
Collapse
|
22
|
Aira Z, Buesa I, Salgueiro M, Bilbao J, Aguilera L, Zimmermann M, Azkue JJ. Subtype-specific changes in 5-HT receptor-mediated modulation of C fibre-evoked spinal field potentials are triggered by peripheral nerve injury. Neuroscience 2010; 168:831-41. [PMID: 20412834 DOI: 10.1016/j.neuroscience.2010.04.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/18/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
Abstract
Neurotransmitter serotonin (5-HT) released from descending pain modulation pathways to the dorsal horn is crucial to spinal nociception processing. This study sought to gain insight into the modulatory roles of specific serotonin receptor subtypes in experimentally induced neuropathic pain. In rats subjected to spinal nerve ligation (SNL) surgery, we recorded field potentials evoked in the spinal dorsal horn by C fibre-input, during spinal superfusion with subtype-selective drugs. In neuropathic rats, subtype 5-HT1A agonist 8-OH-DPAT (100 nM) was found to potently depress evoked field potentials, as opposed to 5-HT2A or 5-HT2B subtype agonists TCB-2 (100 nM) or BW 723C86 (1 microM), respectively, which consistently enhanced evoked potentials. All three failed to alter spinal field potentials in sham operated rats. CP 94253 (1 microM), WAY 161503 (1 mM) or SR 57227 (at 1 microM in SNL rats, and 100 microM in sham rats), selective agonists for 5-HT1B, 5-HT2C and 5-HT3 receptors, respectively, significantly depressed evoked field potentials in both animal groups. The 5-HT4 agonist RS 67333 (1 microM) was depressant only in sham operated animals. Only after SNL, spinal superfusion with 5-HT1A- or 5-HT1B receptor-antagonists (S)-WAY 100135 (100 microM) or SB 224289 (100 microM), respectively, disinhibited C fibre-evoked potentials, whereas 5-HT2A or 5-HT2B receptor-antagonists 4F 4PP (100 microM) or SB 204741 (100 microM) depressed evoked potentials, suggesting tonic activity of all four subtypes as a consequence of experimental nerve injury. The present findings reveal profound subtype-specific changes in the functional modulatory activities of spinal serotonin receptors following peripheral nerve injury. In particular, spinal hyperexcitation promoted by receptors 5-HT2A and 5-HT2B is suggested as a novel pathogenic pathway contributing to neuropathic pain.
Collapse
Affiliation(s)
- Z Aira
- Department of Neurosciences, School of Medicine and Dentistry, Basque Country University, Barrio Sarriena s/n, 48940 Leioa, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Drago A, Serretti A. Focus on HTR2C: A possible suggestion for genetic studies of complex disorders. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:601-37. [PMID: 18802918 DOI: 10.1002/ajmg.b.30864] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HTR2C is one of the most relevant and investigated serotonin receptors. Its role in important brain structures such as the midbrain, the lateral septal complex, the hypothalamus, the olfactory bulb, the pons, the choroid plexus, the nucleus pallidus, the striatum and the amygdala, the nucleus accumbens and the anterior cingulated gyrus candidate it as a promising target for genetic association studies. The biological relevance of these brain structures is reviewed by way of the focus on HTR2C activity, with a special attention paid to psychiatric disorders. Evidence from the genetic association studies that dealt with HTR2C is reviewed and discussed alongside the findings derived from the neuronatmic investigations. The reasons for the discrepancies between these two sets of reports are discussed. As a result, HTR2C is shown to play a pivotal role in many different psychiatric behaviors or psychiatric related disrupted molecular balances, nevertheless, genetic association studies brought inconsistent results so far. The most replicated association involve the feeding behavior and antipsychotic induced side effects, both weight gain and motor related: Cys23Ser (rs6318) and -759C/T (rs3813929) report the most consistent results. The lack of association found in other independent studies dampens the clinical impact of these reports. Here, we report a possible explanation for discrepant findings that is poorly or not at all usually considered, that is that HTR2C may exert different or even opposite activities in the brain depending on the structure analyzed and that mRNA editing activity may compensate possible genetically controlled functional effects. The incomplete coverage of the HTR2C variants is proposed as the best cost-benefit ratio bias to fix. The evidence of brain area specific HTR2C mRNA editing opens a debate about how the brain can differently modulate stress events, and process antidepressant treatments, in different brain areas. The mRNA editing activity on HTR2C may play a major role for the negative association results.
Collapse
Affiliation(s)
- Antonio Drago
- Institute of Psychiatry, University of Bologna, Italy
| | | |
Collapse
|
24
|
Emilio Bermejo P, Fraile Pereda A. Neurolépticos en el tratamiento de la migraña. Med Clin (Barc) 2008; 130:704-9. [DOI: 10.1157/13120768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|