1
|
Miya V, Kumar C, Breed AA, Idicula-Thomas S, Pathak BR. Mammalian cysteine-rich secretory proteins interact with plasma membrane Ca 2+ exporter PMCA4b. Andrology 2024; 12:1096-1110. [PMID: 37882330 DOI: 10.1111/andr.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Mammalian cysteine-rich secretory proteins (CRISPs) are predominantly expressed in the male reproductive tract. Knockout mice lacking two or more CRISPs show defects in sperm transport, sperm-egg interaction and Ca2+ homeostasis. CRISPs play redundant and specific roles via their binding partners. To understand this, a comprehensive analysis of CRISP interactome needs to be undertaken. OBJECTIVES This study aimed to analyse CRISP4 binding partners on the plasma membrane of rat caudal spermatozoa. MATERIALS AND METHODS Total proteins from rat caudal spermatozoa were subjected to immunoprecipitation using anti-CRISP4 antibody followed by liquid chromatography-mass spectrophotometry analysis. Plasma membrane localised proteins were shortlisted, and a key target was validated by co-immunoprecipitation and co-localisation. Co-transfection followed by co-immunoprecipitation was carried out for studying the interaction of full-length as well as deletion mutants of CRISPs with human plasma membrane calcium ATPase, isoform b (hPMCA4b). Calcium assays were performed using Fura-2-AM. The cholesterol binding ability of different CRISPs was evaluated in silico. RESULTS The membrane-specific interactome of rat CRISP4 (rCRISP4) from caudal spermatozoa revealed PMCA4b as a novel binding partner, and their interaction was validated in rat spermatozoa. Human CRISP1 (hCRISP1) and hCRISP3 also interacted with PMCA4b via the N-terminal domain. Interestingly, hCRISP1 and rCRISP4 delayed PMCA4b-mediated calcium extrusion but hCRISP3 did not. In silico analysis demonstrated that hCRISP1 and rCRISP4 have higher binding affinity towards cholesterol than hCRISP3. The secretion profile of different CRISPs also showed that the ratio of secreted to cell-associated proteins was highest for hCRISP3. CONCLUSION Our study identifies PMCA4b as a target of multiple mammalian CRISPs and unravels a new role of CRISPs in regulating calcium homeostasis. Differences in the interaction of different CRISPs with cholesterol may regulate their enrichment in the lipid rafts and redistribution in the membrane post-capacitation, thereby affecting their interaction with PMCA4b.
Collapse
Affiliation(s)
- Vaidehi Miya
- Division of Cellular and Structural Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Chandan Kumar
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Ananya A Breed
- Division of Cellular and Structural Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Bhakti R Pathak
- Division of Cellular and Structural Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| |
Collapse
|
2
|
Structure, Function and Regulation of the Plasma Membrane Calcium Pump in Health and Disease. Int J Mol Sci 2022; 23:ijms23031027. [PMID: 35162948 PMCID: PMC8835232 DOI: 10.3390/ijms23031027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/28/2022] Open
Abstract
In this review, I summarize the present knowledge of the structural and functional properties of the mammalian plasma membrane calcium pump (PMCA). It is outlined how the cellular expression of the different spliced isoforms of the four genes are regulated under normal and pathological conditions.
Collapse
|
3
|
Pointer TC, Gorelick FS, Desir GV. Renalase: A Multi-Functional Signaling Molecule with Roles in Gastrointestinal Disease. Cells 2021; 10:2006. [PMID: 34440775 PMCID: PMC8391834 DOI: 10.3390/cells10082006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 01/11/2023] Open
Abstract
The survival factor renalase (RNLS) is a recently discovered secretory protein with potent prosurvival and anti-inflammatory effects. Several evolutionarily conserved RNLS domains are critical to its function. These include a 20 aa site that encodes for its prosurvival effects. Its prosurvival effects are shown in GI disease models including acute cerulein pancreatitis. In rodent models of pancreatic cancer and human cancer tissues, increased RNLS expression promotes cancer cell survival but shortens life expectancy. This 37 kD protein can regulate cell signaling as an extracellular molecule and probably also at intracellular sites. Extracellular RNLS signals through a specific plasma membrane calcium export transporter; this interaction appears most relevant to acute injury and cancer. Preliminary studies using RNLS agonists and antagonists, as well as various preclinical disease models, suggest that the immunologic and prosurvival effects of RNLS will be relevant to diverse pathologies that include acute organ injuries and select cancers. Future studies should define the roles of RNLS in intestinal diseases, characterizing the RNLS-activated pathways linked to cell survival and developing therapeutic agents that can increase or decrease RNLS in relevant clinical settings.
Collapse
Affiliation(s)
- Thomas C. Pointer
- Department of Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA; (T.C.P.); (F.S.G.)
| | - Fred S. Gorelick
- Department of Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA; (T.C.P.); (F.S.G.)
- VA Connecticut Health Care System, 950 Campbell Avenue, West Haven, CT 06516, USA
| | - Gary V. Desir
- Department of Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA; (T.C.P.); (F.S.G.)
- VA Connecticut Health Care System, 950 Campbell Avenue, West Haven, CT 06516, USA
| |
Collapse
|
4
|
Richardson DA, Sritangos P, James AD, Sultan A, Bruce JIE. Metabolic regulation of calcium pumps in pancreatic cancer: role of phosphofructokinase-fructose-bisphosphatase-3 (PFKFB3). Cancer Metab 2020; 8:2. [PMID: 32266066 PMCID: PMC7114799 DOI: 10.1186/s40170-020-0210-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/12/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND High glycolytic rate is a hallmark of cancer (Warburg effect). Glycolytic ATP is required for fuelling plasma membrane calcium ATPases (PMCAs), responsible for extrusion of cytosolic calcium, in pancreatic ductal adenocarcinoma (PDAC). Phosphofructokinase-fructose-bisphosphatase-3 (PFKFB3) is a glycolytic driver that activates key rate-limiting enzyme Phosphofructokinase-1; we investigated whether PFKFB3 is required for PMCA function in PDAC cells. METHODS PDAC cell-lines, MIA PaCa-2, BxPC-3, PANC1 and non-cancerous human pancreatic stellate cells (HPSCs) were used. Cell growth, death and metabolism were assessed using sulforhodamine-B/tetrazolium-based assays, poly-ADP-ribose-polymerase (PARP1) cleavage and seahorse XF analysis, respectively. ATP was measured using a luciferase-based assay, membrane proteins were isolated using a kit and intracellular calcium concentration and PMCA activity were measured using Fura-2 fluorescence imaging. RESULTS PFKFB3 was highly expressed in PDAC cells but not HPSCs. In MIA PaCa-2, a pool of PFKFB3 was identified at the plasma membrane. PFKFB3 inhibitor, PFK15, caused reduced cell growth and PMCA activity, leading to calcium overload and apoptosis in PDAC cells. PFK15 reduced glycolysis but had no effect on steady-state ATP concentration in MIA PaCa-2. CONCLUSIONS PFKFB3 is important for maintaining PMCA function in PDAC, independently of cytosolic ATP levels and may be involved in providing a localised ATP supply at the plasma membrane.
Collapse
Affiliation(s)
- D. A. Richardson
- Division of Cancer Sciences, School of Medical Sciences, University Of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT UK
| | - P. Sritangos
- Division of Cancer Sciences, School of Medical Sciences, University Of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT UK
| | - A. D. James
- Department of Biology, University of York, Heslington, York, UK
| | - A. Sultan
- Division of Cancer Sciences, School of Medical Sciences, University Of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT UK
| | - J. I. E. Bruce
- Division of Cancer Sciences, School of Medical Sciences, University Of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT UK
| |
Collapse
|
5
|
Lewis S, Little R, Baudoin F, Prehar S, Neyses L, Cartwright EJ, Austin C. Acute inhibition of PMCA4, but not global ablation, reduces blood pressure and arterial contractility via a nNOS-dependent mechanism. J Cell Mol Med 2017; 22:861-872. [PMID: 29193716 PMCID: PMC5783868 DOI: 10.1111/jcmm.13371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/28/2017] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular disease is the world's leading cause of morbidity and mortality, with high blood pressure (BP) contributing to increased severity and number of adverse outcomes. Plasma membrane calcium ATPase 4 (PMCA4) has been previously shown to modulate systemic BP. However, published data are conflicting, with both overexpression and inhibition of PMCA4 in vivo shown to increase arterial contractility. Hence, our objective was to determine the role of PMCA4 in the regulation of BP and to further understand how PMCA4 functionally regulates BP using a novel specific inhibitor to PMCA4, aurintricarboxylic acid (ATA). Our approach assessed conscious BP and contractility of resistance arteries from PMCA4 global knockout (PMCA4KO) mice compared to wild‐type animals. Global ablation of PMCA4 had no significant effect on BP, arterial structure or isolated arterial contractility. ATA treatment significantly reduced BP and arterial contractility in wild‐type mice but had no significant effect in PMCA4KO mice. The effect of ATAin vivo and ex vivo was abolished by the neuronal nitric oxide synthase (nNOS) inhibitor Vinyl‐l‐NIO. Thus, this highlights differences in the effects of PMCA4 ablation and acute inhibition on the vasculature. Importantly, for doses here used, we show the vascular effects of ATA to be specific for PMCA4 and that ATA may be a further experimental tool for elucidating the role of PMCA4.
Collapse
Affiliation(s)
- Sophronia Lewis
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Robert Little
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Florence Baudoin
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sukhpal Prehar
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ludwig Neyses
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Elizabeth J Cartwright
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Clare Austin
- Faculty of Biology, Medicine and Health, Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
6
|
Baggott RR, Alfranca A, López-Maderuelo D, Mohamed TMA, Escolano A, Oller J, Ornes BC, Kurusamy S, Rowther FB, Brown JE, Oceandy D, Cartwright EJ, Wang W, Gómez-del Arco P, Martínez-Martínez S, Neyses L, Redondo JM, Armesilla AL. Plasma membrane calcium ATPase isoform 4 inhibits vascular endothelial growth factor-mediated angiogenesis through interaction with calcineurin. Arterioscler Thromb Vasc Biol 2014; 34:2310-20. [PMID: 25147342 DOI: 10.1161/atvbaha.114.304363] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. APPROACH AND RESULTS Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. CONCLUSIONS Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis.
Collapse
Affiliation(s)
- Rhiannon R Baggott
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.)
| | - Arantzazu Alfranca
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.)
| | - Dolores López-Maderuelo
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.)
| | - Tamer M A Mohamed
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.)
| | - Amelia Escolano
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.)
| | - Jorge Oller
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.)
| | - Beatriz C Ornes
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.)
| | - Sathishkumar Kurusamy
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.)
| | - Farjana B Rowther
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.)
| | - James E Brown
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.)
| | - Delvac Oceandy
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.)
| | - Elizabeth J Cartwright
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.)
| | - Weiguang Wang
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.)
| | - Pablo Gómez-del Arco
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.)
| | - Sara Martínez-Martínez
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.)
| | - Ludwig Neyses
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.)
| | - Juan Miguel Redondo
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.).
| | - Angel Luis Armesilla
- From the Molecular Pharmacology Group, School of Pharmacy (R.R.B., S.K., A.L.A.), Brain Tumor UK Neuro-oncology Research Centre (F.B.R.), and Oncology Group (W.W.), Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom; Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (A.A., D.L.-M., A.E., J.O., B.C.O., P.G.-d.A., S.M.-M., J.M.R.); Human Genetics Department, Institute for Rare Diseases Research, Carlos III Health Institute, Madrid, Spain (A.A.); Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom (T.M.A.M., D.O., E.J.C., L.N.); Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt (T.M.A.M.); Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom (J.E.B.); Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain (P.G.-d.A.); and University of Luxembourg, Walferdange, Luxembourg (L.N.).
| |
Collapse
|
7
|
Oliveras A, Roura-Ferrer M, Solé L, de la Cruz A, Prieto A, Etxebarria A, Manils J, Morales-Cano D, Condom E, Soler C, Cogolludo A, Valenzuela C, Villarroel A, Comes N, Felipe A. Functional assembly of Kv7.1/Kv7.5 channels with emerging properties on vascular muscle physiology. Arterioscler Thromb Vasc Biol 2014; 34:1522-30. [PMID: 24855057 DOI: 10.1161/atvbaha.114.303801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Voltage-dependent K(+) (Kv) channels from the Kv7 family are expressed in blood vessels and contribute to cardiovascular physiology. Although Kv7 channel blockers trigger muscle contractions, Kv7 activators act as vasorelaxants. Kv7.1 and Kv7.5 are expressed in many vessels. Kv7.1 is under intense investigation because Kv7.1 blockers fail to modulate smooth muscle reactivity. In this study, we analyzed whether Kv7.1 and Kv7.5 may form functional heterotetrameric channels increasing the channel diversity in vascular smooth muscles. APPROACH AND RESULTS Kv7.1 and Kv7.5 currents elicited in arterial myocytes, oocyte, and mammalian expression systems suggest the formation of heterotetrameric complexes. Kv7.1/Kv7.5 heteromers, exhibiting different pharmacological characteristics, participate in the arterial tone. Kv7.1/Kv7.5 associations were confirmed by coimmunoprecipitation, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching experiments. Kv7.1/Kv7.5 heterotetramers were highly retained at the endoplasmic reticulum. Studies in HEK-293 cells, heart, brain, and smooth and skeletal muscles demonstrated that the predominant presence of Kv7.5 stimulates release of Kv7.1/Kv7.5 oligomers out of lipid raft microdomains. Electrophysiological studies supported that KCNE1 and KCNE3 regulatory subunits further increased the channel diversity. Finally, the analysis of rat isolated myocytes and human blood vessels demonstrated that Kv7.1 and Kv7.5 exhibited a differential expression, which may lead to channel diversity. CONCLUSIONS Kv7.1 and Kv7.5 form heterotetrameric channels increasing the diversity of structures which fine-tune blood vessel reactivity. Because the lipid raft localization of ion channels is crucial for cardiovascular physiology, Kv7.1/Kv7.5 heteromers provide efficient spatial and temporal regulation of smooth muscle function. Our results shed light on the debate about the contribution of Kv7 channels to vasoconstriction and hypertension.
Collapse
Affiliation(s)
- Anna Oliveras
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Meritxell Roura-Ferrer
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Laura Solé
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Alicia de la Cruz
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Angela Prieto
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Ainhoa Etxebarria
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Joan Manils
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Daniel Morales-Cano
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Enric Condom
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Concepció Soler
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Angel Cogolludo
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Carmen Valenzuela
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Alvaro Villarroel
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Núria Comes
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Antonio Felipe
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.).
| |
Collapse
|
8
|
Lopreiato R, Giacomello M, Carafoli E. The plasma membrane calcium pump: new ways to look at an old enzyme. J Biol Chem 2014; 289:10261-10268. [PMID: 24570005 DOI: 10.1074/jbc.o114.555565] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The three-dimensional structure of the PMCA pump has not been solved, but its basic mechanistic properties are known to repeat those of the other Ca(2+) pumps. However, the pump also has unique properties. They concern essentially its numerous regulatory mechanisms, the most important of which is the autoinhibition by its C-terminal tail. Other regulatory mechanisms involve protein kinases and the phospholipids of the membrane in which the pump is embedded. Permanent activation of the pump, e.g. by calmodulin, is physiologically as harmful to cells as its absence. The concept is now emerging that the global control of cell Ca(2+) may not be the main function of the pump; in some cell types, it could even be irrelevant. The main pump role would be the regulation of Ca(2+) in cell microdomains in which the pump co-segregates with partners that modulate the Ca(2+) message and transduce it to important cell functions.
Collapse
Affiliation(s)
| | - Marta Giacomello
- Venetian Institute of Molecular Medicine, University of Padova, 35129 Padova, Italy
| | - Ernesto Carafoli
- Venetian Institute of Molecular Medicine, University of Padova, 35129 Padova, Italy.
| |
Collapse
|
9
|
Mahavadi S, Bhattacharya S, Kumar DP, Clay C, Ross G, Akbarali HI, Grider JR, Murthy KS. Increased PDE5 activity and decreased Rho kinase and PKC activities in colonic muscle from caveolin-1-/- mice impair the peristaltic reflex and propulsion. Am J Physiol Gastrointest Liver Physiol 2013; 305:G964-74. [PMID: 24157969 PMCID: PMC3882438 DOI: 10.1152/ajpgi.00165.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Caveolae are specialized regions of the plasma membrane that concentrate receptors and associated signaling molecules critical in regulation of cellular response to transmitters and hormones. We have determined the effects of caveolin-1 (Cav-1) deletion, caveolin-1 siRNA, and caveolar disruption in mice on the signaling pathways that mediate contraction and relaxation in colonic smooth muscle and on the components of the peristaltic reflex in isolated tissue and propulsion in intact colonic segments. In Cav-1-/- mice, both relaxation and contraction were decreased in smooth muscle cells and muscle strips, as well as during both phases of the peristaltic reflex and colonic propulsion. The decrease in relaxation in response to the nitric oxide (NO) donor was accompanied by a decrease in cGMP levels and an increase in phosphodiesterase 5 (PDE5) activity. Relaxation by a PDE5-resistant cGMP analog was not affected in smooth muscle of Cav-1-/- mice, suggesting that inhibition of relaxation was due to augmentation of PDE5 activity. Similar effects on relaxation, PDE5 and cGMP were obtained in muscle cells upon disruption of caveolae by methyl-β-cyclodextrin or suppression of Cav-1. Sustained contraction mediated via inhibition of myosin light chain phosphatase (MLCP) activity is regulated by Rho kinase and PKC via phosphorylation of two endogenous inhibitors of MLCP: myosin phosphatase-targeting subunit (MYPT1) and 17-kDa PKC-potentiated protein phosphatase 1 inhibitor protein (CPI-17), respectively. The activity of both enzymes and phosphorylation of MYPT1 and CPI-17 were decreased in smooth muscle from Cav-1-/- mice. We conclude that the integrity of caveolae is essential for contractile and relaxant activity in colonic smooth muscle and the maintenance of neuromuscular function at organ level.
Collapse
Affiliation(s)
- Sunila Mahavadi
- Box 980551, Dept. of Physiology, School of Medicine, Virginia Commonwealth Univ., Richmond, VA 23298-0551.
| | | | | | | | | | - Hamid I. Akbarali
- Departments of 1Physiology and Biophysics, ,2Pharmacology and Toxicology, and ,3Medicine, and VCU Program in Enteric Neuromuscular Science (VPENS), School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - John R. Grider
- Departments of 1Physiology and Biophysics, ,3Medicine, and VCU Program in Enteric Neuromuscular Science (VPENS), School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S. Murthy
- Departments of 1Physiology and Biophysics, ,3Medicine, and VCU Program in Enteric Neuromuscular Science (VPENS), School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
10
|
Isshiki M, Nishimoto M, Mizuno R, Fujita T. FRET-based sensor analysis reveals caveolae are spatially distinct Ca2+ stores in endothelial cells. Cell Calcium 2013; 54:395-403. [PMID: 24120096 DOI: 10.1016/j.ceca.2013.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 01/01/2023]
Abstract
Ca2+-regulating and Ca2+-dependent molecules enriched in caveolae are typically shaped as plasmalemmal invaginations or vesicles. Caveolae structure and subcellular distribution are critical for Ca2+ release from endoplasmic reticulum Ca2+ stores and for Ca2+ influx from the extracellular space into the cell. However, Ca2+ dynamics inside caveolae have never been directly measured and remain uncharacterized. To target the fluorescence resonance energy transfer (FRET)-based Ca2+ sensing protein D1, a mutant of cameleon, to the intra-caveolar space, we made a cDNA construct encoding a chimeric protein of lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) and D1 (LOXD1). Immunofluorescence and immunoelectron microscopy confirmed that a significant portion of LOXD1 was localized with caveolin-1 at morphologically apparent caveolar vesicles in endothelial cells. LOXD1 detected ATP-induced transient Ca2+ decreases by confocal FRET imaging in the presence or absence of extracellular Ca2+. This ATP-induced Ca2+ decrease was abolished following knockdown of caveoin-1, suggesting an association with caveolae. The X-ray spectra obtained by the spot analysis of electron-opaque pyroantimonate precipitates further confirmed that ATP-induced calcium decreases in intra-caveolar vesicles. In conclusion, subplasmalemmal caveolae function as Ca2+-releasable Ca2+ stores in response to ATP. This intracellular local Ca2+ delivery system may contribute to the complex spatiotemporal organization of Ca2+ signaling.
Collapse
Affiliation(s)
- Masashi Isshiki
- Department of Molecular Vascular Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | | | | | | |
Collapse
|
11
|
Jiang L, Bechtel MD, Galeva NA, Williams TD, Michaelis EK, Michaelis ML. Decreases in plasma membrane Ca²⁺-ATPase in brain synaptic membrane rafts from aged rats. J Neurochem 2012; 123:689-99. [PMID: 22889001 DOI: 10.1111/j.1471-4159.2012.07918.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/31/2012] [Accepted: 08/07/2012] [Indexed: 12/18/2022]
Abstract
Precise regulation of free intracellular Ca(2+) concentrations [Ca(2+) ](i) is critical for normal neuronal function, and alterations in Ca(2+) homeostasis are associated with brain aging and neurodegenerative diseases. One of the most important proteins controlling [Ca(2+) ](i) is the plasma membrane Ca(2+) -ATPase (PMCA), the high-affinity transporter that fine tunes the cytosolic nanomolar levels of Ca(2+) . We previously found that PMCA protein in synaptic plasma membranes (SPMs) is decreased with advancing age and the decrease in enzyme activity is much greater than that in protein levels. In this study, we isolated raft and non-raft fractions from rat brain SPMs and used quantitative mass spectrometry to show that the specialized lipid microdomains in SPMs, the rafts, contain 60% of total PMCA, comprised all four isoforms. The raft PMCA pool had the highest specific activity and this decreased progressively with age. The reduction in PMCA protein could not account for the dramatic activity loss. Addition of excess calmodulin to the assay did not restore PMCA activity to that in young brains. Analysis of the major raft lipids revealed a slight age-related increase in cholesterol levels and such increases might enhance membrane lipid order and prevent further loss of PMCA activity.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pharmacology and Toxicology and Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA
| | | | | | | | | | | |
Collapse
|
12
|
Cipriani G, Serboiu CS, Gherghiceanu M, Faussone-Pellegrini MS, Vannucchi MG. NK receptors, Substance P, Ano1 expression and ultrastructural features of the muscle coat in Cav-1(-/-) mouse ileum. J Cell Mol Med 2012; 15:2411-20. [PMID: 21535398 PMCID: PMC3822952 DOI: 10.1111/j.1582-4934.2011.01333.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Caveolin (Cav)-1 is an integral membrane protein of caveolae playing a crucial role in various signal transduction pathways. Caveolae represent the sites for calcium entry and storage especially in smooth muscle cells (SMC) and interstitial cells of Cajal (ICC). Cav-1−/− mice lack caveolae and show abnormalities in pacing and contractile activity of the small intestine. Presently, we investigated, by transmission electron microscopy (TEM) and immunohistochemistry, whether the absence of Cav-1 in Cav-1−/− mouse small intestine affects ICC, SMC and neuronal morphology, the expression of NK1 and NK2 receptors, and of Ano1 (also called Dog1 or TMEM16A), an essential molecule for slow wave activity in gastrointestinal muscles. ICC were also labelled with c-Kit and tachykinergic neurons with Substance P (SP). In Cav-1−/− mice: (i) ICC were Ano1-negative but maintained c-Kit expression, (ii) NK1 and NK2 receptor immunoreactivity was more intense and, in the SMC, mainly intracytoplasmatic, (iii) SP-immunoreactivity was significantly reduced. Under TEM: (i) ICC, SMC and telocytes lacked typical caveolae but had few and large flask-shaped vesicles we called large-sized caveolae; (ii) SMC and ICC contained an extraordinary high number of mitochondria, (iii) neurons were unchanged. To maintain intestinal motility, loss of caveolae and reduced calcium availability in Cav-1–knockout mice seem to be balanced by a highly increased number of mitochondria in ICC and SMC. Loss of Ano-1 expression, decrease of SP content and consequently overexpression of NK receptors suggest that all these molecules are Cav-1–associated proteins.
Collapse
Affiliation(s)
- G Cipriani
- Department of Anatomy, Histology and Forensic Medicine, Section of Histology, University of Florence, Florence, Italy
| | | | | | | | | |
Collapse
|
13
|
Sathish V, Abcejo AJ, VanOosten SK, Thompson MA, Prakash YS, Pabelick CM. Caveolin-1 in cytokine-induced enhancement of intracellular Ca(2+) in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 301:L607-14. [PMID: 21803870 DOI: 10.1152/ajplung.00019.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Diseases such as asthma are characterized by airway hyperresponsiveness. Enhanced airway smooth muscle (ASM) intracellular Ca(2+) ([Ca(2+)](i)) response to agonist stimulation leading to increased airway constriction has been suggested to contribute to airway hyperresponsiveness. Caveolae are flask-shaped plasma membrane invaginations that express the scaffolding protein caveolin and contain multiple proteins important in [Ca(2+)](i) signaling (e.g., agonist receptors, ion channels). We recently demonstrated that caveolae and caveolin-1 are important in [Ca(2+)](i) regulation in human ASM. Proinflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-13 modulate [Ca(2+)](i) in ASM. We hypothesized that cytokine upregulation of caveolar signaling in ASM contributes to enhanced agonist-induced [Ca(2+)](i) in inflammation. Enzymatically dissociated human ASM cells were exposed to medium (control), 20 ng/ml TNF-α, or 50 ng/ml IL-13 for 24 h. Caveolae-enriched membrane fractions displayed substantial increase in caveolin-1 and -2 expressions by TNF-α and IL-13. Transfection with caveolin-1-mRed DNA substantially accelerated and increased plasma membrane caveolin-1 expression by TNF-α and to a lesser extent by IL-13. Caveolin-1 enhancement was inhibited by nuclear factor-κB and mitogen-activated protein kinase inhibitors. In fura 2-loaded ASM cells, [Ca(2+)](i) responses to 1 μM ACh, 10 μM histamine, or 10 nM bradykinin were all exaggerated by TNF-α as well as IL-13 exposure. However, disruption of caveolae using caveolin-1 suppression via small-interfering RNA resulted in significant blunting of agonist-induced [Ca(2+)](i) responses of vehicle and TNF-α-exposed cells. These functional data were correlated to the presence of TNFR(1) receptor (but not the IL-4/IL-13 receptor) within caveolae. Overall, these results indicate that caveolin-1 plays an important role in airway inflammation by modulating the effect of specific cytokines on [Ca(2+)](i).
Collapse
|
14
|
Pande J, Szewczyk MM, Grover AK. Allosteric inhibitors of plasma membrane Ca 2+ pumps: Invention and applications of caloxins. World J Biol Chem 2011; 2:39-47. [PMID: 21537489 PMCID: PMC3083994 DOI: 10.4331/wjbc.v2.i3.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/18/2010] [Accepted: 11/25/2010] [Indexed: 02/05/2023] Open
Abstract
Plasma membrane Ca2+ pumps (PMCA) play a major role in Ca2+ homeostasis and signaling by extruding cellular Ca2+ with high affinity. PMCA isoforms are encoded by four genes which are expressed differentially in various cell types in normal and disease states. Therefore, PMCA isoform selective inhibitors would aid in delineating their role in physiology and pathophysiology. We are testing the hypothesis that extracellular domains of PMCA can be used as allosteric targets to obtain a novel class of PMCA-specific inhibitors termed caloxins. This review presents the concepts behind the invention of caloxins and our progress in this area. A section is also devoted to the applications of caloxins in literature. We anticipate that isoform-selective caloxins will aid in understanding PMCA physiology in health and disease. With strategies to develop therapeutics from bioactive peptides, caloxins may become clinically useful in cardiovascular diseases, neurological disorders, retinopathy, cancer and contraception.
Collapse
Affiliation(s)
- Jyoti Pande
- Jyoti Pande, Ashok K Grover, Department of Medicine, HSC 4N41, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | | | | |
Collapse
|
15
|
Kim BW, Lee CS, Yi JS, Lee JH, Lee JW, Choo HJ, Jung SY, Kim MS, Lee SW, Lee MS, Yoon G, Ko YG. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane. Expert Rev Proteomics 2011; 7:849-66. [PMID: 21142887 DOI: 10.1586/epr.10.87] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.
Collapse
Affiliation(s)
- Bong-Woo Kim
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-ku, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sathish V, Yang B, Meuchel LW, VanOosten SK, Ryu AJ, Thompson MA, Prakash YS, Pabelick CM. Caveolin-1 and force regulation in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 300:L920-9. [PMID: 21421751 DOI: 10.1152/ajplung.00322.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caveolae are specialized membrane microdomains expressing the scaffolding protein caveolin-1. We recently demonstrated the presence of caveolae in human airway smooth muscle (ASM) and the contribution of caveolin-1 to intracellular calcium ([Ca(2+)](i)) regulation. In the present study, we tested the hypothesis that caveolin-1 regulates ASM contractility. We examined the role of caveolins in force regulation of porcine ASM under control conditions as well as TNF-α-induced airway inflammation. In porcine ASM strips, exposure to 10 mM methyl-β-cyclodextrin (CD) or 5 μM of the caveolin-1 specific scaffolding domain inhibitor peptide (CSD) resulted in time-dependent decrease in force responses to 1 μM ACh. Overnight exposure to the cytokine TNF-α (50 ng/ml) accelerated and increased caveolin-1 expression and enhanced force responses to ACh. Suppression of caveolin-1 with small interfering RNA mimicked the effects of CD or CSD. Regarding mechanisms by which caveolae contribute to contractile changes, inhibition of MAP kinase with 10 μM PD98059 did not alter control or TNF-α-induced increases in force responses to ACh. However, inhibiting RhoA with 100 μM fasudil or 10 μM Y27632 resulted in significant decreases in force responses, with lesser effects in TNF-α exposed samples. Furthermore, Ca(2+) sensitivity for force generation was substantially reduced by fasudil or Y27632, an effect even more enhanced in the absence of caveolin-1 signaling. Overall, these results indicate that caveolin-1 is a critical player in enhanced ASM contractility with airway inflammation.
Collapse
Affiliation(s)
- Venkatachalem Sathish
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kuszczak I, Samson SE, Pande J, Shen DQ, Grover AK. Sodium-calcium exchanger and lipid rafts in pig coronary artery smooth muscle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:589-96. [PMID: 21130729 DOI: 10.1016/j.bbamem.2010.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 11/11/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
Abstract
Pig coronary artery smooth muscle expresses, among many other proteins, Na+-Ca²+-exchanger NCX1 and sarcoplasmic reticulum Ca²+ pump SERCA2. NCX1 has been proposed to play a role in refilling the sarcoplasmic reticulum Ca²+ pool suggesting a functional linkage between the two proteins. We hypothesized that this functional linkage may require close apposition of SERCA2 and NCX1 involving regions of plasma membrane like lipid rafts. Lipid rafts are specialized membrane microdomains that appear as platforms to co-localize proteins. To determine the distribution of NCX1, SERCA2 and lipid rafts, we isolated microsomes from the smooth muscle tissue, treated them with non-ionic detergent and obtained fractions of different densities by sucrose density gradient centrifugal flotation. We examined the distribution of NCX1; SERCA2; non-lipid raft plasma membrane marker transferrin receptor protein; lipid raft markers caveolin-1, flotillin-2, prion protein, GM1-gangliosides and cholesterol; and cytoskeletal markers clathrin, actin and myosin. Distribution of markers identified two subsets of lipid rafts that differ in their components. One subset is rich in caveolin-1 and flotillin-2 and the other in GM1-gangliosides, prion protein and cholesterol. NCX1 distribution correlated strongly with SERCA2, caveolin-1 and flotillin-2, less strongly with the other membrane markers and negatively with the cytoskeletal markers. These experiments were repeated with a non-detergent method of treating microsomes with sonication at high pH and similar results were obtained. These observations are consistent with the observed functional linkage between NCX1 and SERCA2 and suggest a role for NCX1 in supplying Ca²+ for refilling the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Iwona Kuszczak
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
18
|
The secretory pathway Ca(2+)-ATPase 1 is associated with cholesterol-rich microdomains of human colon adenocarcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1512-21. [PMID: 20363212 DOI: 10.1016/j.bbamem.2010.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 03/05/2010] [Accepted: 03/25/2010] [Indexed: 11/20/2022]
Abstract
Lipid rafts are often considered as microdomains enriched in sphingomyelin and cholesterol, predominantly residing in the plasma membrane but which originate in earlier compartments of the cellular secretory pathway. Within this pathway, the membranes of the Golgi complex represent a transition stage between the cholesterol-poor membranes of the endoplasmic reticulum (ER) and the cholesterol-rich plasma membrane. The rafts are related to detergent-resistant membranes, which because of their ordered structure are poorly penetrated by cold non-ionic detergents and float in density gradient centrifugation. In this study the microdomain niche of the Golgi-resident SPCA Ca(2+)/Mn(2+) pumps was investigated in HT29 cells by Triton X-100 detergent extraction and density-gradient centrifugation. Similarly to cholesterol and the raft-resident flotillin-2, SPCA1 was found mainly in detergent-resistant fractions, while SERCA3 was detergent-soluble. Furthermore, cholesterol depletion of cells resulted in redistribution of flotillin-2 and SPCA1 to the detergent-soluble fractions of the density gradient. Additionally, the time course of solubilization by Triton X-100 was investigated in live COS-1 and HT29 cells expressing fluorescent SERCA2b, SPCA1d or SPCA2. In both cell types, the ER-resident SERCA2b protein was gradually solubilized, while SPCA1d resisted to detergent solubilization. SPCA2 was more sensitive to detergent extraction than SPCA1d. To investigate the functional impact of cholesterol on SPCA1, ATPase activity was monitored. Depletion of cholesterol inhibited the activity of SPCA1d, while SERCA2b function was not altered. From these results we conclude that SPCA1 is associated with cholesterol-rich domains of HT29 cells and that the cholesterol-rich environment is essential for the functioning of the pump.
Collapse
|
19
|
Shakirova Y, Mori M, Ekman M, Erjefält J, Uvelius B, Swärd K. Human urinary bladder smooth muscle is dependent on membrane cholesterol for cholinergic activation. Eur J Pharmacol 2010; 634:142-8. [PMID: 20176011 DOI: 10.1016/j.ejphar.2010.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/09/2009] [Accepted: 02/09/2010] [Indexed: 01/18/2023]
Abstract
Voiding is mediated by muscarinic receptors in urinary bladder smooth muscle cells. Lipid rafts and caveolae are cholesterol enriched membrane domains that modulate the activity of G protein-coupled receptors and second messenger systems. Conflicting findings regarding sensitivity of muscarinic signalling to cholesterol desorption, which perturbs lipid rafts and caveolae, have been reported, and no study has used human urinary bladder. Here, the dependence of human bladder muscarinic receptor signalling on plasma membrane cholesterol was examined. Nerve-mediated contraction, elicited by electrical field stimulation of human bladder strips, was impaired by desorption of cholesterol using methyl-beta-cyclodextrin, and the concentration-response curve for the muscarinic agonist carbachol was right-shifted. No effect of cholesterol desorption was observed in rat, and in mouse increased maximum contraction was seen. Expression of caveolin-1, PLCbeta1 and M3 muscarinic receptors did not differ between species in a manner that would explain the differential sensitivity to cholesterol desorption. In human bladder, threshold depolarisation eliminated the difference between cyclodextrin-treated and control preparations. Contraction elicited by depolarisation per se was not affected. M3 muscarinic receptors appeared clustered along plasma membrane profiles as shown by immunohistochemical staining of human bladder, but no redistribution in association with cholesterol reduction was seen. Thus, muscarinic receptor-induced contraction of the urinary bladder exhibits species-specific differences in its sensitivity to cholesterol desorption suggesting differential roles of lipid rafts/caveolae in muscarinic receptor signalling between species.
Collapse
Affiliation(s)
- Yulia Shakirova
- Department of Experimental Medical Science, Lund University, Biomedical Centre, BMC D12, SE-221 84 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Ca2+-ATPases (pumps) are key actors in the regulation of Ca2+ in eukaryotic cells and are thus essential to the correct functioning of the cell machinery. They have high affinity for Ca2+ and can efficiently regulate it down to very low concentration levels. Two of the pumps have been known for decades (the SERCA and PMCA pumps); one (the SPCA pump) has only become known recently. Each pump is the product of a multigene family, the number of isoforms being further increased by alternative splicing of the primary transcripts. The three pumps share the basic features of the catalytic mechanism but differ in a number of properties related to tissue distribution, regulation, and role in the cellular homeostasis of Ca2+. The molecular understanding of the function of the pumps has received great impetus from the solution of the three-dimensional structure of one of them, the SERCA pump. These spectacular advances in the structure and molecular mechanism of the pumps have been accompanied by the emergence and rapid expansion of the topic of pump malfunction, which has paralleled the rapid expansion of knowledge in the topic of Ca2+-signaling dysfunction. Most of the pump defects described so far are genetic: when they are very severe, they produce gross and global disturbances of Ca2+ homeostasis that are incompatible with cell life. However, pump defects may also be of a type that produce subtler, often tissue-specific disturbances that affect individual components of the Ca2+-controlling and/or processing machinery. They do not bring cells to immediate death but seriously compromise their normal functioning.
Collapse
|
21
|
Aung CS, Ye W, Plowman G, Peters AA, Monteith GR, Roberts-Thomson SJ. Plasma membrane calcium ATPase 4 and the remodeling of calcium homeostasis in human colon cancer cells. Carcinogenesis 2009; 30:1962-9. [DOI: 10.1093/carcin/bgp223] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
22
|
Daniel EE, Eteraf T, Sommer B, Cho WJ, Elyazbi A. The role of caveolae and caveolin 1 in calcium handling in pacing and contraction of mouse intestine. J Cell Mol Med 2009; 13:352-64. [PMID: 19166483 PMCID: PMC3823361 DOI: 10.1111/j.1582-4934.2008.00667.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 01/06/2009] [Indexed: 11/29/2022] Open
Abstract
In mouse intestine, caveolae and caveolin-1 (Cav-1) are present in smooth muscle (responsible for executing contractions) and in interstitial cells of Cajal (ICC; responsible for pacing contractions). We found that a number of calcium handling/dependent molecules are associated with caveolae, including L-type Ca(2+) channels, Na(+)-Ca(2+) exchanger type 1 (NCX1), plasma membrane Ca(2+) pumps and neural nitric oxide synthase (nNOS), and that caveolae are close to the peripheral endo-sarcoplasmic reticulum (ER-SR). Also we found that this assemblage may account for recycling of calcium from caveolar domains to SR through L-type Ca (+) channels to sustain pacing and contractions. Here we test this hypothesis further comparing pacing and contractions under various conditions in longitudinal muscle of Cav-1 knockout mice (lacking caveolae) and in their genetic controls. We used a procedure in which pacing frequencies (indicative of functioning of ICC) and contraction amplitudes (indicative of functioning of smooth muscle) were studied in calcium-free media with 100 mM ethylene glycol tetra-acetic acid (EGTA). The absence of caveolae in ICC inhibited the ability of ICC to maintain frequencies of contraction in the calcium-free medium by reducing recycling of calcium from caveolar plasma membrane to SR when the calcium stores were initially full. This recycling to ICC involved primarily L-type Ca(2+) channels; i.e. pacing frequencies were enhanced by opening and inhibited by closing these channels. However, when these stores were depleted by block of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) pump or calcium release was activated by carbachol, the absence of Cav-1 or caveolae had little or no effect. The absence of caveolae had little impact on contraction amplitudes, indicative of recycling of calcium to SR in smooth muscle. However, the absence of caveolae slowed the rate of loss of calcium from SR under some conditions in both ICC and smooth muscle, which may reflect the loss of proximity to store operated Ca channels. We found evidence that these channels were associated with Cav-1. These changes were all consistent with the hypothesis that a reduction of the extracellular calcium associated with caveolae in ICC of the myenteric plexus, the state of L-type Ca(2+) channels or an increase in the distance between caveolae and SR affected calcium handling.
Collapse
Affiliation(s)
- Edwin E Daniel
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | |
Collapse
|
23
|
Gherghiceanu M, Hinescu ME, Popescu LM. Myocardial interstitial Cajal-like cells (ICLC) in caveolin-1 KO mice. J Cell Mol Med 2009; 13:202-6. [PMID: 19175701 PMCID: PMC3823047 DOI: 10.1111/j.1582-4934.2008.00615.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 12/22/2008] [Indexed: 11/29/2022] Open
Abstract
Abstract We compared, by transmission electron microscopy (TEM), the ultrastructure of interstitial Cajal-like cells (ICLC) in normal mammalian myocardium versus caveolin-1 null mice. TEM showed that myocardial ICLCs of caveolin-1-deficient mice retain their main ultrastructural characteristics, for example, location among cardiomyocytes, close vicinity to nerves and/or blood capillaries, specialized cell-to-cell junctions, presence of 2-3 typical processes, which are very long (several tens of micrometres), but are very thin (0.1-0.2 microm) and moniliform. However, the most striking modification of myocardial ICLC in caveolin-1 KO mice was the absence of caveolae. Beyond this main observation, three other findings could be reported: (1) the absence of caveolae in capillary endothelium, (2) persistence of (some) caveolae at the level of cardiomyocte sarcolemma or vascular smooth muscle cell sarcolemma and (3) (un)expected ultrastructural modifications such as increased thickness of capillary basement membrane and increased autophagy of several cardiomyocytes.
Collapse
Affiliation(s)
- M Gherghiceanu
- ‘Victor Babes’ National Institute of Pathology, Bucharest, Romania
| | - M E Hinescu
- ‘Victor Babes’ National Institute of Pathology, Bucharest, Romania
- Department of Cellular and Molecular Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest, Romania
| | - L M Popescu
- ‘Victor Babes’ National Institute of Pathology, Bucharest, Romania
- Department of Cellular and Molecular Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest, Romania
- ‘I. Cantacuzino’ Institute, Bucharest, Romania
| |
Collapse
|