1
|
Aguilar-Delgadillo A, Cruz-Mendoza F, Luquin-de Andais teh S, Ruvalcaba-Delgadillo Y, Jáuregui-Huerta F. Stress-induced c-fos expression in the medial prefrontal cortex differentially affects the main residing cell phenotypes. Heliyon 2024; 10:e39325. [PMID: 39498004 PMCID: PMC11532284 DOI: 10.1016/j.heliyon.2024.e39325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Stress poses a challenge to the body's equilibrium and triggers a series of responses that enable organisms to adapt to stressful stimuli. The medial prefrontal cortex (mPFC), particularly in acute stress conditions, undergoes significant physiological changes to cope with the demands associated with cellular activation. The proto-oncogene c-fos and its protein product c-Fos have long been utilized to investigate the effects of external factors on the central nervous system (CNS). While c-Fos expression has traditionally been attributed to neurons, emerging evidence suggests its potential expression in glial cells. In this study, our main objective was to explore the expression of c-Fos in glial cells and examine how acute stress influences these activity patterns. We conducted our experiments on male Wistar rats, subjecting them to acute stress and sacrificing them 2 h after the stressor initiation. Using double-labelling fluorescent immunohistochemistry targeting c-Fos, along with markers such as GFAP, Iba-1, Olig2, NG2, and NeuN, we analyzed 35 μm brain slices obtained from the mPFC. Our findings compellingly demonstrate that c-Fos expression extends beyond neurons and is present in astrocytes, oligodendrocytes, microglia, and NG2 cells-the diverse population of glial cells. Moreover, we observed distinct regulation of c-Fos expression in response to stress across different subregions of the mPFC. These results emphasize the importance of considering glial cells and their perspective in studies investigating brain activity, highlighting c-Fos as a response marker in glial cells. By shedding light on the differential regulation of c-Fos expression in response to stress, our study contributes to the understanding of glial cell involvement in stress-related processes. This underscores the significance of including glial cells in investigations of brain activity and expands our knowledge of c-Fos as a potential marker for glial cell responses.
Collapse
Affiliation(s)
| | - Fernando Cruz-Mendoza
- Neurosciences Department, Health sciences center, University of Guadalajara, Guadalajara, Mexico
| | | | | | - Fernando Jáuregui-Huerta
- Neurosciences Department, Health sciences center, University of Guadalajara, Guadalajara, Mexico
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
2
|
Funk D, Araujo J, Slassi M, Lanthier J, Atkinson J, Feng D, Lau W, Lê A, Higgins GA. Effect of a single psilocybin treatment on Fos protein expression in male rat brain. Neuroscience 2024; 539:1-11. [PMID: 38184069 DOI: 10.1016/j.neuroscience.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Psilocybin has received attention as a treatment for depression, stress disorders and drug and alcohol addiction. To help determine the mechanisms underlying its therapeutic effects, here we examined acute effects of a range of behaviourally relevant psilocybin doses (0.1-3 mg/kg SC) on regional expression of Fos, the protein product of the immediate early gene, c-fos in brain areas involved in stress, reward and motivation in male rats. We also determined the cellular phenotypes activated by psilocybin, in a co-labeling analysis with NeuN, a marker of mature neurons, or Olig1, a marker of oligodendrocytes. In adult male Sprague-Dawley rats, psilocybin increased Fos expression dose dependently in several brain regions, including the frontal cortex, nucleus accumbens, central and basolateral amygdala and locus coeruleus. These effects were most marked in the central amygdala. Double labeling experiments showed that Fos was expressed in both neurons and oligodendrocytes. These results extend previous research by determining Fos expression in multiple brain areas at a wider psilocybin dose range, and the cellular phenotypes expressing Fos. The data also highlight the amygdala, especially the central nucleus, a key brain region involved in emotional processing and learning and interconnected with other brain areas involved in stress, reward and addiction, as a potentially important locus for the therapeutic effects of psilocybin. Overall, the present findings suggest that the central amygdala may be an important site through which the initial brain activation induced by psilocybin is translated into neuroplastic changes, locally and in other regions that underlie its extended therapeutic effects.
Collapse
Affiliation(s)
- Douglas Funk
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto M5S 2S1, Canada.
| | - Joseph Araujo
- Transpharmation Ltd., Fergus N1M 2W8, Canada; Mindset Pharma, Toronto M5V 0R2, Canada
| | | | | | | | - Daniel Feng
- Transpharmation Ltd., Fergus N1M 2W8, Canada
| | - Winnie Lau
- Transpharmation Ltd., Fergus N1M 2W8, Canada
| | - Anh Lê
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto M5S 2S1, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S 1A8, Canada
| | - Guy A Higgins
- Transpharmation Ltd., Fergus N1M 2W8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S 1A8, Canada
| |
Collapse
|
3
|
Immediate Early Gene c-fos in the Brain: Focus on Glial Cells. Brain Sci 2022; 12:brainsci12060687. [PMID: 35741573 PMCID: PMC9221432 DOI: 10.3390/brainsci12060687] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
The c-fos gene was first described as a proto-oncogene responsible for the induction of bone tumors. A few decades ago, activation of the protein product c-fos was reported in the brain after seizures and other noxious stimuli. Since then, multiple studies have used c-fos as a brain activity marker. Although it has been attributed to neurons, growing evidence demonstrates that c-fos expression in the brain may also include glial cells. In this review, we collect data showing that glial cells also express this proto-oncogene. We present evidence demonstrating that at least astrocytes, oligodendrocytes, and microglia express this immediate early gene (IEG). Unlike neurons, whose expression changes used to be associated with depolarization, glial cells seem to express the c-fos proto-oncogene under the influence of proliferation, differentiation, growth, inflammation, repair, damage, plasticity, and other conditions. The collected evidence provides a complementary view of c-fos as an activity marker and urges the introduction of the glial cell perspective into brain activity studies. This glial cell view may provide additional information related to the brain microenvironment that is difficult to obtain from the isolated neuron paradigm. Thus, it is highly recommended that detection techniques are improved in order to better differentiate the phenotypes expressing c-fos in the brain and to elucidate the specific roles of c-fos expression in glial cells.
Collapse
|
4
|
Ponzoni L, Teh MT, Torres-Perez JV, Brennan CH, Braida D, Sala M. Increased Response to 3,4-Methylenedioxymethamphetamine (MDMA) Reward and Altered Gene Expression in Zebrafish During Short- and Long-Term Nicotine Withdrawal. Mol Neurobiol 2020; 58:1650-1663. [PMID: 33236326 DOI: 10.1007/s12035-020-02225-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023]
Abstract
An interactive effect between nicotine and 3,4-methylenedioxymethamphetamine (MDMA) has been reported but the mechanism underlying such interaction is not completely understood. This study used zebrafish to explore gene expression changes associated with altered sensitivity to the rewarding effects of MDMA following 2-week exposure to nicotine and 2-60 days of nicotine withdrawal. Reward responses to MDMA were assessed using a conditioned place preference (CPP) paradigm and gene expression was evaluated using quantitative real-time PCR of mRNA from whole brain samples from drug-treated and control adult zebrafish. Zebrafish pre-exposed for 2 weeks to nicotine showed increased conditioned place preference in response to low-dose, 0.1 mg/kg, MDMA compared to un-exposed fish at 2, 7, 30 and 60 days withdrawal. Pre-exposure to nicotine for 2 weeks induced a significant increase of c-Fos and vasopressin receptor expression but a decrease of D3 dopaminergic and oxytocin receptor expression at 2 days of withdrawal. C-Fos mRNA increased also at 7, 30, 60 days of withdrawal. Nicotine pre-exposed zebrafish submitted to MDMA-induced CPP showed an increase in expression of p35 at day 2, α4 at day 30, vasopressin at day 7 and D3 dopaminergic receptor at day 7, 30 and 60. These gene alterations could account for the altered sensitivity to the rewarding effects of MDMA in nicotine pre-exposed fish, suggesting that zebrafish have an altered ability to modulate behaviour as a function of reward during nicotine withdrawal.
Collapse
Affiliation(s)
- Luisa Ponzoni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, England, UK
| | - Jose V Torres-Perez
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Mariaelvina Sala
- Neuroscience Institute, CNR, Via Vanvitelli 32, 20129, Milan, Italy.
| |
Collapse
|
5
|
Jiang H, Xu H. RETRACTED: Long-term systemic treatment with lysergic acid diethylamide causes retinal damage in CD1 mice. Hum Exp Toxicol 2019; 38:347-355. [PMID: 30472895 DOI: 10.1177/0960327118814162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- H Jiang
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, People's Republic of China
| | - H Xu
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, People's Republic of China
| |
Collapse
|
6
|
Hu QD, Xu LL, Gong Y, Wu GH, Wang YW, Wu SJ, Zhang Z, Mao W, Zhou YS, Li QB, Yuan JS. Lysergic acid diethylamide causes photoreceptor cell damage through inducing inflammatory response and oxidative stress. Cutan Ocul Toxicol 2018; 37:233-239. [PMID: 29298533 DOI: 10.1080/15569527.2018.1423620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qi-Di Hu
- Department of Ophthalmology, Ophthalmology Hospital of Ningbo, Ningbo, People’s Republic of China
| | - Ling-Li Xu
- Department of Ophthalmology, Ophthalmology Hospital of Ningbo, Ningbo, People’s Republic of China
| | - Yan Gong
- Department of Ophthalmology, Ophthalmology Hospital of Ningbo, Ningbo, People’s Republic of China
| | - Guo-Hai Wu
- Department of Ophthalmology, Ophthalmology Hospital of Ningbo, Ningbo, People’s Republic of China
| | - Yu-Wen Wang
- Department of Ophthalmology, Ophthalmology Hospital of Ningbo, Ningbo, People’s Republic of China
| | - Shan-Jun Wu
- Department of Ophthalmology, Ophthalmology Hospital of Ningbo, Ningbo, People’s Republic of China
| | - Zhe Zhang
- Department of Ophthalmology, Ophthalmology Hospital of Ningbo, Ningbo, People’s Republic of China
| | - Wei Mao
- Department of Ophthalmology, Ophthalmology Hospital of Ningbo, Ningbo, People’s Republic of China
| | - Yu-Sheng Zhou
- Department of Ophthalmology, Ophthalmology Hospital of Ningbo, Ningbo, People’s Republic of China
| | - Qin-Bo Li
- Department of Ophthalmology, Ophthalmology Hospital of Ningbo, Ningbo, People’s Republic of China
| | - Jian-Shu Yuan
- Department of Ophthalmology, Ophthalmology Hospital of Ningbo, Ningbo, People’s Republic of China
| |
Collapse
|
7
|
Abstract
The classic serotonergic hallucinogens, or psychedelics, have the ability to profoundly alter perception and behavior. These can include visual distortions, hallucinations, detachment from reality, and mystical experiences. Some psychedelics, like LSD, are able to produce these effects with remarkably low doses of drug. Others, like psilocybin, have recently been demonstrated to have significant clinical efficacy in the treatment of depression, anxiety, and addiction that persist for at least several months after only a single therapeutic session. How does this occur? Much work has recently been published from imaging studies showing that psychedelics alter brain network connectivity. They facilitate a disintegration of the default mode network, producing a hyperconnectivity between brain regions that allow centers that do not normally communicate with each other to do so. The immediate and acute effects on both behaviors and network connectivity are likely mediated by effector pathways downstream of serotonin 5-HT2A receptor activation. These acute molecular processes also influence gene expression changes, which likely influence synaptic plasticity and facilitate more long-term changes in brain neurochemistry ultimately underlying the therapeutic efficacy of a single administration to achieve long-lasting effects. In this review, we summarize what is currently known about the molecular genetic responses to psychedelics within the brain and discuss how gene expression changes may contribute to altered cellular physiology and behaviors.
Collapse
|
8
|
Martin DA, Nichols CD. Psychedelics Recruit Multiple Cellular Types and Produce Complex Transcriptional Responses Within the Brain. EBioMedicine 2016; 11:262-277. [PMID: 27649637 PMCID: PMC5050000 DOI: 10.1016/j.ebiom.2016.08.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 11/22/2022] Open
Abstract
There has recently been a resurgence of interest in psychedelics, substances that profoundly alter perception and cognition and have recently demonstrated therapeutic efficacy to treat anxiety, depression, and addiction in the clinic. The receptor mechanisms that drive their molecular and behavioral effects involve activation of cortical serotonin 5-HT2A receptors, but the responses of specific cellular populations remain unknown. Here, we provide evidence that a small subset of 5-HT2A-expressing excitatory neurons is directly activated by psychedelics and subsequently recruits other select cell types including subpopulations of inhibitory somatostatin and parvalbumin GABAergic interneurons, as well as astrocytes, to produce distinct and regional responses. To gather data regarding the response of specific neuronal populations, we developed methodology for fluorescence-activated cell sorting (FACS) to segregate and enrich specific cellular subtypes in the brain. These methods allow for robust neuronal sorting based on cytoplasmic epitopes followed by downstream nucleic acid analysis, expanding the utility of FACS in neuroscience research. Psychedelics activate distinct transcription across cell types, including excitatory neurons, inhibitory neurons, and astrocytes Psychedelics induce internalization of 5-HT2A receptors throughout the cortex and claustrum FACS can separate neuronal subpopulations that require non-nuclear markers
Psychedelic drugs are known to act through the 5-HT2A receptor to produce many of their effects, however, the precise cellular populations in the brain which respond to this class of drugs remain unknown. We use flow cytometric analyses, immunohistochemistry, and gene expression analyses to identify small populations of specific cells in the brain that are activated by the psychedelic drug, (R)-DOI. The methodology used in these studies will be useful to determine the molecular effects of any manipulation or disease on particular brain cells.
Collapse
Affiliation(s)
- David A Martin
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Charles D Nichols
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
9
|
Lebedev AV, Kaelen M, Lövdén M, Nilsson J, Feilding A, Nutt DJ, Carhart-Harris RL. LSD-induced entropic brain activity predicts subsequent personality change. Hum Brain Mapp 2016; 37:3203-13. [PMID: 27151536 DOI: 10.1002/hbm.23234] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 02/05/2023] Open
Abstract
Personality is known to be relatively stable throughout adulthood. Nevertheless, it has been shown that major life events with high personal significance, including experiences engendered by psychedelic drugs, can have an enduring impact on some core facets of personality. In the present, balanced-order, placebo-controlled study, we investigated biological predictors of post-lysergic acid diethylamide (LSD) changes in personality. Nineteen healthy adults underwent resting state functional MRI scans under LSD (75µg, I.V.) and placebo (saline I.V.). The Revised NEO Personality Inventory (NEO-PI-R) was completed at screening and 2 weeks after LSD/placebo. Scanning sessions consisted of three 7.5-min eyes-closed resting-state scans, one of which involved music listening. A standardized preprocessing pipeline was used to extract measures of sample entropy, which characterizes the predictability of an fMRI time-series. Mixed-effects models were used to evaluate drug-induced shifts in brain entropy and their relationship with the observed increases in the personality trait openness at the 2-week follow-up. Overall, LSD had a pronounced global effect on brain entropy, increasing it in both sensory and hierarchically higher networks across multiple time scales. These shifts predicted enduring increases in trait openness. Moreover, the predictive power of the entropy increases was greatest for the music-listening scans and when "ego-dissolution" was reported during the acute experience. These results shed new light on how LSD-induced shifts in brain dynamics and concomitant subjective experience can be predictive of lasting changes in personality. Hum Brain Mapp 37:3203-3213, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A V Lebedev
- Aging Research Center, Karolinska Institutet (Department of Neurobiology, Care Sciences and Society) & Stockholm University, Stockholm, Sweden
| | - M Kaelen
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, United Kingdom
| | - M Lövdén
- Aging Research Center, Karolinska Institutet (Department of Neurobiology, Care Sciences and Society) & Stockholm University, Stockholm, Sweden
| | - J Nilsson
- Aging Research Center, Karolinska Institutet (Department of Neurobiology, Care Sciences and Society) & Stockholm University, Stockholm, Sweden
| | - A Feilding
- The Beckley Foundation, Beckley Park, United Kingdom
| | - D J Nutt
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, United Kingdom
| | - R L Carhart-Harris
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, United Kingdom
| |
Collapse
|
10
|
N-acetylcysteine modulates hallucinogenic 5-HT2A receptor agonist-mediated responses: Behavioral, molecular, and electrophysiological studies. Neuropharmacology 2014; 81:215-23. [DOI: 10.1016/j.neuropharm.2014.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 01/10/2014] [Accepted: 02/06/2014] [Indexed: 01/01/2023]
|
11
|
Morgado C, Terra PP, Tavares I. Neuronal hyperactivity at the spinal cord and periaqueductal grey during painful diabetic neuropathy: Effects of gabapentin. Eur J Pain 2012; 14:693-9. [DOI: 10.1016/j.ejpain.2009.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/04/2009] [Accepted: 11/27/2009] [Indexed: 02/08/2023]
|
12
|
Perit KE, Gmaz JM, Caleb Browne J, Matthews BA, Dunn MBF, Yang L, Raaphorst T, Mallet PE, McKay BE. Distribution of c-Fos immunoreactivity in the rat brain following abuse-like toluene vapor inhalation. Neurotoxicol Teratol 2012; 34:37-46. [DOI: 10.1016/j.ntt.2011.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/22/2011] [Accepted: 10/24/2011] [Indexed: 11/28/2022]
|
13
|
Behavioral and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicol Teratol 2011; 33:658-67. [DOI: 10.1016/j.ntt.2011.05.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/16/2011] [Accepted: 05/27/2011] [Indexed: 01/27/2023]
|
14
|
Stewart A, Riehl R, Wong K, Green J, Cosgrove J, Vollmer K, Kyzar E, Hart P, Allain A, Cachat J, Gaikwad S, Hook M, Rhymes K, Newman A, Utterback E, Chang K, Kalueff AV. Behavioral effects of MDMA ('ecstasy') on adult zebrafish. Behav Pharmacol 2011; 22:275-80. [PMID: 21522057 PMCID: PMC3083639 DOI: 10.1097/fbp.0b013e328345f758] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') is a potent psychedelic drug inducing euphoria and hypersociability in humans, as well as hyperactivity and anxiety in rodents. Adult zebrafish (Danio rerio) have become a widely used species in neurobehavioral research. Here, we explore the effects of a wide range (0.25-120 mg/l) of acute MDMA doses on zebrafish behavior in the novel tank test. Although MDMA was inactive at lower doses (0.25-10 mg/l), higher doses reduced bottom swimming and immobility (40-120 mg/l) and impaired intrasession habituation (10-120 mg/l). MDMA also elevated brain c-fos expression, collectively confirming the usage of zebrafish models for screening of hallucinogenic compounds.
Collapse
Affiliation(s)
- Adam Stewart
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Russell Riehl
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Keith Wong
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Jeremy Green
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Jessica Cosgrove
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Karoly Vollmer
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Evan Kyzar
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Peter Hart
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Alexander Allain
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Jonathan Cachat
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Siddharth Gaikwad
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Molly Hook
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Kate Rhymes
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Alan Newman
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Eli Utterback
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Katie Chang
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Allan V. Kalueff
- Department of Pharmacology and Neuroscience Program, Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA
| |
Collapse
|