1
|
Zhang M, Rottschäfer V, C M de Lange E. The potential impact of CYP and UGT drug-metabolizing enzymes on brain target site drug exposure. Drug Metab Rev 2024; 56:1-30. [PMID: 38126313 DOI: 10.1080/03602532.2023.2297154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Drug metabolism is one of the critical determinants of drug disposition throughout the body. While traditionally associated with the liver, recent research has unveiled the presence and functional significance of drug-metabolizing enzymes (DMEs) within the brain. Specifically, cytochrome P-450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) enzymes have emerged as key players in drug biotransformation within the central nervous system (CNS). This comprehensive review explores the cellular and subcellular distribution of CYPs and UGTs within the CNS, emphasizing regional expression and contrasting profiles between the liver and brain, humans and rats. Moreover, we discuss the impact of species and sex differences on CYPs and UGTs within the CNS. This review also provides an overview of methodologies for identifying and quantifying enzyme activities in the brain. Additionally, we present factors influencing CYPs and UGTs activities in the brain, including genetic polymorphisms, physiological variables, pathophysiological conditions, and environmental factors. Examples of CYP- and UGT-mediated drug metabolism within the brain are presented at the end, illustrating the pivotal role of these enzymes in drug therapy and potential toxicity. In conclusion, this review enhances our understanding of drug metabolism's significance in the brain, with a specific focus on CYPs and UGTs. Insights into the expression, activity, and influential factors of these enzymes within the CNS have crucial implications for drug development, the design of safe drug treatment strategies, and the comprehension of drug actions within the CNS. To that end, CNS pharmacokinetic (PK) models can be improved to further advance drug development and personalized therapy.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
Walton NL, Antonoudiou P, Maguire JL. Neurosteroid influence on affective tone. Neurosci Biobehav Rev 2023; 152:105327. [PMID: 37499891 PMCID: PMC10528596 DOI: 10.1016/j.neubiorev.2023.105327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/07/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Affective disorders such as depression and anxiety are among the most prevalent psychiatric illnesses and causes of disability worldwide. The recent FDA-approval of a novel antidepressant treatment, ZULRESSO® (Brexanolone), a synthetic neurosteroid has fueled interest into the role of neurosteroids in the pathophysiology of depression as well as the mechanisms mediating the antidepressant effects of these compounds. The majority of studies examining the impact of neurosteroids on affective states have relied on the administration of exogenous neurosteroids; however, neurosteroids can also be synthesized endogenously from cholesterol or steroid hormone precursors. Despite the well-established influence of exogenous neurosteroids on affective states, we still lack an understanding of the role of endogenous neurosteroids in modulating affective tone. This review aims to summarize the current literature supporting the influence of neurosteroids on affective states in clinical and preclinical studies, as well as recent evidence suggesting that endogenous neurosteroids may set a baseline affective tone.
Collapse
Affiliation(s)
- Najah L Walton
- Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Pantelis Antonoudiou
- Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Jamie L Maguire
- Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Haduch A, Bromek E, Kuban W, Daniel WA. The Engagement of Cytochrome P450 Enzymes in Tryptophan Metabolism. Metabolites 2023; 13:metabo13050629. [PMID: 37233670 DOI: 10.3390/metabo13050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Tryptophan is metabolized along three main metabolic pathways, namely the kynurenine, serotonin and indole pathways. The majority of tryptophan is transformed via the kynurenine pathway, catalyzed by tryptophan-2,3-dioxygenase or indoleamine-2,3-dioxygenase, leading to neuroprotective kynurenic acid or neurotoxic quinolinic acid. Serotonin synthesized by tryptophan hydroxylase, and aromatic L-amino acid decarboxylase enters the metabolic cycle: serotonin → N-acetylserotonin → melatonin → 5-methoxytryptamine→serotonin. Recent studies indicate that serotonin can also be synthesized by cytochrome P450 (CYP), via the CYP2D6-mediated 5-methoxytryptamine O-demethylation, while melatonin is catabolized by CYP1A2, CYP1A1 and CYP1B1 via aromatic 6-hydroxylation and by CYP2C19 and CYP1A2 via O-demethylation. In gut microbes, tryptophan is metabolized to indole and indole derivatives. Some of those metabolites act as activators or inhibitors of the aryl hydrocarbon receptor, thus regulating the expression of CYP1 family enzymes, xenobiotic metabolism and tumorigenesis. The indole formed in this way is further oxidized to indoxyl and indigoid pigments by CYP2A6, CYP2C19 and CYP2E1. The products of gut-microbial tryptophan metabolism can also inhibit the steroid-hormone-synthesizing CYP11A1. In plants, CYP79B2 and CYP79B3 were found to catalyze N-hydroxylation of tryptophan to form indole-3-acetaldoxime while CYP83B1 was reported to form indole-3-acetaldoxime N-oxide in the biosynthetic pathway of indole glucosinolates, considered to be defense compounds and intermediates in the biosynthesis of phytohormones. Thus, cytochrome P450 is engaged in the metabolism of tryptophan and its indole derivatives in humans, animals, plants and microbes, producing biologically active metabolites which exert positive or negative actions on living organisms. Some tryptophan-derived metabolites may influence cytochrome P450 expression, affecting cellular homeostasis and xenobiotic metabolism.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| |
Collapse
|
4
|
The Effect of the Selective N-methyl-D-aspartate (NMDA) Receptor GluN2B Subunit Antagonist CP-101,606 on Cytochrome P450 2D (CYP2D) Expression and Activity in the Rat Liver and Brain. Int J Mol Sci 2022; 23:ijms232213746. [PMID: 36430225 PMCID: PMC9691159 DOI: 10.3390/ijms232213746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The CYP2D enzymes of the cytochrome P450 superfamily play an important role in psychopharmacology, since they are engaged in the metabolism of psychotropic drugs and endogenous neuroactive substrates, which mediate brain neurotransmission and the therapeutic action of those drugs. The aim of this work was to study the effect of short- and long-term treatment with the selective antagonist of the GluN2B subunit of the NMDA receptor, the compound CP-101,606, which possesses antidepressant properties, on CYP2D expression and activity in the liver and brain of male rats. The presented work shows time-, organ- and brain-structure-dependent effects of 5-day and 3-week treatment with CP-101,606 on CYP2D. Five-day treatment with CP-101,606 increased the activity and protein level of CYP2D in the hippocampus. That effect was maintained after the 3-week treatment and was accompanied by enhancement in the CYP2D activity/protein level in the cortex and cerebellum. In contrast, a 3-week treatment with CP-101,606 diminished the CYP2D activity/protein level in the hypothalamus and striatum. In the liver, CP-101,606 decreased CYP2D activity, but not the protein or mRNA level, after 5-day or 3-week treatment. When added in vitro to liver microsomes, CP-101,606 diminished the CYP2D activity during prolonged incubation. While in the brain, the observed decrease in the CYP2D activity after short- and long-term treatment with CP-101,606 seems to be a consequence of the drug effect on enzyme regulation. In the liver, the direct inhibitory effect of reactive metabolites formed from CP-101,606 on the CYP2D activity may be considered. Since CYP2Ds are engaged in the metabolism of endogenous neuroactive substances, it can be assumed that apart from antagonizing the NMDA receptor, CP-101,606 may modify its own pharmacological effect by affecting brain cytochrome P450. On the other hand, an inhibition of the activity of liver CYP2D may slow down the metabolism of co-administered substrates and lead to pharmacokinetic drug-drug interactions.
Collapse
|
5
|
Daniel WA, Bromek E, Danek PJ, Haduch A. The mechanisms of interactions of psychotropic drugs with liver and brain cytochrome P450 and their significance for drug effect and drug-drug interactions. Biochem Pharmacol 2022; 199:115006. [PMID: 35314167 DOI: 10.1016/j.bcp.2022.115006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 (CYP) plays an important role in psychopharmacology. While liver CYP enzymes are responsible for the biotransformation of psychotropic drugs, brain CYP enzymes are involved in the local metabolism of these drugs and endogenous neuroactive substances, such as neurosteroids, and in alternative pathways of neurotransmitter biosynthesis including dopamine and serotonin. Recent studies have revealed a relation between the brain nervous system and cytochrome P450, indicating that CYP enzymes metabolize endogenous neuroactive substances in the brain, while the brain nervous system is engaged in the central neuroendocrine and neuroimmune regulation of cytochrome P450 in the liver. Therefore, the effect of neuroactive drugs on cytochrome P450 should be investigated not only in vitro, but also at in vivo conditions, since only in vivo all mechanisms of drug-enzyme interaction can be observed, including neuroendocrine and neuroimmune modulation. Psychotropic drugs can potentially affect cytochrome P450 via a number of mechanisms operating at the level of the nervous, hormonal and immune systems, and the liver. Their effect on cytochrome P450 in the brain is often different than in the liver and region-dependent. Since psychotropic drugs can affect cytochrome P450 both in the liver and brain, they can modify their own pharmacological effect at both pharmacokinetic and pharmacodynamic level. The article describes the mechanisms by which psychotropic drugs can change the expression/activity of cytochrome P450 in the liver and brain, and discusses the significance of those mechanisms for drug action and drug-drug interactions. Moreover, the brain CYP2D6 is considered as a potential target for psychotropics.
Collapse
Affiliation(s)
- Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
6
|
Haduch A, Danek PJ, Kuban W, Pukło R, Alenina N, Gołębiowska J, Popik P, Bader M, Daniel WA. Cytochrome P450 2D (CYP2D) enzyme dysfunction associated with aging and serotonin deficiency in the brain and liver of female Dark Agouti rats. Neurochem Int 2022; 152:105223. [PMID: 34780807 DOI: 10.1016/j.neuint.2021.105223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Among the enzymes that support brain metabolism, cytochrome P450 (CYP) enzymes occupy an important place. These enzymes catalyze the biotransformation pathways of neuroactive endogenous substrates (neurosteroids, neurotransmitters) and are necessary for the detoxification processes. The aim of the present study was to assess changes in the CYP2D activity and protein level during the aging process and as a result of serotonin deficiency in the female brain. The CYP2D activity was measured in brain and liver microsomes of Dark Agouti wild type (WT) female rats (mature 15-week-old and senescent 18-month-old rats) and in tryptophan hydroxylase 2 (TPH2)-deficient senescent female rats. The CYP2D activity in mature WT Dark Agouti females was independent of the changing phases of the estrous cycle. In senescent WT females rats, the CYP2D activity and protein level were decreased in the cerebral cortex, hippocampus, cerebellum and liver, but increased in the brain stem. In the other examined structures (frontal cortex, hypothalamus, thalamus, striatum), the enzyme activity did not change. In aging TPH2-deficient females, the CYP2D activity and protein levels were decreased in the frontal cortex, hypothalamus and brain stem (activity only), remaining unchanged in other brain structures and liver, relative to senescent WT females. In summary, the aging process and TPH2 deficit affect the CYP2D activity and protein level in female rats, which may have a negative impact on the compensatory capacity of CYP2D in the synthesis of serotonin and dopamine in cerebral structures involved in cognitive and emotional functions. In the liver, the CYP2D-catalyzed drug metabolism may be diminished in elderly females. The results in female rats are compared with those obtained previously in males. It is concluded that aging and serotonin deficiency exert sex-dependent effects on brain CYP2D, which seem to be less favorable in females concerning CYP2D-mediated neurotransmitter synthesis, but beneficial regarding slower neurosteroid metabolism.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Renata Pukło
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Joanna Gołębiowska
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Institute for Biology, University of Lübeck, Germany; Charité University Medicine, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
7
|
Danek PJ, Daniel WA. Long-Term Treatment with Atypical Antipsychotic Iloperidone Modulates Cytochrome P450 2D (CYP2D) Expression and Activity in the Liver and Brain via Different Mechanisms. Cells 2021; 10:3472. [PMID: 34943983 PMCID: PMC8700221 DOI: 10.3390/cells10123472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023] Open
Abstract
CYP2D enzymes engage in the synthesis of endogenous neuroactive substances (dopamine, serotonin) and in the metabolism of neurosteroids. The present work investigates the effect of iloperidone on CYP2D enzyme expression and activity in rat brains and livers. Iloperidone exerted a weak direct inhibitory effect on CYP2D activity in vitro in the liver and brain microsomes (Ki = 11.5 μM and Ki = 462 μM, respectively). However, a two-week treatment with iloperidone (1 mg/kg ip.) produced a significant decrease in the activity of liver CYP2D, which correlated positively with the reduced CYP2D1, CYP2D2 and CYP2D4 protein and mRNA levels. Like in the liver, iloperidone reduced CYP2D activity and protein levels in the frontal cortex and cerebellum but enhanced these levels in the nucleus accumbens, striatum and substantia nigra. Chronic iloperidone did not change the brain CYP2D4 mRNA levels, except in the striatum, where they were significantly increased. In conclusion, by affecting CYP2D activity in the brain, iloperidone may modify its pharmacological effect, via influencing the rate of dopamine and serotonin synthesis or the metabolism of neurosteroids. By elevating the CYP2D expression/activity in the substantia nigra and striatum (i.e., in the dopaminergic nigrostriatal pathway), iloperidone may attenuate extrapyramidal symptoms, while by decreasing the CYP2D activity and metabolism of neurosteroiods in the frontal cortex and cerebellum, iloperidone can have beneficial effects in the treatment of schizophrenia. In the liver, pharmacokinetic interactions involving chronic iloperidone and CYP2D substrates are likely to occur.
Collapse
Affiliation(s)
| | - Władysława A. Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland;
| |
Collapse
|
8
|
Danek PJ, Bromek E, Haduch A, Daniel WA. Chronic treatment with asenapine affects cytochrome P450 2D (CYP2D) in rat brain and liver. Pharmacological aspects. Neurochem Int 2021; 151:105209. [PMID: 34666077 DOI: 10.1016/j.neuint.2021.105209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/20/2022]
Abstract
Neuroleptics have to be used for a long time to produce a therapeutic effect. Cytochrome P450 2D (CYP2D) enzymes mediate alternative pathways of neurotransmitter synthesis (i.e. tyramine hydroxylation to dopamine and 5-methoxytryptamine O-demethylation to serotonin), and metabolism of neurosteroids. The aim of our present study was to examine the influence of chronic treatment with the new atypical neuroleptic asenapine on CYP2D in rat brain. In parallel, liver CYP2D was investigated for comparison. Asenapine added in vitro to microsomes of control rats competitively, but weakly inhibited the activity of CYP2D (brain: Ki = 385 μM; liver: Ki = 36 μM). However, prolonged administration of asenapine (0.3 mg/kg sc. for 2 weeks) significantly diminished the activity and protein level of CYP2D in the frontal cortex, nucleus accumbens, hippocampus and cerebellum, but did not affect the enzyme in the hypothalamus, brain stem, substantia nigra and the remainder of the brain. In contrast, asenapine enhanced the enzyme activity and protein level in the striatum. In the liver, chronically administered asenapine reduced the activity and protein level of CYP2D, and the CYP2D1 mRNA level. In conclusion, prolonged administration of asenapine alters the CYP2D expression in the brain structures and in the liver. Through affecting the CYP2D activity in the brain, asenapine may modify its pharmacological effect. By increasing the CYP2D expression/activity in the striatum, asenapine may accelerate the synthesis of dopamine (via tyramine hydroxylation) and serotonin (via 5-methoxytryptamine O-demethylation), and thus alleviate extrapyramidal symptoms. By reducing the CYP2D expression/activity in other brain structures asenapine may diminish the 21-hydroxylation of neurosteroids and thus have a beneficial influence on the symptoms of schizophrenia. In the liver, by reducing the CYP2D activity, asenapine may slow the biotransformation of concomitantly administered CYP2D substrates (drugs) during continuous treatment of schizophrenia or bipolar disorders.
Collapse
Affiliation(s)
- Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
9
|
Sheng Y, Yang H, Wu T, Zhu L, Liu L, Liu X. Alterations of Cytochrome P450s and UDP-Glucuronosyltransferases in Brain Under Diseases and Their Clinical Significances. Front Pharmacol 2021; 12:650027. [PMID: 33967789 PMCID: PMC8097730 DOI: 10.3389/fphar.2021.650027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs) are both greatly important metabolic enzymes in various tissues, including brain. Although expressions of brain CYPs and UGTs and their contributions to drug disposition are much less than liver, both CYPs and UGTs also mediate metabolism of endogenous substances including dopamine and serotonin as well as some drugs such as morphine in brain, demonstrating their important roles in maintenance of brain homeostasis or pharmacological activity of drugs. Some diseases such as epilepsy, Parkinson's disease and Alzheimer's disease are often associated with the alterations of CYPs and UGTs in brain, which may be involved in processes of these diseases via disturbing metabolism of endogenous substances or resisting drugs. This article reviewed the alterations of CYPs and UGTs in brain, the effects on endogenous substances and drugs and their clinical significances. Understanding the roles of CYPs and UGTs in brain provides some new strategies for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Yun Sheng
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanyu Yang
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tong Wu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liang Zhu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
10
|
Abstract
The regulation of brain cytochrome P450 enzymes (CYPs) is different compared with respective hepatic enzymes. This may result from anatomical bases and physiological functions of the two organs. The brain is composed of a variety of functional structures built of different interconnected cell types endowed with specific receptors that receive various neuronal signals from other brain regions. Those signals activate transcription factors or alter functioning of enzyme proteins. Moreover, the blood-brain barrier (BBB) does not allow free penetration of all substances from the periphery into the brain. Differences in neurotransmitter signaling, availability to endogenous and exogenous active substances, and levels of transcription factors between neuronal and hepatic cells lead to differentiated expression and susceptibility to the regulation of CYP genes in the brain and liver. Herein, we briefly describe the CYP enzymes of CYP1-3 families, their distribution in the brain, and discuss brain-specific regulation of CYP genes. In parallel, a comparison to liver CYP regulation is presented. CYP enzymes play an essential role in maintaining the levels of bioactive molecules within normal ranges. These enzymes modulate the metabolism of endogenous neurochemicals, such as neurosteroids, dopamine, serotonin, melatonin, anandamide, and exogenous substances, including psychotropics, drugs of abuse, neurotoxins, and carcinogens. The role of these enzymes is not restricted to xenobiotic-induced neurotoxicity, but they are also involved in brain physiology. Therefore, it is crucial to recognize the function and regulation of CYP enzymes in the brain to build a foundation for future medicine and neuroprotection and for personalized treatment of brain diseases.
Collapse
Affiliation(s)
- Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
11
|
Haduch A, Pukło R, Alenina N, Nikiforuk A, Popik P, Bader M, Daniel WA. The effect of ageing and cerebral serotonin deficit on the activity of cytochrome P450 2D (CYP2D) in the brain and liver of male rats. Neurochem Int 2020; 141:104884. [PMID: 33091481 DOI: 10.1016/j.neuint.2020.104884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022]
Abstract
Brain cytochrome P450 (CYP) contributes to the local metabolism of endogenous substrates and drugs. The aim of present study was to ascertain whether the cytochrome P450 2D (CYP2D) activity changes with ageing and in cerebral serotonin deficit. Kinetics of 5-methoxytryptamine O-demethylation to serotonin was studied and the CYP2D activity was measured in brain and liver microsomes of Dark Agouti wild type (WT) rats (mature 3.5-month-old and senescent 21-month-old rats) and in tryptophan hydroxylase 2 (TPH2)-deficient senescent rats. The CYP2D activity and protein level decreased in the frontal cortex of senescent WT rats, but increased in senescent TPH2-deficient rats (compared to senescent WT). In contrast, in the hippocampus, hypothalamus and striatum the CYP2D activity/protein level increased with ageing, but did not change in senescent TPH2-deficient animals (compared to senescent WT). The activity and protein level of liver CYP2D was lower in senescent WT rats than in the mature animals and further decreased in senescent TPH2-deficient rats. In conclusion, ageing and TPH2-deficit affect the CYP2D activity and protein level, which may have a positive impact on neurotransmitter synthesis in brain structures involved in cognitive, emotional or motor functions, but a negative effect on drug metabolism in the liver.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Renata Pukło
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany; Institute for Biology, University of Lübeck, Germany; Charité University Medicine, Berlin, Germany
| | - Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
12
|
Haduch A, Daniel WA. The engagement of brain cytochrome P450 in the metabolism of endogenous neuroactive substrates: a possible role in mental disorders. Drug Metab Rev 2019; 50:415-429. [PMID: 30501426 DOI: 10.1080/03602532.2018.1554674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current state of knowledge indicates that the cerebral cytochrome P450 (CYP) plays an important role in the endogenous metabolism in the brain. Different CYP isoenzymes mediate metabolism of many endogenous substrates such as monoaminergic neurotransmitters, neurosteroids, cholesterol, vitamins and arachidonic acid. Therefore, these enzymes may affect brain development, susceptibility to mental and neurodegenerative diseases and may contribute to their pathophysiology. In addition, they can modify the therapeutic effects of psychoactive drugs at the place of their target action in the brain, where the drugs can act by affecting the metabolism of endogenous substrates. The article focuses on the role of cerebral CYP isoforms in the metabolism of neurotransmitters, neurosteroids, and cholesterol, and their possible involvement in animal behavior, as well as in stress, depression, schizophrenia, cognitive processes, learning, and memory. CYP-mediated alternative pathways of dopamine and serotonin synthesis may have a significant role in the local production of these neurotransmitters in the brain regions where the disturbances of these neurotransmitter systems are observed in depression and schizophrenia. The local alternative synthesis of neurotransmitters may be of great importance in the brain, since dopamine and serotonin do not pass the blood-brain barrier and cannot be supplied from the periphery. In vitro studies indicate that human CYP2D6 catalyzing dopamine and serotonin synthesis is more efficient in these reactions than the rat CYP2D isoforms. It suggests that these alternative pathways may have much greater significance in the human brain but confirmation of these assumptions requires further studies.
Collapse
Affiliation(s)
- Anna Haduch
- a Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology , Polish Academy of Sciences , Kraków , Poland
| | - Władysława Anna Daniel
- a Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology , Polish Academy of Sciences , Kraków , Poland
| |
Collapse
|
13
|
Haduch A, Rysz M, Papp M, Daniel WA. The activity of brain and liver cytochrome P450 2D (CYP2D) is differently affected by antidepressants in the chronic mild stress (CMS) model of depression in the rat. Biochem Pharmacol 2018; 156:398-405. [PMID: 30195732 DOI: 10.1016/j.bcp.2018.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022]
Abstract
The effect of two second-generation antidepressants escitalopram and venlafaxine on the activity of brain and liver cytochrome P450 2D (CYP2D) involved in the metabolism of psychotropics and neurotransmitters was determined in the chronic mild stress (CMS) model of depression. Escitalopram or venlafaxine (10 mg/kg ip/day each) were administered to control and CMS rats for 5 weeks. The activity of CYP2D was studied by measurement of the rate of bufuralol 1'-hydroxylation in microsomes derived from the liver or different brain structures. The obtained results indicate that CMS and the studied antidepressants had different effects on the CYP2D activity depending on the location of the enzyme. In the brain, CMS produced an increase in the CYP2D activity in the hippocampus. Chronic escitalopram or venlafaxine had no effect on the CYP2D activity in the brain of nonstressed rats, however, the antidepressants increased the enzyme activity in the frontal cortex, hypothalamus and cerebellum of stressed animals. In the liver, CMS did not affect the CYP2D activity, while chronic escitalopram or venlafaxine significantly decreased the CYP2D activity and protein level in nonstressed and stressed rats. We conclude that: 1) CMS stimulates the CYP2D activity in the hippocampus and triggers the stimulatory effect of antidepressants on CYP2D in other brain structures; 2) the local brain metabolism of CYP2D substrates (neurosteroids, neurotransmitters, psychotropics) may be enhanced by CMS and/or antidepressants; 3) in contrast to the brain, the liver metabolism of CYP2D substrates may be slower during long-term treatment with escitalopram or venlafaxine.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Marta Rysz
- Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Mariusz Papp
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| |
Collapse
|
14
|
McMillan DM, Tyndale RF. CYP-mediated drug metabolism in the brain impacts drug response. Pharmacol Ther 2018; 184:189-200. [DOI: 10.1016/j.pharmthera.2017.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
CNO Evil? Considerations for the Use of DREADDs in Behavioral Neuroscience. Neuropsychopharmacology 2018; 43:934-936. [PMID: 29303143 PMCID: PMC5854815 DOI: 10.1038/npp.2017.299] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 12/31/2022]
|
16
|
McMillan DM, Tyndale RF. Inducing rat brain CYP2D with nicotine increases the rate of codeine tolerance; predicting the rate of tolerance from acute analgesic response. Biochem Pharmacol 2017; 145:158-168. [DOI: 10.1016/j.bcp.2017.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/18/2017] [Indexed: 01/08/2023]
|
17
|
Haduch A, Bromek E, Kot M, Kamińska K, Gołembiowska K, Daniel WA. The cytochrome P450 2D-mediated formation of serotonin from 5-methoxytryptamine in the brain in vivo
: a microdialysis study. J Neurochem 2015; 133:83-92. [DOI: 10.1111/jnc.13031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/26/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Anna Haduch
- Institute of Pharmacology; Polish Academy of Sciences; Kraków Poland
| | - Ewa Bromek
- Institute of Pharmacology; Polish Academy of Sciences; Kraków Poland
| | - Marta Kot
- Institute of Pharmacology; Polish Academy of Sciences; Kraków Poland
| | | | | | | |
Collapse
|
18
|
Anna Haduch A, Bromek E, Daniel WA. Role of brain cytochrome P450 (CYP2D) in the metabolism of monoaminergic neurotransmitters. Pharmacol Rep 2014; 65:1519-28. [PMID: 24553000 DOI: 10.1016/s1734-1140(13)71513-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/24/2013] [Indexed: 01/25/2023]
Abstract
This article focuses on recent research on the cytochrome P450 2D (CYP2D) catalyzed synthesis of the monoaminergic neurotransmitters dopamine and serotonin in the brain and on the influence of psychotropic drugs on the activity of brain CYP2D. Recent in vitro and in vivo studies performed in rodents indicate that dopamine and serotonin may be formed in the brain via alternative CYP2D-mediated pathways, i.e., tyramine hydroxylation and 5-methoxytryptamine O-demethylation, respectively. The contribution of these alternative pathways to the total synthesis of brain neurotransmitters may be higher in humans and may be significantly increased under specific conditions, such as tyrosine hydroxylase and amino acid decarboxylase or tryptophan hydroxylase deficiency. These alternative pathways of neurotransmitter synthesis may also become more efficient when the CYP2D enzyme is mutated or activated by inducers (e.g., alcohol, nicotine, psychotropics), which may be of importance in some neurodegenerative or psychiatric diseases. In addition to the previously observed influence of antidepressants and neuroleptics on CYP2D in the liver, the investigated drugs also produce an effect on CYP2D in the brain. However, their effect on brain CYP2D is different than that in the liver and is structure-dependent. The observed psychotropic drug-brain CYP2D interactions may be important for the metabolism of endogenous neuroactive substrates (e.g., monoaminergic neurotransmitters, neurosteroids) and for the local biotransformation of drugs. The results are discussed with regard to the contribution of CYP2D to the total synthesis of neurotransmitters in the brain in vivo as well as the possible significance of these alternative pathways in specific physiological and pathological conditions and in the pharmacological actions of psychotropic drugs.
Collapse
Affiliation(s)
- Anna Anna Haduch
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | | | |
Collapse
|
19
|
Lili W, Cheng G, Zhiyong Z, Qi Y, Yan L, Dan L, Xueli Z, Yuan Z. Steady-State Plasma Concentration of Donepezil Enantiomers and Its Stereoselective Metabolism and Transport In Vitro. Chirality 2013; 25:498-505. [PMID: 23798321 DOI: 10.1002/chir.22153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/10/2012] [Indexed: 01/22/2023]
Affiliation(s)
- Wan Lili
- Department of Pharmacy, Shanghai Sixth People's Hospital; Shanghai Jiao Tong University; Shanghai 200233 P. R. China
| | - Guo Cheng
- Department of Pharmacy, Shanghai Sixth People's Hospital; Shanghai Jiao Tong University; Shanghai 200233 P. R. China
| | - Zhou Zhiyong
- Department of Pharmacy, Shanghai Sixth People's Hospital; Shanghai Jiao Tong University; Shanghai 200233 P. R. China
| | - Yu Qi
- Department of Pharmacy, Shanghai Sixth People's Hospital; Shanghai Jiao Tong University; Shanghai 200233 P. R. China
| | - Li Yan
- Department of Pharmacy, Shanghai Sixth People's Hospital; Shanghai Jiao Tong University; Shanghai 200233 P. R. China
| | - Li Dan
- Department of Pharmacy, Shanghai Sixth People's Hospital; Shanghai Jiao Tong University; Shanghai 200233 P. R. China
| | - Zheng Xueli
- Department of Geriatrics, Shanghai Sixth People's Hospital; Shanghai Jiao Tong University; Shanghai 200233 P. R. China
| | - Zhong Yuan
- Department of Geriatrics, Shanghai Sixth People's Hospital; Shanghai Jiao Tong University; Shanghai 200233 P. R. China
| |
Collapse
|
20
|
Abstract
Cytochrome P450 enzymes (CYPs) metabolize many drugs that act on the central nervous system (CNS), such as antidepressants and antipsychotics; drugs of abuse; endogenous neurochemicals, such as serotonin and dopamine; neurotoxins; and carcinogens. This takes place primarily in the liver, but metabolism can also occur in extrahepatic organs, including the brain. This is important for CNS-acting drugs, as variation in brain CYP-mediated metabolism may be a contributing factor when plasma levels do not predict drug response. This review summarizes the characterization of CYPs in the brain, using examples from the CYP2 subfamily, and discusses sources of variation in brain CYP levels and metabolism. Some recent experiments are described that demonstrate how changes in brain CYP metabolism can influence drug response, toxicity and drug-induced behaviours. Advancing knowledge of brain CYP-mediated metabolism may help us understand why patients respond differently to drugs used in psychiatry and predict risk for psychiatric disorders, including neurodegenerative diseases and substance abuse.
Collapse
Affiliation(s)
| | - Rachel F. Tyndale
- Correspondence to: R.F. Tyndale, Department of Pharmacology and Toxicology, 1 King’s College Circle, Toronto ON M5S 1A8;
| |
Collapse
|
21
|
Haduch A, Bromek E, Sadakierska-Chudy A, Wójcikowski J, Daniel WA. The catalytic competence of cytochrome P450 in the synthesis of serotonin from 5-methoxytryptamine in the brain: an in vitro study. Pharmacol Res 2012; 67:53-9. [PMID: 23098818 DOI: 10.1016/j.phrs.2012.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/10/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
Abstract
Brain serotonin has been implicated in the pathophysiology of a wide spectrum of psychiatric disorders, as well as in the mechanism of action of psychotropic drugs. The aim of present study was to identify rat cytochrome P450 (CYP) isoforms which can catalyze the O-demethylation of 5-methoxytryptamine to serotonin, and to find out whether that alternative pathway of serotonin synthesis may take place in the brain. The study was conducted on cDNA-expressed CYPs (rat CYP1A1/2, 2A1/2, 2B1, 2C6/11/13, 2D1/2/4/18, 2E1, 3A2 and human CYP2D6), on rat brain and liver microsomes and on human liver microsomes (the wild-type CYP2D6 or the allelic variant 2D6*4*4). Of the rat CYP isoforms studied, CYP2D isoforms were the most efficient in catalyzing the O-demethylation of 5-methoxytryptamine to serotonin, but they were less effective than the human isoform CYP2D6. Microsomes from different brain regions were capable of metabolizing 5-methoxytryptamine to serotonin. The reaction was inhibited by the specific CYP2D inhibitors quinine and fluoxetine. Human liver microsomes of the wild-type CYP2D6 metabolized 5-methoxytryptamine to serotonin more effectively than did the defective CYP2D6*4*4 ones. The obtained results indicate that rat brain CYP2D isoforms catalyze the formation of serotonin from 5-methoxytryptamine, and that the deficit or genetic defect of CYP2D may affect serotonin metabolism in the brain. The results are discussed in the context of their possible physiological and pharmacological significance in vivo.
Collapse
Affiliation(s)
- Anna Haduch
- Polish Academy of Sciences, Institute of Pharmacology, Smętna 12, 31-343 Kraków, Poland
| | | | | | | | | |
Collapse
|
22
|
The neuroprotective enzyme CYP2D6 increases in the brain with age and is lower in Parkinson's disease patients. Neurobiol Aging 2012; 33:2160-71. [DOI: 10.1016/j.neurobiolaging.2011.08.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 07/18/2011] [Accepted: 08/21/2011] [Indexed: 11/22/2022]
|
23
|
Davis MP, Kirkova J, Lagman R, Walsh D, Karafa M. Intolerance to mirtazapine in advanced cancer. J Pain Symptom Manage 2011; 42:e4-7. [PMID: 21854992 DOI: 10.1016/j.jpainsymman.2011.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/16/2011] [Indexed: 11/20/2022]
|
24
|
Bromek E, Haduch A, Gołembiowska K, Daniel WA. Cytochrome P450 mediates dopamine formation in the brain in vivo. J Neurochem 2011; 118:806-15. [PMID: 21651557 DOI: 10.1111/j.1471-4159.2011.07339.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cytochrome P450-mediated synthesis of dopamine from tyramine has been shown in vitro. The aim of the present study was to demonstrate the ability of rat cytochrome P450 (CYP) 2D to synthesize dopamine from tyramine in the brain in vivo. We employed two experimental models using reserpinized rats with a blockade of the classical pathway of dopamine synthesis from tyrosine. Model A estimated dopamine production from endogenous tyramine in brain structures in vivo (ex vivo measurement of a tissue dopamine level), while Model B measured extracellular dopamine produced from exogenous tyramine (an in vivo microdialysis). In Model A, quinine (a CYP2D inhibitor) given intraperitoneally caused a significant decrease in dopamine level in the striatum and nucleus accumbens and tended to fall in the substantia nigra and frontal cortex. In Model B, an increase in extracellular dopamine level was observed after tyramine given intrastructurally (the striatum). After joint administration of tyramine and quinine, the amount of the dopamine formed was significantly lower compared to the group receiving tyramine only. The results of the two complementary experimental models indicate that the hydroxylation of tyramine to dopamine may take place in rat brain in vivo, and that CYP2D catalyzes this reaction.
Collapse
Affiliation(s)
- Ewa Bromek
- Polish Academy of Sciences, Institute of Pharmacology, Kraków, Poland
| | | | | | | |
Collapse
|