1
|
Kim KK, Lee TH, Park BS, Kang D, Kim DH, Jeong B, Kim JW, Yang HR, Kim HR, Jin S, Back SH, Park JW, Kim JG, Lee BJ. Bridging Energy Need and Feeding Behavior: The Impact of eIF2α Phosphorylation in AgRP Neurons. Diabetes 2023; 72:1384-1396. [PMID: 37478284 DOI: 10.2337/db23-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Eukaryotic translation initiation factor 2α (eIF2α) is a key mediator of the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR). In mammals, eIF2α is phosphorylated by overnutrition-induced ER stress and is related to the development of obesity. Here, we studied the function of phosphorylated eIF2α (p-eIF2α) in agouti-related peptide (AgRP) neurons using a mouse model (AgRPeIF2αA/A) with an AgRP neuron-specific substitution from Ser 51 to Ala in eIF2α, which impairs eIF2α phosphorylation in AgRP neurons. These AgRPeIF2αA/A mice had decreases in starvation-induced AgRP neuronal activity and food intake and an increased responsiveness to leptin. Intriguingly, impairment of eIF2α phosphorylation produced decreases in the starvation-induced expression of UPR and autophagy genes in AgRP neurons. Collectively, these findings suggest that eIF2α phosphorylation regulates AgRP neuronal activity by affecting intracellular responses such as the UPR and autophagy during starvation, thereby participating in the homeostatic control of whole-body energy metabolism. ARTICLE HIGHLIGHTS This study examines the impact of eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, triggered by an energy deficit, on hypothalamic AgRP neurons and its subsequent influence on whole-body energy homeostasis. Impaired eIF2α phosphorylation diminishes the unfolded protein response and autophagy, both of which are crucial for energy deficit-induced activation of AgRP neurons. This study highlights the significance of eIF2α phosphorylation as a cellular marker indicating the availability of energy in AgRP neurons and as a molecular switch that regulates homeostatic feeding behavior.
Collapse
Affiliation(s)
- Kwang Kon Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Tae Hwan Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Byong Seo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Dasol Kang
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Dong Hee Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Bora Jeong
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Jin Woo Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Hye Rim Yang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Han Rae Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC
| | - Sungho Jin
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY
| | - Sung Hoon Back
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
- Basic-Clinical Convergence Research Center, University of Ulsan, Ulsan, Republic of Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
- Basic-Clinical Convergence Research Center, University of Ulsan, Ulsan, Republic of Korea
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
- Basic-Clinical Convergence Research Center, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
2
|
Abdelhamid Elgendy WM, Haggag YA, El-Nouby KA, El-Kowrany SI, El Marhoumy SM. Evaluation of the effect of guanabenz-loaded nanoparticles on chronic toxoplasmosis in mice. Exp Parasitol 2023; 246:108460. [PMID: 36642299 DOI: 10.1016/j.exppara.2023.108460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/06/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Chronic toxoplasmosis which is positively correlated with many neuropsychiatric problems has no curative treatment till now; due to the resistant tissue cysts especially in the brain. In search of an effective treatment, guanabenz-loaded polyethylene glycol poly lactic-co-glycolic acid (PEG-PLGA) nanoparticles was evaluated against chronic experimental toxoplasmosis. For this purpose, each mouse was infected with 10 cysts of Toxoplasma gondii (ME 49 strain). Treated mice received either guanabenz alone (5 mg/kg/day) in subgroup IIa or guanabenz-loaded nanoparticles by full dose in subgroup IIb or guanabenz-loaded nanoparticles by the half dose (2.5 mg/kg/day) in subgroup IIc. Subgroup Ie was treated by pyrimethamine and sulfadiazine. The treatment started on day 25 post-infection for 19 successive days. Then Parasitological, histopathological, immunohistochemical, immunological and ultrastructural morphological studies were performed. The results showed that: subgroup IIb showed the highest statistically significant reduction in the neuroinflammation and brain tissue cysts (77%) with a significant higher efficacy in comparison with pyrimethamine and sulfadiazine and showed the highest level of IFN-γ, while the lowest level was in subgroup IIa. All group II mice showed similar changes of depression and compression of the wall of the cyst. This is marked in subgroup IIb with release of crescent shaped bradyzoite outside the cyst. PEG-PLGA nanoparticles had no toxic effect on the liver or the kidney of the mice. It could be concluded that guanabenz-loaded PEG-PLGA nanoparticles could be promising and safe for treatment of chronic toxoplasmosis.
Collapse
Affiliation(s)
| | - Yusuf A Haggag
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Kholoud A El-Nouby
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| | - Samy I El-Kowrany
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| | | |
Collapse
|
3
|
Xie J, Jiang R, Xie W, Cao B, More SS. LC-MS/MS determination of guanabenz E/Z isomers and its application to in vitro and in vivo DMPK profiling studies. J Pharm Biomed Anal 2021; 205:114331. [PMID: 34455203 DOI: 10.1016/j.jpba.2021.114331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022]
Abstract
Endoplasmic reticulum (ER) stress underlies a variety of disorders involving inflammation, such as diabetes, neurodegenerative diseases. Guanabenz acetate (Wytensin®, GA), a clinically approved antihypertensive drug, efficiently counteracts ER stress. The entirety of clinically used GA is the E-isomer, while the Z-isomer is known to lack significant hypotensive properties. We recently discovered that the Z-isomer retains anti-ER stress activity. Coupled with its lack of sedative effects, (Z)-GA is well positioned as a potential therapeutic for a host of ER stress-related disorders. We set forth to characterize the metabolism and pharmacokinetics (DMPK) of (Z)-GA in vitro and in vivo. Toward this end, a reliable and sensitive LC-MS/MS method for simultaneous determination of the (E)- and (Z)-guanabenz was developed. Chromatographic separation of the isomers was achieved on a C18 reverse phase column with a gradient elution. Tandem mass spectrometric detection was conducted using an AB Sciex 5500 QTrap mass spectrometer with positive electrospray ionization. Full validation of the method was performed in mouse plasma with a simple and low plasma volume protein precipitation procedure. The method demonstrated good linearity, reproducibility, and accuracy over a range of 0.5-1000 nM with minimal matrix effect and excellent extraction efficiency. In addition, the developed method was successfully applied to DMPK studies of the GA isomers in vitro and in vivo. Results of these studies revealed for the first time that the DMPK profile of (Z)-guanabenz is distinct from that of (E)-guanabenz, with higher apparent volume of distribution (Vd) and clearance, presumably due to lower plasma protein binding.
Collapse
Affiliation(s)
- Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Rongrong Jiang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bin Cao
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Grebert C, Becq F, Vandebrouck C. Focus on TRP channels in cystic fibrosis. Cell Calcium 2019; 81:29-37. [DOI: 10.1016/j.ceca.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022]
|
5
|
Won J, Lee PR, Oh SB. Alpha 2 adrenoceptor agonist guanabenz directly inhibits hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels in mesencephalic trigeminal nucleus neurons. Eur J Pharmacol 2019; 854:320-327. [PMID: 31009638 DOI: 10.1016/j.ejphar.2019.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 10/27/2022]
Abstract
Alpha 2 (α2-) adrenoceptor agonists, such as clonidine or dexmedetomidine, have been found to inhibit hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels, not only by reducing intracellular cyclic AMP levels but also by directly blocking HCN channels. In this study, we examined the inhibitory effect of guanabenz, a centrally acting α2-adrenoceptor agonist with high specificity for α2A-subtype, on HCN channels in mesencephalic trigeminal nucleus (MTN) neurons which robustly express HCN channels and have been suggested to coexpress α2A-adrenoceptors. By performing whole-cell patch-clamp recording on MTN neurons in brainstem slices, hyperpolarization-activated inward current (Ih) was examined during guanabenz treatment. Guanabenz inhibited Ih in a dose-dependent manner, which was likely to be ZD7288-sensitive HCN current as it did not affect barium-sensitive inward rectifying potassium current. Guanabenz not only inhibited Ih but also shifted the voltage-dependent activation curve to hyperpolarizing potentials. Interestingly, Ih inhibition by guanabenz was not reversed by α2-adrenoceptor antagonist atipamezole treatment or by intracellular cyclic AMP perfusion, suggesting that the inhibition may not result from α2A-adrenoceptor signalling pathway but from direct inhibition of HCN channels. Coherent to our electrophysiological results, single-cell RT-PCR revealed that most MTN neurons lack α2A-adrenoceptor mRNA. Our study demonstrates that guanabenz can directly inhibit HCN channels in addition to its primary role of activating α2A-adrenoceptors.
Collapse
Affiliation(s)
- Jonghwa Won
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Pa Reum Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seog Bae Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea; Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Republic of Korea.
| |
Collapse
|
6
|
Sowers CR, Wang R, Bourne RA, McGrath BC, Hu J, Bevilacqua SC, Paton JC, Paton AW, Collardeau-Frachon S, Nicolino M, Cavener DR. The protein kinase PERK/EIF2AK3 regulates proinsulin processing not via protein synthesis but by controlling endoplasmic reticulum chaperones. J Biol Chem 2018; 293:5134-5149. [PMID: 29444822 DOI: 10.1074/jbc.m117.813790] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/06/2018] [Indexed: 11/06/2022] Open
Abstract
Loss-of-function mutations of the protein kinase PERK (EIF2AK3) in humans and mice cause permanent neonatal diabetes and severe proinsulin aggregation in the endoplasmic reticulum (ER), highlighting the essential role of PERK in insulin production in pancreatic β cells. As PERK is generally known as a translational regulator of the unfolded protein response (UPR), the underlying cause of these β cell defects has often been attributed to derepression of proinsulin synthesis, resulting in proinsulin overload in the ER. Using high-resolution imaging and standard protein fractionation and immunological methods we have examined the PERK-dependent phenotype more closely. We found that whereas proinsulin aggregation requires new protein synthesis, global protein and proinsulin synthesis are down-regulated in PERK-inhibited cells, strongly arguing against proinsulin overproduction being the root cause of their aberrant ER phenotype. Furthermore, we show that PERK regulates proinsulin proteostasis by modulating ER chaperones, including BiP and ERp72. Transgenic overexpression of BiP and BiP knockdown (KD) both promoted proinsulin aggregation, whereas ERp72 overexpression and knockdown rescued it. These findings underscore the importance of ER chaperones working in concert to achieve control of insulin production and identify a role for PERK in maintaining a functional balance among these chaperones.
Collapse
Affiliation(s)
- Carrie R Sowers
- From the Department of Biology, Penn State University, University Park, Pennsylvania 16802
| | - Rong Wang
- From the Department of Biology, Penn State University, University Park, Pennsylvania 16802
| | - Rebecca A Bourne
- From the Department of Biology, Penn State University, University Park, Pennsylvania 16802
| | - Barbara C McGrath
- From the Department of Biology, Penn State University, University Park, Pennsylvania 16802
| | - Jingjie Hu
- From the Department of Biology, Penn State University, University Park, Pennsylvania 16802
| | - Sarah C Bevilacqua
- From the Department of Biology, Penn State University, University Park, Pennsylvania 16802
| | - James C Paton
- the Department of Molecular and Cellular Biology, Research Centre for Infectious Diseases, University of Adelaide, Adelaide 5005, Australia
| | - Adrienne W Paton
- the Department of Molecular and Cellular Biology, Research Centre for Infectious Diseases, University of Adelaide, Adelaide 5005, Australia
| | - Sophie Collardeau-Frachon
- the Department of Pathology, Hôpital-Femme-Mère-Enfant, Hospices Civils de Lyon, Université Claude Bernard Lyon I and CarMeN, INSERM Unit U1060, 69677 Bron, France, and
| | - Marc Nicolino
- the Service d'endocrinologie et de diabétologie pédiatriques et maladies héréditaires du métabolisme, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, F-69677 Bron, France
| | - Douglas R Cavener
- From the Department of Biology, Penn State University, University Park, Pennsylvania 16802,
| |
Collapse
|
7
|
Joshi AU, Kornfeld OS, Mochly-Rosen D. The entangled ER-mitochondrial axis as a potential therapeutic strategy in neurodegeneration: A tangled duo unchained. Cell Calcium 2016; 60:218-34. [PMID: 27212603 DOI: 10.1016/j.ceca.2016.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) and mitochondrial function have both been shown to be critical events in neurodegenerative diseases. The ER mediates protein folding, maturation, sorting as well acts as calcium storage. The unfolded protein response (UPR) is a stress response of the ER that is activated by the accumulation of misfolded proteins within the ER lumen. Although the molecular mechanisms underlying ER stress-induced apoptosis are not completely understood, increasing evidence suggests that ER and mitochondria cooperate to signal cell death. Similarly, calcium-mediated mitochondrial function and dynamics not only contribute to ATP generation and calcium buffering but are also a linchpin in mediating cell fate. Mitochondria and ER form structural and functional networks (mitochondria-associated ER membranes [MAMs]) essential to maintaining cellular homeostasis and determining cell fate under various pathophysiological conditions. Regulated Ca(2+) transfer from the ER to the mitochondria is important in maintaining control of pro-survival/pro-death pathways. In this review, we summarize the latest therapeutic strategies that target these essential organelles in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA
| | - Opher S Kornfeld
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA.
| |
Collapse
|
8
|
Bertrand J, Dannhoffer L, Antigny F, Vachel L, Jayle C, Vandebrouck C, Becq F, Norez C. A functional tandem between transient receptor potential canonical channels 6 and calcium-dependent chloride channels in human epithelial cells. Eur J Pharmacol 2015; 765:337-45. [DOI: 10.1016/j.ejphar.2015.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 07/21/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
|
9
|
Neuber C, Uebeler J, Schulze T, Sotoud H, El-Armouche A, Eschenhagen T. Guanabenz interferes with ER stress and exerts protective effects in cardiac myocytes. PLoS One 2014; 9:e98893. [PMID: 24892553 PMCID: PMC4044035 DOI: 10.1371/journal.pone.0098893] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/08/2014] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has been implicated in a variety of cardiovascular diseases. During ER stress, disruption of the complex of protein phosphatase 1 regulatory subunit 15A and catalytic subunit of protein phosphatase 1 by the small molecule guanabenz (antihypertensive, α2-adrenoceptor agonist) and subsequent inhibition of stress-induced dephosphorylation of eukaryotic translation initiation factor 2α (eIF2α) results in prolonged eIF2α phosphorylation, inhibition of protein synthesis and protection from ER stress. In this study we assessed whether guanabenz protects against ER stress in cardiac myocytes and affects the function of 3 dimensional engineered heart tissue (EHT). We utilized neonatal rat cardiac myocytes for the assessment of cell viability and activation of ER stress-signalling pathways and EHT for functional analysis. (i) Tunicamycin induced ER stress as measured by increased mRNA and protein levels of glucose-regulated protein 78 kDa, P-eIF2α, activating transcription factor 4, C/EBP homologous protein, and cell death. (ii) Guanabenz had no measurable effect alone, but antagonized the effects of tunicamycin on ER stress markers. (iii) Tunicamycin and other known inducers of ER stress (hydrogen peroxide, doxorubicin, thapsigargin) induced cardiac myocyte death, and this was antagonized by guanabenz in a concentration- and time-dependent manner. (iv) ER stressors also induced acute or delayed contractile dysfunction in spontaneously beating EHTs and this was, with the notable exception of relaxation deficits under thapsigargin, not significantly affected by guanabenz. The data confirm that guanabenz interferes with ER stress-signalling and has protective effects on cell survival. Data show for the first time that this concept extends to cardiac myocytes. The modest protection in EHTs points to more complex mechanisms of force regulation in intact functional heart muscle.
Collapse
Affiliation(s)
- Christiane Neuber
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Hamburg/Kiel/Luebeck, Germany
| | - June Uebeler
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Hamburg/Kiel/Luebeck, Germany
| | - Thomas Schulze
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Hamburg/Kiel/Luebeck, Germany
| | - Hannieh Sotoud
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Hamburg/Kiel/Luebeck, Germany
| | - Ali El-Armouche
- Department of Pharmacology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany
- Department of Pharmacology, University of Technology Dresden, Dresden, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Hamburg/Kiel/Luebeck, Germany
- * E-mail:
| |
Collapse
|
10
|
Blood glucose, acid–base and electrolyte changes during loading doses of alpha2-adrenergic agonists followed by constant rate infusions in horses. Vet J 2013; 198:684-9. [DOI: 10.1016/j.tvjl.2013.09.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/20/2013] [Accepted: 09/29/2013] [Indexed: 11/21/2022]
|
11
|
Sasvari Z, Kovalev N, Nagy PD. The GEF1 proton-chloride exchanger affects tombusvirus replication via regulation of copper metabolism in yeast. J Virol 2013; 87:1800-10. [PMID: 23192874 PMCID: PMC3554144 DOI: 10.1128/jvi.02003-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/19/2012] [Indexed: 11/20/2022] Open
Abstract
Replication of plus-strand RNA viruses [(+)RNA viruses] is performed by viral replicases, whose function is affected by many cellular factors in infected cells. In this paper, we demonstrate a surprising role for Gef1p proton-chloride exchanger in replication of Tomato bushy stunt virus (TBSV) model (+)RNA virus. A genetic approach revealed that Gef1p, which is the only proton-chloride exchanger in Saccharomyces cerevisiae, is required for TBSV replication in the yeast model host. We also show that the in vitro activity of the purified tombusvirus replicase from gef1Δ yeast was low and that the in vitro assembly of the viral replicase in a cell extract was inhibited by the cytosolic fraction obtained from gef1Δ yeast. Altogether, our data reveal that Gef1p modulates TBSV replication via regulating Cu(2+) metabolism in the cell. This conclusion is supported by several lines of evidence, including the direct inhibitory effect of Cu(2+) ions on the in vitro assembly of the viral replicase, on the activity of the viral RNA-dependent RNA polymerase, and an inhibitory effect of deletion of CCC2 copper pump on TBSV replication in yeast, while altered iron metabolism did not reduce TBSV replication. In addition, applying a chloride channel blocker impeded TBSV replication in Nicotiana benthamiana protoplasts or in whole plants. Overall, blocking Gef1p function seems to inhibit TBSV replication through altering Cu(2+) ion metabolism in the cytosol, which then inhibits the normal functions of the viral replicase.
Collapse
Affiliation(s)
- Zsuzsanna Sasvari
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | | | | |
Collapse
|
12
|
Lin S, Sui J, Cotard S, Fung B, Andersen J, Zhu P, El Messadi N, Lehar J, Lee M, Staunton J. Identification of synergistic combinations of F508del cystic fibrosis transmembrane conductance regulator (CFTR) modulators. Assay Drug Dev Technol 2010; 8:669-84. [PMID: 21050065 DOI: 10.1089/adt.2010.0313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited, life-threatening disease caused by mutations in the gene encoding cystic fibrosis transmembrane conductance regulator (CFTR), an ABC transporter-class protein and ion channel that transports ions across epithelial cell membranes. The most common mutation leads to the deletion of a single phenylalanine, and the resulting protein, F508del-CFTR, shows reduced trafficking to the membrane and defective channel gating. The ideal therapeutic approach would address both of these defects and restore channel function at the same time. We describe here the application of a combination high-throughput screening to search for synergistic modulators of F508del-CFTR. With the adapted Fischer rat thyroid-yellow fluorescent protein halide flux assay to the combination high-throughput screening platform, we identified many interesting single agents as CFTR modulators from a library of approved drugs and mechanistic probe compounds, and combinations that synergistically modulate F508del-CFTR channel function in Fischer rat thyroid cells, demonstrating the potential for combination therapeutics to address the defects that cause CF.
Collapse
Affiliation(s)
- Stephen Lin
- Zalicus, Inc., Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Becq F. Cystic fibrosis transmembrane conductance regulator modulators for personalized drug treatment of cystic fibrosis: progress to date. Drugs 2010; 70:241-59. [PMID: 20166764 DOI: 10.2165/11316160-000000000-00000] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article considers the issue of personalized drug discovery for the orphan disease cystic fibrosis (CF) to deliver a candidate for therapeutic development. CF is a very complicated disease due to numerous anomalies of the gene leading to progressive severity and morbidity. Despite extensive research efforts, 20 years after the cloning of the CF gene, CF patients are still waiting for a curative treatment as prescribed medications still target the secondary manifestations of the disease rather than the gene or the CF transmembrane conductance regulator (CFTR) protein. New therapeutics aimed at improving mutant CFTR functions, also known as 'protein repair therapy' are nevertheless hoped and predicted to replace some of the currently used therapy, while improving the quality of life as well as life expectancy of CF patients. Although there is substantial variability in the cost of treating CF between countries, a protein repair therapy should also alleviate the financial burden of medical costs for CF patients and their families. Finding new drugs or rediscovering old ones for CF is critically dependent on the delivery of molecular and structural information on the CFTR protein, on its mutated version and on the network of CFTR-interacting proteins. The expertise needed to turn compounds into marketable drugs for CF will depend on our ability to provide biological information obtained from pertinent models of the disease and on our success in transferring safe molecules to clinical trials. Predicting a drug-induced response is also an attractive challenge that could be rapidly applied to patients.
Collapse
Affiliation(s)
- Frédéric Becq
- Institute of Physiology and Cellular Biology, University of Poitiers, National Centre of Scientific Research, Poitiers, France.
| |
Collapse
|
14
|
Antigny F, Norez C, Dannhoffer L, Bertrand J, Raveau D, Corbi P, Jayle C, Becq F, Vandebrouck C. Transient receptor potential canonical channel 6 links Ca2+ mishandling to cystic fibrosis transmembrane conductance regulator channel dysfunction in cystic fibrosis. Am J Respir Cell Mol Biol 2010; 44:83-90. [PMID: 20203293 DOI: 10.1165/rcmb.2009-0347oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In cystic fibrosis (CF), abnormal control of cellular Ca(2+) homeostasis is observed. We hypothesized that transient receptor potential canonical (TRPC) channels could be a link between the abnormal Ca(2+) concentrations in CF cells and cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. We measured the TRPC and CFTR activities (using patch clamp and fluorescent probes) and interactions (using Western blotting and co-immunoprecipitation) in CF and non-CF human epithelial cells treated with specific and scrambled small interfering RNA (siRNA). The TRPC6-mediated Ca(2+) influx was abnormally increased in CF compared with non-CF cells. After correction of abnormal F508 deletion (del)-CFTR trafficking in CF cells, the level of TRPC6-dependent Ca(2+) influx was also normalized. In CF cells, siRNA-TRPC6 reduced this abnormal Ca(2+) influx. In non-CF cells, siRNA-TRPC6 reduced the Ca(2+) influx and activity wild-type (wt)-CFTR. Co-immunoprecipitation experiments revealed TRPC6/CFTR and TRPC6/F508 del-CFTR interactions in CF or non-CF epithelial cells. Although siRNA-CFTR reduced the activity of wt-CFTR in non-CF cells and of F508 del-CFTR in corrected CF cells, it also enhanced TRPC6-dependent Ca(2+) influx in non-CF cells, mimicking the results obtained in CF cells. Finally, this functional and reciprocal coupling between CFTR and TRPC6 was also detected in non-CF ciliated human epithelial cells freshly isolated from lung samples. These data indicate that TRPC6 and CFTR are functionally and reciprocally coupled within a molecular complex in airway epithelial human cells. Because this functional coupling is lost in CF cells, the TRPC6-dependent Ca(2+) influx is abnormal.
Collapse
Affiliation(s)
- Fabrice Antigny
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, Centre National de la Recherche Scientifique, 40 Avenue du Recteur Pineau, Poitiers, France
| | | | | | | | | | | | | | | | | |
Collapse
|