1
|
de Moura AL, Brum PC, de Carvalho AETS, Spadari RC. Effect of stress on the chronotropic and inotropic responses to β-adrenergic agonists in isolated atria of KOβ2 mice. Life Sci 2023; 322:121644. [PMID: 37004731 DOI: 10.1016/j.lfs.2023.121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Altered sensitivity to the chronotropic and inotropic effects of catecholamines and reduction in β1/β2-adrenoceptor (β1/β2-AR) ratio were reported in failing and in senescent human heart, as well as in isolated atria and ventricle of rats submitted to stress. This was due to downregulation of β1-AR with or without up-regulation of β2-AR. AIMS To investigate the stress-induced behavior of β1-AR in the heart of mice expressing a non-functional β2-AR subtype. The guiding hypothesis is that the absence of β2-AR signaling will not affect the behavior of β1-AR during stress and that those are independent processes. MATERIALS AND METHODS The chronotropic and inotropic responses to β-AR agonists in isolated atria of stressed mice expressing a non-functional β2-AR were analyzed. The mRNA and protein expressions of β1- and β2-AR were also determined. KEY FINDINGS No deaths were observed in mice under stress protocol. Atria of stressed mice displayed reduced sensitivity to isoprenaline compared to the controls, an effect that was abolished by the β2- and β1-AR antagonists 50 nM ICI118,551 and 300 nM CGP20712A, respectively. Sensitivity and maximum response to the β-agonists dobutamine and salbutamol were not altered by stress or ICI118,551. The responses to dobutamine and salbutamol were prevented by CGP20712A. The expression of β1-AR was reduced at protein levels. SIGNIFICANCE Collectively, our data provide evidence that the cardiac β2-AR is not essential for survival in a stressful situation and that the stress-induced reduction of β1-AR expression was independent of the β2-AR presence.
Collapse
|
2
|
MacDonald EA, Rose RA, Quinn TA. Neurohumoral Control of Sinoatrial Node Activity and Heart Rate: Insight From Experimental Models and Findings From Humans. Front Physiol 2020; 11:170. [PMID: 32194439 PMCID: PMC7063087 DOI: 10.3389/fphys.2020.00170] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
The sinoatrial node is perhaps one of the most important tissues in the entire body: it is the natural pacemaker of the heart, making it responsible for initiating each-and-every normal heartbeat. As such, its activity is heavily controlled, allowing heart rate to rapidly adapt to changes in physiological demand. Control of sinoatrial node activity, however, is complex, occurring through the autonomic nervous system and various circulating and locally released factors. In this review we discuss the coupled-clock pacemaker system and how its manipulation by neurohumoral signaling alters heart rate, considering the multitude of canonical and non-canonical agents that are known to modulate sinoatrial node activity. For each, we discuss the principal receptors involved and known intracellular signaling and protein targets, highlighting gaps in our knowledge and understanding from experimental models and human studies that represent areas for future research.
Collapse
Affiliation(s)
- Eilidh A. MacDonald
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Robert A. Rose
- Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Synergic PDE3 and PDE4 control intracellular cAMP and cardiac excitation-contraction coupling in a porcine model. J Mol Cell Cardiol 2019; 133:57-66. [PMID: 31158360 DOI: 10.1016/j.yjmcc.2019.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/05/2019] [Accepted: 05/30/2019] [Indexed: 11/23/2022]
Abstract
AIMS Cyclic AMP phosphodiesterases (PDEs) are important modulators of the cardiac response to β-adrenergic receptor (β-AR) stimulation. PDE3 is classically considered as the major cardiac PDE in large mammals and human, while PDE4 is preponderant in rodents. However, it remains unclear whether PDE4 also plays a functional role in large mammals. Our purpose was to understand the role of PDE4 in cAMP hydrolysis and excitation-contraction coupling (ECC) in the pig heart, a relevant pre-clinical model. METHODS AND RESULTS Real-time cAMP variations were measured in isolated adult pig right ventricular myocytes (APVMs) using a Förster resonance energy transfer (FRET) biosensor. ECC was investigated in APVMs loaded with Fura-2 and paced at 1 Hz allowing simultaneous measurement of intracellular Ca2+ and sarcomere shortening. The expression of the different PDE4 subfamilies was assessed by Western blot in pig right ventricles and APVMs. Similarly to PDE3 inhibition with cilostamide (Cil), PDE4 inhibition with Ro 20-1724 (Ro) increased cAMP levels and inotropy under basal conditions. PDE4 inhibition enhanced the effects of the non-selective β-AR agonist isoprenaline (Iso) and the effects of Cil, and increased spontaneous diastolic Ca2+ waves (SCWs) in these conditions. PDE3A, PDE4A, PDE4B and PDE4D subfamilies are expressed in pig ventricles. In APVMs isolated from a porcine model of repaired tetralogy of Fallot which leads to right ventricular failure, PDE4 inhibition also exerts inotropic and pro-arrhythmic effects. CONCLUSIONS Our results show that PDE4 controls ECC in APVMs and suggest that PDE4 inhibitors exert inotropic and pro-arrhythmic effects upon PDE3 inhibition or β-AR stimulation in our pre-clinical model. Thus, PDE4 inhibitors should be used with caution in clinics as they may lead to arrhythmogenic events upon stress.
Collapse
|
5
|
Mannhardt I, Eder A, Dumotier B, Prondzynski M, Krämer E, Traebert M, Söhren KD, Flenner F, Stathopoulou K, Lemoine MD, Carrier L, Christ T, Eschenhagen T, Hansen A. Blinded Contractility Analysis in hiPSC-Cardiomyocytes in Engineered Heart Tissue Format: Comparison With Human Atrial Trabeculae. Toxicol Sci 2018; 158:164-175. [PMID: 28453742 PMCID: PMC5837217 DOI: 10.1093/toxsci/kfx081] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) may serve as a new assay for drug testing in a human context, but their validity particularly for the evaluation of inotropic drug effects remains unclear. In this blinded analysis, we compared the effects of 10 indicator compounds with known inotropic effects in electrically stimulated (1.5 Hz) hiPSC-CM-derived 3-dimensional engineered heart tissue (EHT) and human atrial trabeculae (hAT). Human EHTs were prepared from iCell hiPSC-CM, hAT obtained at routine heart surgery. Mean intra-batch variation coefficient in baseline force measurement was 17% for EHT and 49% for hAT. The PDE-inhibitor milrinone did not affect EHT contraction force, but increased force in hAT. Citalopram (selective serotonin reuptake inhibitor), nifedipine (LTCC-blocker) and lidocaine (Na+ channel-blocker) had negative inotropic effects on EHT and hAT. Formoterol (beta-2 agonist) had positive lusitropic but no inotropic effect in EHT, and positive clinotropic, lusitropic, and inotropic effects in hAT. Tacrolimus (calcineurin-inhibitor) had a negative inotropic effect in EHTs, but no effect in hAT. Digoxin (Na+-K+-ATPase-inhibitor) showed a positive inotropic effect only in EHTs, but no effect in hAT probably due to short incubation time. Ryanodine (ryanodine receptor-inhibitor) reduced contraction force in both models. Rolipram and acetylsalicylic acid showed noninterpretable results in hAT. Contraction amplitude and kinetics were more stable over time and less variable in hiPSC-EHTs than hAT. HiPSC-EHT faithfully detected cAMP-dependent and -independent positive and negative inotropic effects, but limited beta-2 adrenergic or PDE3 effects, compatible with an immature CM phenotype.
Collapse
Affiliation(s)
- Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Alexandra Eder
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | | | - Maksymilian Prondzynski
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Elisabeth Krämer
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | | | - Klaus-Dieter Söhren
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Frederik Flenner
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Konstantina Stathopoulou
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Marc D Lemoine
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.,Department of Cardiology-Electrophysiology, University Heart Center, 20246 Hamburg, Germany
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
7
|
Abstract
The second messengers cAMP and cGMP exist in multiple discrete compartments and regulate a variety of biological processes in the heart. The cyclic nucleotide phosphodiesterases, by catalyzing the hydrolysis of cAMP and cGMP, play crucial roles in controlling the amplitude, duration, and compartmentalization of cyclic nucleotide signaling. Over 60 phosphodiesterase isoforms, grouped into 11 families, have been discovered to date. In the heart, both cAMP- and cGMP-hydrolyzing phosphodiesterases play important roles in physiology and pathology. At least 7 of the 11 phosphodiesterase family members appear to be expressed in the myocardium, and evidence supports phosphodiesterase involvement in regulation of many processes important for normal cardiac function including pacemaking and contractility, as well as many pathological processes including remodeling and myocyte apoptosis. Pharmacological inhibitors for a number of phosphodiesterase families have also been used clinically or preclinically to treat several types of cardiovascular disease. In addition, phosphodiesterase inhibitors are also being considered for treatment of many forms of disease outside the cardiovascular system, raising the possibility of cardiovascular side effects of such agents. This review will discuss the roles of phosphodiesterases in the heart, in terms of expression patterns, regulation, and involvement in physiological and pathological functions. Additionally, the cardiac effects of various phosphodiesterase inhibitors, both potentially beneficial and detrimental, will be discussed.
Collapse
Affiliation(s)
- W. E. Knight
- Department of Pharmacology and Physiology, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - C. Yan
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
8
|
Soriano-Ursúa MA, Correa-Basurto J, Trujillo-Ferrara JG, Kaumann AJ. Homology model and docking studies on porcine β₂ adrenoceptor: description of two binding sites. J Mol Model 2011; 17:2525-38. [PMID: 21203789 DOI: 10.1007/s00894-010-0915-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/22/2010] [Indexed: 02/07/2023]
Abstract
The affinity of the classical β(2) adrenoceptor-selective inverse agonist ICI118,551 is notoriously lower for porcine β(2) adrenoceptors (p(2)βAR) than for human β(2) adrenoceptors (hβ(2)AR) but molecular mechanisms for this difference are still unclear. Homology 3-D models of pβ(2)AR can be useful in predicting similarities and differences, which might in turn increase the comparative understanding of ligand interactions with the hβ(2)AR. In this work, the pβ(2)AR amino acid sequence was used to carry out homology modeling. The selected pβ(2)AR 3-D structure was structurally and energetically optimized and used as a model for further theoretical study. The homology model of pβ(2)AR has a 3-D structure very similar to the crystal structures of recently studied hβ(2)AR. This was also corroborated by sequence identity, RMSD, Ramachandran map, TM-score and docking results. Upon performing molecular docking simulations with the AutoDock4.0.1 program on pβ(2)AR, it was found that a set of well-known β(2)AR ligands reach two distinct binding sites on pβ(2)AR. Whereas one of these sites is similar to that reported on the hβ(2)AR crystal structure, the other can explain some important experimental observations. Additionally, the theoretical affinity estimated for ICI118,551 closely agrees with affinities estimated from experimental in vitro data. The experimental differences between the human/porcine β(2)ARs in relation to ligand affinity can in part be elucidated by observations in this molecular modeling study.
Collapse
Affiliation(s)
- Marvin A Soriano-Ursúa
- Department of Physiology, Biochemistry and Molecular Modeling, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Mexico City, Mexico.
| | | | | | | |
Collapse
|
9
|
Kaumann AJ. Phosphodiesterases reduce spontaneous sinoatrial beating but not the 'fight or flight' tachycardia elicited by agonists through Gs-protein-coupled receptors. Trends Pharmacol Sci 2011; 32:377-83. [PMID: 21481950 DOI: 10.1016/j.tips.2011.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 01/01/2023]
Abstract
Cyclic AMP (cAMP) steers the generation of basal heart beat in the sinoatrial node. It also induces sinoatrial tachycardia and increased cardiac force, elicited through activation of Gs-protein-coupled receptors (GsPCRs). Phosphodiesterases (PDEs) hydrolyse cAMP. In the heart mainly PDE3 and PDE4 would be expected to limit those functions, and the PDE isoenzymes do indeed reduce basal sinoatrial beating rate and blunt the positive inotropic effects of agonists, mediated by GsPCRs. By contrast, recent evidence shows that GsPCR-mediated sinoatrial tachycardia is not controlled by PDE1-5. A PDE-resistant cAMP pool in sinoatrial cells, generated through activation of GsPCRs, including β(1)- and β(2)-adrenoceptors, appears to guarantee unrestrained tachycardia during fight or flight stress.
Collapse
Affiliation(s)
- Alberto J Kaumann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| |
Collapse
|
10
|
Conserved expression and functions of PDE4 in rodent and human heart. Basic Res Cardiol 2010; 106:249-62. [PMID: 21161247 PMCID: PMC3032896 DOI: 10.1007/s00395-010-0138-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/17/2010] [Accepted: 12/01/2010] [Indexed: 01/21/2023]
Abstract
PDE4 isoenzymes are critical in the control of cAMP signaling in rodent cardiac myocytes. Ablation of PDE4 affects multiple key players in excitation–contraction coupling and predisposes mice to the development of heart failure. As little is known about PDE4 in human heart, we explored to what extent cardiac expression and functions of PDE4 are conserved between rodents and humans. We find considerable similarities including comparable amounts of PDE4 activity expressed, expression of the same PDE4 subtypes and splicing variants, anchoring of PDE4 to the same subcellular compartments and macromolecular signaling complexes, and downregulation of PDE4 activity and protein in heart failure. The major difference between the species is a fivefold higher amount of non-PDE4 activity in human hearts compared to rodents. As a consequence, the effect of PDE4 inactivation is different in rodents and humans. PDE4 inhibition leads to increased phosphorylation of virtually all PKA substrates in mouse cardiomyocytes, but increased phosphorylation of only a restricted number of proteins in human cardiomyocytes. Our findings suggest that PDE4s have a similar role in the local regulation of cAMP signaling in rodent and human heart. However, inhibition of PDE4 has ‘global’ effects on cAMP signaling only in rodent hearts, as PDE4 comprises a large fraction of the total cardiac PDE activity in rodents but not in humans. These differences may explain the distinct pharmacological effects of PDE4 inhibition in rodent and human hearts.
Collapse
|