1
|
Luque-Sanchez K, Felix J, Bilbrey J, Restrepo L, Reeves M, McMahon LR, Wilkerson JL. Evaluation of novel epibatidine analogs in the rat nicotine drug discrimination assay and in the rat chronic constriction injury neuropathic pain model. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11622. [PMID: 38389808 PMCID: PMC10880765 DOI: 10.3389/adar.2023.11622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/30/2023] [Indexed: 02/24/2024]
Abstract
Nicotine is the primary psychoactive component responsible for maintaining tobacco dependence in humans. Chronic pain is often a consequence of tobacco-related pathologies, and the development of a dual therapeutic that could treat chronic pain and tobacco dependence would be advantageous. Epibatidine reliably substitutes for nicotine in the drug discrimination assay, and is a potent analgesic, but has a side-effect profile that limits its therapeutic potential. Thus, considerable efforts to produce epibatidine derivatives are underway. Here we tested three epibatidine derivatives, 2'-fluoro-3'-(4-nitrophenyl)deschloroepibatidine (RTI-7527-102; i.e., RTI-102), 2'-fluorodeschloroepibatidine (RTI-7527-36; i.e., RTI-36), and 3'-(3″-dimethylaminophenyl)-epibatidine (RTI-7527-76; i.e., RTI-76) in both the rat nicotine drug discrimination assay as well as in the rat chronic constriction injury (CCI) of the sciatic nerve neuropathic pain model. Male and female Sprague-Dawley rats were trained on a fixed-ratio 10 schedule to discriminate nicotine (0.32 mg/kg base) from vehicle. All compounds dose-dependently substituted for nicotine, without significant decreases in response rates. In the discrimination assay the rank order potency was RTI-36 > nicotine > RTI-102 > RTI-76. Evidence suggests the α4β2* subtype is particularly important to nicotine-related abuse potential. Thus, here we utilized the antagonist dihydro-β-erythroidine (DHβE) to examine relative β2 subunit contribution. DHβE (3.2 mg/kg, s.c.) antagonized the discriminative stimulus effects of nicotine. However, relative to antagonism of nicotine, DHβE produced less antagonism of RTI-102 and RTI-76 and greater antagonism of RTI-36. It is likely that at nicotinic receptor subunits RTI-102, RTI-76 and RTI-36 possess differing activity. To confirm that the full discriminative stimulus of these compounds was due to nAChR activity beyond the β2 subunit, we examined these compounds in the presence of the non-selective nicotinic receptor antagonist mecamylamine. Mecamylamine (0.56 mg/kg, s.c.) pretreatment abolished nicotine-paired lever responding for all compounds. In a separate cohort, male and female Sprague-Dawley rats underwent CCI surgery and tested for CCI-induced mechanical allodynia via the von Frey assay. Each compound produced CCI-induced mechanical allodynia reversal. RTI-36 displayed higher potency than either RTI-102 or RTI-76. These novel epibatidine analogs may prove to be useful tools in the fight against nicotine dependence as well as novel neuropathic pain analgesics.
Collapse
Affiliation(s)
- Kevin Luque-Sanchez
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Jasmine Felix
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Joshua Bilbrey
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Luis Restrepo
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Morgan Reeves
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| |
Collapse
|
2
|
Ortiz YT, Bilbrey JA, Felix JS, Kienegger EA, Mottinelli M, Mukhopadhyay S, McCurdy CR, McMahon LR, Wilkerson JL. Cannabidiol and mitragynine exhibit differential interactive effects in the attenuation of paclitaxel-induced mechanical allodynia, acute antinociception, and schedule-controlled responding in mice. Pharmacol Rep 2023; 75:937-950. [PMID: 37243887 DOI: 10.1007/s43440-023-00498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND For many chemotherapy patients peripheral neuropathy is a debilitating side effect. Mitragyna speciosa (kratom) contains the alkaloid mitragynine (MG), which produces analgesia in multiple preclinical pain models. In humans, anecdotal reports suggest cannabidiol (CBD) may enhance kratom-related analgesia. We examined the interactive activity of MG and CBD in a mouse chemotherapy-induced peripheral neuropathy (CIPN) model. We also examined MG + CBD in acute antinociception and schedule-controlled responding assays, as well as examined underlying receptor mechanisms. METHODS Male and female C57BL/6J mice received a cycle of intraperitoneal (ip) paclitaxel injections (cumulative dose 32 mg/kg). The von Frey assay was utilized to assess CIPN allodynia. In paclitaxel-naïve mice, schedule-controlled responding for food was conducted under a fixed ratio (FR)-10, and hot plate antinociception was examined. RESULTS MG dose-relatedly attenuated CIPN allodynia (ED50 102.96 mg/kg, ip), reduced schedule-controlled responding (ED50 46.04 mg/kg, ip), and produced antinociception (ED50 68.83 mg/kg, ip). CBD attenuated allodynia (ED50 85.14 mg/kg, ip) but did not decrease schedule-controlled responding or produce antinociception. Isobolographic analysis revealed 1:1, 3:1 MG + CBD mixture ratios additively attenuated CIPN allodynia. All combinations decreased schedule-controlled responding and produced antinociception. WAY-100635 (serotonin 5-HT1A receptor antagonist) pretreatment (0.01 mg/kg, ip) antagonized CBD anti-allodynia. Naltrexone (pan opioid receptor antagonist) pretreatment (0.032 mg/kg, ip) antagonized MG anti-allodynia and acute antinociception but produced no change in MG-induced decreased schedule-controlled behavior. Yohimbine (α2 receptor antagonist) pretreatment (3.2 mg/kg, ip) antagonized MG anti-allodynia and produced no change in MG-induced acute antinociception or decreased schedule-controlled behavior. CONCLUSIONS Although more optimization is needed, these data suggest CBD combined with MG may be useful as a novel CIPN therapeutic.
Collapse
Affiliation(s)
- Yuma T Ortiz
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter., Amarillo, TX, 79106, USA
| | - Joshua A Bilbrey
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jasmine S Felix
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Erik A Kienegger
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Marco Mottinelli
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA
| | - Sushobhan Mukhopadhyay
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter., Amarillo, TX, 79106, USA
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter., Amarillo, TX, 79106, USA.
| |
Collapse
|
3
|
De Aquino JP, MacLean RR, Gueorguieva R, DeVito EE, Eid T, Sofuoglu M. Impact of delivery rate on the acute response to intravenous nicotine: A human laboratory study with implications for regulatory science. Addict Biol 2022; 27:e13161. [PMID: 35229960 PMCID: PMC8903077 DOI: 10.1111/adb.13161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/29/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022]
Abstract
Faster delivery rate enhances the abuse potential of drugs of abuse, yet systematic studies on the impact of delivery rate on the acute effects of nicotine in humans are lacking. Using an intravenous (IV) nicotine infusion procedure that allows precise control of rate of delivery, we examined the impact of nicotine delivery rate on the positive subjective drug effects, smoking urges, withdrawal, heart rate, blood pressure and attention function in smokers. Twenty-four male and female (ages 21-35) dependent smokers attended five experimental sessions, following overnight abstinence from smoking. Using a crossover design, participants attended five sessions, where they were assigned to a random sequence of saline infusion or 1 mg nicotine delivered over 1, 2.5, 5 or 10 min at rates of 1, 0.4, 0.2 or 0.1 mg/min, respectively. The positive subjective effects of nicotine were most robust under the two faster delivery rate conditions, 1- and 0.4-mg nicotine/min. In contrast, all nicotine delivery rates were equally more effective than saline in alleviating urges to smoke. Likewise, nicotine-induced heart rate increases did not vary with the rate of nicotine delivery. Lastly, the cognitive enhancing effects of nicotine were observed only under the two slowest delivery rate conditions-0.1- and 0.2-mg nicotine/min. Collectively, these findings support the critical role of delivery rate in optimizing nicotine's abuse potential versus potential therapeutic effects and have timely implications for developing novel therapeutics for nicotine dependence, as well as for tobacco regulatory science.
Collapse
Affiliation(s)
- Joao P. De Aquino
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- VA Connecticut Healthcare System, West Haven, CT
| | - R. Ross MacLean
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- VA Connecticut Healthcare System, West Haven, CT
| | - Ralitza Gueorguieva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT
| | - Elise E. DeVito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
| | - Mehmet Sofuoglu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
4
|
Cytisine and cytisine derivatives. More than smoking cessation aids. Pharmacol Res 2021; 170:105700. [PMID: 34087351 DOI: 10.1016/j.phrs.2021.105700] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
Cytisine, a natural bioactive compound that is mainly isolated from plants of the Leguminosae family (especially the seeds of Laburnum anagyroides), has been marketed in central and eastern Europe as an aid in the clinical management of smoking cessation for more than 50 years. Its main targets are neuronal nicotinic acetylcholine receptors (nAChRs), and pre-clinical studies have shown that its interactions with various nAChR subtypes located in different areas of the central and peripheral nervous systems are neuroprotective, have a wide range of biological effects on nicotine and alcohol addiction, regulate mood, food intake and motor activity, and influence the autonomic and cardiovascular systems. Its relatively rigid conformation makes it an attractive template for research of new derivatives. Recent studies of structurally modified cytisine have led to the development of new compounds and for some of them the biological activities are mediated by still unidentified targets other than nAChRs, whose mechanisms of action are still being investigated. The aim of this review is to describe and discuss: 1) the most recent pre-clinical results obtained with cytisine in the fields of neurological and non-neurological diseases; 2) the effects and possible mechanisms of action of the most recent cytisine derivatives; and 3) the main areas warranting further research.
Collapse
|
5
|
de Moura FB, Wilkerson JL, McMahon LR. Unexpected loss of sensitivity to the nicotinic acetylcholine receptor antagonist activity of mecamylamine and dihydro-β-erythroidine in nicotine-tolerant mice. Brain Behav 2020; 10:e01581. [PMID: 32092237 PMCID: PMC7177571 DOI: 10.1002/brb3.1581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES There is a long-standing interest in developing nicotinic acetylcholine receptor (nAChR) antagonists for concomitant use with nAChR agonists (e.g., nicotine replacement) as complementary smoking cessation aids. Previous studies demonstrate that daily nicotine treatment confers tolerance to some effects of nicotine, as well as cross-tolerance to other nAChR agonists. The current study assessed the extent to which antagonism of nicotine varies as a function of daily nicotine treatment. METHODS Schedule-controlled responding and hypothermia were selected for study because they have been previously used to examine the pharmacology of nicotine, and both are sensitive to the development nicotine tolerance. The rate-decreasing and hypothermic effects of nicotine, as well as antagonism of those effects, were examined in C57BL/6J mice before, during treatment with, and after discontinuation of three daily injections of 1.78 mg/kg nicotine. The nonselective nAChR antagonist mecamylamine and the β2 nAChR antagonist dihydro-β-erythroidine (DHβE) were studied in combination with nicotine. RESULTS The ED50 values of nicotine to produce rate-decreasing and hypothermic effects were, respectively, 0.44 and 0.82 mg/kg prior, 1.6 and 3.2 mg/kg during, and 0.74 and 1.1 mg/kg after discontinuation of daily nicotine treatment. Prior to daily nicotine treatment, mecamylamine decreased response rate and rectal temperature. However, during daily nicotine, mecamylamine (up to 5.6 mg/kg) only decreased rectal temperature. DHβE (up to 5.6 mg/kg) when studied prior to daily nicotine decreased rectal temperature, but that decrease was abolished during chronic nicotine treatment. Mecamylamine and DHβE antagonized the rate-decreasing and hypothermic effects of nicotine before and after daily nicotine; however, during daily nicotine, mecamylamine and DHβE antagonized only the hypothermic effects of nicotine. CONCLUSIONS The differential antagonism of rate-decreasing and hypothermic effects implicates differential involvement of nAChR subtypes. The decreased capacity of mecamylamine and DHβE to antagonize nicotine during chronic nicotine treatment may indicate that their effectiveness as smoking cessations might vary as a function of nicotine tolerance and dependence.
Collapse
Affiliation(s)
- Fernando B de Moura
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Behavioral Biology Program, McLean Hospital, Belmont, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Lance R McMahon
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Wilkerson JL, Felix JS, Restrepo LF, Ansari MI, Coop A, McMahon LR. The Effects of Morphine, Baclofen, and Buspirone Alone and in Combination on Schedule-Controlled Responding and Hot Plate Antinociception in Rats. J Pharmacol Exp Ther 2019; 370:380-389. [PMID: 31235534 DOI: 10.1124/jpet.118.255844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/14/2019] [Indexed: 12/26/2022] Open
Abstract
Better therapeutic options are needed for pain. Baclofen, buspirone, and morphine are characterized as having analgesic properties. However, little is known about potential interactions between analgesic effects of these drugs when combined. Furthermore, it is not known if the magnitude of these potential interactions will be similar for all drug effects. Thus, we tested the effects of these drugs alone and in combination for their capacity to produce thermal antinociception and to decrease food-maintained responding. Four male and four female Sprague-Dawley rats responded for food under a fixed-ratio 10 schedule; afterward they were immediately placed on a 52°C hot plate. Morphine, baclofen, and buspirone were examined alone and in 1:1 combinations, based upon ED50 values. Morphine and baclofen effects were evaluated with the opioid antagonist naltrexone and the GABAB antagonist (3-Aminopropyl)(diethoxymethyl)phosphinic acid (CGP35348), respectively. Morphine, baclofen, and buspirone dose dependently decreased operant responding, with the calculated ED50 values being 7.09, 3.42, and 0.57 mg/kg, respectively. The respective antinociception ED50 values were 16.15, 8.75, and 2.20 mg/kg. Analysis of 1:1 combinations showed the effects of morphine plus baclofen to decrease schedule-controlled responding and to produce thermal antinociception were synergistic. Effects of morphine plus buspirone and baclofen plus buspirone to decrease schedule-controlled responding were additive. Effects of the two combinations to produce thermal antinociception were synergistic. Naltrexone and CGP35348 antagonized the effects of morphine and baclofen, respectively. Synergistic antinociceptive effects, in conjunction with additive effects on food-maintained responding, highlight the therapeutic utility of opioid and non-opioid drug combinations.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| | - Jasmine S Felix
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| | - Luis F Restrepo
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| | - Mohd Imran Ansari
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| | - Andrew Coop
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| |
Collapse
|
7
|
Tsypysheva I, Petrova P, Koval'skaya A, Lobov A, Sapozhnikova T, Makara N, Gabdrakhmanova S, Zarudii F. Variation of spacer type and topology of phenyl moiety in 2-pyridone core of 4-oxo-3- N-methylcytisine; effect of synthesized compounds on rat's behavior in conditioned passive avoidance reflex (CPAR) test. Nat Prod Res 2019; 35:207-215. [PMID: 31140310 DOI: 10.1080/14786419.2019.1622106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Novel derivatives of 4-oxo-3-methylcytisine with phenyl moiety bonded to starting molecule through various spacers were obtained from the 9-amino, -halo, -formyl and 11-halo precursors by reductive alkylation of amines, generation of amide, as well as thio- and carboxamide functions, cross-coupling reactions, aldehyde condensation and reduction of unsaturated 'C-C' bonds. Ability of synthesized compounds to influence the learning and memory was preliminary assessed in conditioned passive avoidance reflex (CPAR) test in rats. It was shown, that derivatives with phenyl group at 11 carbon atom influence the learning and memory in CPAR test more effectively than other compounds. The hit-compound (3-methyl-11-(2-phenylvinyl)-3,5,6-trihydro-2H-1,5-methanopyrido[1,2-a][1,5]diazocine-4,8(1H)-dione) with the best values of 'latency' and 'time spent in the dark compartment' has been identified as a perspective scaffold for synthesis of novel derivatives of (-)-cytisine with potential neuropharmacological activity.
Collapse
Affiliation(s)
- Inna Tsypysheva
- Laboratory of bioorganic chemistry and catalysis, Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation.,Laboratory of physicochemical methods of analysis, Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| | - Polina Petrova
- Laboratory of bioorganic chemistry and catalysis, Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation.,Laboratory of physicochemical methods of analysis, Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| | - Alena Koval'skaya
- Laboratory of bioorganic chemistry and catalysis, Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation.,Laboratory of physicochemical methods of analysis, Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| | - Alexander Lobov
- Laboratory of bioorganic chemistry and catalysis, Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation.,Laboratory of physicochemical methods of analysis, Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| | - Tatyana Sapozhnikova
- Laboratory of bioorganic chemistry and catalysis, Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| | - Nina Makara
- Laboratory of bioorganic chemistry and catalysis, Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| | - Svetlana Gabdrakhmanova
- Laboratory of bioorganic chemistry and catalysis, Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| | - Felix Zarudii
- Laboratory of bioorganic chemistry and catalysis, Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| |
Collapse
|
8
|
Cunningham CS, Moerke MJ, McMahon LR. Discriminative stimulus effects of mecamylamine and nicotine in rhesus monkeys: Central and peripheral mechanisms. Pharmacol Biochem Behav 2019; 179:27-33. [PMID: 30738085 PMCID: PMC6788799 DOI: 10.1016/j.pbb.2019.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/21/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
Abstract
Mecamylamine is a non-competitive nicotinic acetylcholine receptor (nAChR) antagonist that has been prescribed for hypertension and as an off-label smoking cessation aid. Here, we examined pharmacological mechanisms underlying the interoceptive effects (i.e., discriminative stimulus effects) of mecamylamine (5.6 mg/kg s.c.) and compared the effects of nAChR antagonists in this discrimination assay to their capacity to block a nicotine discriminative stimulus (1.78 mg/kg s.c.) in rhesus monkeys. Central (pempidine) and peripherally restricted nAChR antagonists (pentolinium and chlorisondamine) dose-dependently substituted for the mecamylamine discriminative stimulus in the following rank order potency (pentolinium > pempidine > chlorisondamine > mecamylamine). In contrast, at equi-effective doses based on substitution for mecamylamine, only mecamylamine antagonized the discriminative stimulus effects of nicotine, i.e., pentolinium, chlorisondamine, and pempidine did not. NMDA receptor antagonists produced dose-dependent substitution for mecamylamine with the following rank order potency (MK-801 > phencyclidine > ketamine). In contrast, behaviorally active doses of smoking cessation aids including nAChR agonists (nicotine, varenicline, and cytisine), the smoking cessation aid and antidepressant bupropion, and the benzodiazepine midazolam did not substitute for the discriminative stimulus effects of mecamylamine. These data suggest that peripheral nAChRs and NMDA receptors may contribute to the interoceptive stimulus effects produced by mecamylamine. Based on the current results, the therapeutic use of mecamylamine (i.e., for smoking or to alleviate green tobacco sickness) should be weighed against the potential for mecamylamine to produce interoceptive effects that overlap with another class of abused drugs (i.e., NMDA receptor agonists).
Collapse
Affiliation(s)
- Colin S Cunningham
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL, USA
| | - Megan J Moerke
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
McMahon LR. Green tobacco sickness: mecamylamine, varenicline, and nicotine vaccine as clinical research tools and potential therapeutics. Expert Rev Clin Pharmacol 2019; 12:189-195. [PMID: 30650314 PMCID: PMC6786486 DOI: 10.1080/17512433.2019.1570844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Green tobacco sickness occurs from transdermal absorption of chemicals from freshly harvested, green tobacco leaves. Signs and symptoms include nausea, vomiting, headache, and abdominal cramps. Prevalence has shifted from the United States and Europe to China, India, and Brazil. Worldwide 8 million individuals are afflicted, including women and children. Areas covered: Mecamylamine (Inversine®, Vecamyl®), a nicotinic acetylcholine receptor (nAChR) antagonist, should be tested as a remedy for green tobacco sickness. Mecamylamine is approved as an oral tablet for the treatment of hypertension, is safe, and is off-patent. Mecamylamine attenuates many of the effects of nicotine and tobacco including seizures, thereby supporting its use as an effective pharmacotherapy for tobacco dependence. Varenicline (Chantix®) and cytisine (Tabex®) are low efficacy (i.e. intrinsic activity) nAChR agonists, are used as smoking cessation aids, and are viable options to test as remedies against green tobacco sickness. Nicotine immunization strategies may provide further options for future testing. Expert commentary: Efforts to demonstrate reversal and/or prevention of green tobacco sickness by mecamylamine will underscore the importance of nicotine in this illness and highlight a new medication for effective treatment of tobacco poisoning.
Collapse
Affiliation(s)
- Lance R McMahon
- a Department of Pharmacodynamics, College of Pharmacy , University of Florida , Gainesville , FL , USA
| |
Collapse
|
10
|
Differential cross-tolerance to the effects of nicotinic acetylcholine receptor drugs in C57BL/6J mice following chronic varenicline. Behav Pharmacol 2018; 30:412-421. [PMID: 30398980 DOI: 10.1097/fbp.0000000000000452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Varenicline is a smoking cessation pharmacotherapy with a presumed mechanism of action of partial efficacy at the α4β2 nicotinic acetylcholine receptor (nAChR); however, the extent to which daily varenicline use leads to changes in nAChR sensitivity is unclear. This study examined the consequences of daily varenicline treatment on disruptions in operant responding (i.e. rate-decreasing effects) and hypothermia induced by administration of nicotine, epibatidine, cytisine, and cocaine in C57BL/6J mice. Furthermore, mecamylamine was used to assess the involvement of nAChRs in the effects of varenicline. Mice were trained under a fixed ratio 20 of milk reinforcement, and rectal temperatures were measured after 30 min following drug-administration. Varenicline, nicotine, epibatidine, and cytisine produced dose-dependent decreases in response rate and rectal temperature. Chronic varenicline (30 mg/kg) engendered tolerance to varenicline, but more cross-tolerance to nicotine, for both disruptions in operant responding and hypothermia. Cross-tolerance only developed to the hypothermic effects of epibatidine, and no cross-tolerance developed to any effects of cytisine and cocaine. In varenicline-tolerant mice, mecamylamine did not antagonize the effects of varenicline. The varying magnitudes of tolerance and cross-tolerance among effects and drugs are indicative of a nonuniform nAChR pharmacology in vivo.
Collapse
|
11
|
Withey SL, Doyle MR, Bergman J, Desai RI. Involvement of Nicotinic Receptor Subtypes in the Behavioral Effects of Nicotinic Drugs in Squirrel Monkeys. J Pharmacol Exp Ther 2018; 366:397-409. [PMID: 29784663 DOI: 10.1124/jpet.118.248070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/17/2018] [Indexed: 11/22/2022] Open
Abstract
Evidence suggests that the α4β2, but not the α7, subtype of the nicotinic acetylcholine receptor (nAChR) plays a key role in mediating the behavioral effects of nicotine and related drugs. However, the importance of other nAChR subtypes remains unclear. The present studies were conducted to examine the involvement of nAChR subtypes by determining the effects of selected nicotinic agonists and antagonists in squirrel monkeys either 1) responding for food reinforcement or 2) discriminating the nicotinic agonist (+)-epibatidine (0.001 mg/kg) from vehicle. In food-reinforcement studies, nicotine, (+)-epibatidine, varenicline and cytisine all produced dose-dependent decreases in rates of food-maintained responding. The rate-decreasing effects of nicotine were antagonized by mecamylamine (nonselective), not appreciably altered by dihydro-β-erythroidine (α4β2 selective), and exacerbated by the nicotinic partial agonists, varenicline and cytisine. Results from discrimination studies show that non-nicotinic drugs did not substitute for (+)-epibatidine, and that except for lobeline, the nicotinic agonists produced either full [(+)-epibatidine, (-)-epibatidine, and nicotine] or partial (varenicline, cytisine, anabaseine, and isoarecolone) substitution for (+)-epibatidine. In interaction studies with antagonists differing in selectivity, (+)-epibatidine discrimination was substantively antagonized by mecamylamine, slightly attenuated by hexamethonium (peripherally restricted) or dihydro-β-erythroidine, and not altered by methyllycaconitine (α7 selective). Varenicline and cytisine enhanced (+)-epibatidine's discriminative-stimulus effects. Correlational analysis revealed a close correspondence between relative behavioral potencies of nicotinic agonists in both studies and their published relative binding affinities at α4β2 and α3β4, but not α7 nAChR, subtypes. Collectively, these results are consistent with the idea that the α4β2 and α3β4, but not α7 nAChR subtypes play a role in the behavioral effects of nicotinic agonists.
Collapse
Affiliation(s)
- Sarah L Withey
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Michelle R Doyle
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Jack Bergman
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Rajeev I Desai
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| |
Collapse
|
12
|
Nootropic Activity of a Novel (-)-Cytisine Derivative (3aR,4S,8S,12R, 12aS,12bR)-10-Methyl-2-Phenyloctahydro-1H-4,12a-Etheno-8,12-Methanopyrrolo[3’,4’:3,4]Pyrido[1,2-a] [1,5]Diazocine-1,3,5(4H)-Trione. Bull Exp Biol Med 2018; 164:434-438. [DOI: 10.1007/s10517-018-4006-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 01/18/2023]
|
13
|
de Moura FB, McMahon LR. The contribution of α4β2 and non-α4β2 nicotinic acetylcholine receptors to the discriminative stimulus effects of nicotine and varenicline in mice. Psychopharmacology (Berl) 2017; 234:781-792. [PMID: 28028600 PMCID: PMC5309148 DOI: 10.1007/s00213-016-4514-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
RATIONALE The extent to which non-α4β2 versus α4β2* nAChRs contribute to the behavioral effects of varenicline and other nAChR agonists is unclear. OBJECTIVES The purpose of this study was to characterize the discriminative stimulus effects of varenicline and nicotine using various nAChR agonists and antagonists to elucidate possible non-α4β2 nAChR mechanisms. METHODS Separate groups of male C57BL/6J mice were trained to discriminate varenicline (3.2 mg/kg) or nicotine (1 mg/kg). Test drugs included mecamylamine; the nAChR agonists epibatidine, nicotine, cytisine, varenicline, and RTI-102; the β2-containing nAChR antagonist dihydro-β-erythroidine (DHβE); the α7 nAChR agonist PNU-282987; the α7 antagonist methyllycaconitine (MLA); the α3β4 antagonist 18-methoxycoronaridine (18-MC); and the non-nAChR drugs midazolam and cocaine. RESULTS In nicotine-trained mice, maximum nicotine-appropriate responding was 95% nicotine, 94% epibatidine, 63% varenicline, 58% cytisine, and less than 50% for RTI-102, PNU-282987, midazolam, and cocaine. In varenicline-trained mice, maximum varenicline-appropriate responding was 90% varenicline, 86% epibatidine, 74% cytisine, 80% RTI-102, 50% cocaine, and 50% or less for nicotine, PNU-282987, and midazolam. Drugs were studied to doses that abolished operant responding. Mecamylamine antagonized the discriminative stimulus effects, but not the rate-decreasing effects, of nicotine and varenicline. DHβE antagonized the discriminative stimulus and rate-decreasing effects of nicotine but not varenicline in either the nicotine or varenicline discrimination assays. The discriminative stimulus, but not the rate-decreasing, effects of epibatidine were antagonized by DHβE regardless of the training drug. CONCLUSIONS These results suggest that α4β2* nAChRs differentially mediate the discriminative stimulus effects of nicotine and varenicline, and suggest that varenicline has substantial non-α4β2 nAChR activity.
Collapse
Affiliation(s)
- Fernando B de Moura
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Lance R McMahon
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
14
|
Differential antagonism and tolerance/cross-tolerance among nicotinic acetylcholine receptor agonists: scheduled-controlled responding and hypothermia in C57BL/6J mice. Behav Pharmacol 2016; 27:240-8. [PMID: 26910582 DOI: 10.1097/fbp.0000000000000233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The tobacco-dependence pharmacotherapies varenicline and cytisine act as partial α4β2 nAChR agonists. However, the extent to which α4β2 nicotinic acetylcholine receptors (nAChRs) mediate their in-vivo effects remains unclear. Nicotine, varenicline, cytisine, and epibatidine were studied in male C57BL/6J mice for their effects on rates of fixed ratio responding and rectal temperature alone and in combination with the nonselective nAChR antagonist mecamylamine and the α4β2 nAChR antagonist dihydro-β-erythroidine. The effects of nicotine, varenicline, cytisine, epibatidine, and cocaine were assessed before and during chronic nicotine treatment. The rate-decreasing and hypothermic effects of nicotine, varenicline, cytisine, and epibatidine were antagonized by mecamylamine (1 mg/kg), but only the effects of nicotine and epibatidine were antagonized by dihydro-β-erythroidine (3.2 mg/kg). Chronic nicotine produced 4.7 and 5.1-fold rightward shifts in the nicotine dose-effect functions to decrease response rate and rectal temperature, respectively. Nicotine treatment decreased the potency of epibatidine to decrease response rate and rectal temperature 2.2 and 2.9-fold, respectively, and shifted the varenicline dose-effect functions 2.0 and 1.7-fold rightward, respectively. Cross-tolerance did not develop from nicotine to cytisine. These results suggest that the in-vivo pharmacology of tobacco cessation aids cannot be attributed to a single nAChR subtype; instead, multiple receptor subtypes differentially mediate their effects.
Collapse
|
15
|
|
16
|
Rodriguez JS, Cunningham CS, Moura FB, Ondachi P, Carroll FI, McMahon LR. Discriminative stimulus and hypothermic effects of some derivatives of the nAChR agonist epibatidine in mice. Psychopharmacology (Berl) 2014; 231:4455-66. [PMID: 24800895 PMCID: PMC4224623 DOI: 10.1007/s00213-014-3589-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/11/2014] [Indexed: 12/21/2022]
Abstract
RATIONALE Receptor mechanisms underlying the in vivo effects of nicotinic acetylcholine receptor (nAChR) drugs need to be determined to better understand possible differences in therapeutic potential. OBJECTIVE This study compared the effects of agonists that are reported either to differ in intrinsic activity (i.e., efficacy) at α4β2 nAChR in vitro or to have in vivo effects consistent with differences in efficacy. The drugs included nicotine, varenicline, cytisine, epibatidine, and three novel epibatidine derivatives: 2'-fluoro-3'-(4-nitrophenyl)deschloroepibatidine (RTI-7527-102), 2'-fluorodeschloroepibatidine (RTI-7527-36), and 3'-(3″-dimethylaminophenyl)-epibatidine (RTI-7527-76). METHODS Mice discriminated nicotine base (1 mg/kg base) from saline; other mice were used to measure rectal temperature. RESULTS In the nicotine discrimination assay, the maximum percentage of nicotine-appropriate responding varied: 92 % for nicotine, 84 % for epibatidine, 77 % for RTI-7527-36, and 71 % for varenicline and significantly less for RTI-7527-76 (58 %), RTI-7527-102 (46 %), and cytisine (33 %). Each drug markedly decreased rectal temperature by as much as 12 ºC. The rank-order potency in the discrimination and hypothermia assays was epibatidine > RTI-7527-36 > nicotine > RTI-7527-102 > varenicline = cytisine = RTI-7527-76. The nAChR antagonist mecamylamine (3.2 mg/kg) antagonized the discriminative stimulus effects of epibatidine and RTI-7527-102, as well as the hypothermic effects of every drug except cytisine. The β2-subunit selective nAChR antagonist dihydro-β-erythroidine (DHβE; up to 10 mg/kg) antagonized hypothermic effects but less effectively so than mecamylamine. CONCLUSIONS The marked hypothermic effects of all drugs except cytisine are due in part to agonism at nAChR containing β2-subunits. Differential substitution for the nicotine discriminative stimulus is consistent with differences in α4β2 nAChR efficacy; however, collectively the current results suggest that multiple nAChR receptor subtypes mediate the effects of the agonists.
Collapse
Affiliation(s)
- Jesse S. Rodriguez
- University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Colin S. Cunningham
- University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Fernando B. Moura
- University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Pauline Ondachi
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, North Carolina, 27709
| | - F. Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, North Carolina, 27709
| | - Lance R. McMahon
- University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
17
|
Liu Q, Tang Z, Gan Y, Wu W, Kousari A, La Cava A, Shi FD. Genetic deficiency of β2-containing nicotinic receptors attenuates brain injury in ischemic stroke. Neuroscience 2013; 256:170-7. [PMID: 24184117 DOI: 10.1016/j.neuroscience.2013.10.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 12/30/2022]
Abstract
One of the major consequences of stroke is brain injury caused by glutamate-mediated excitotoxicity. Glutamate-mediated excitatory activities are partially driven by β2-containing nicotinic acetylcholine receptors (β2-nAChRs). In examining the role of β2-nAChRs in cerebral ischemic injury, excitotoxicity and stroke outcome, we found that deficiency of β2-nAChRs attenuated brain infarction and neurological deficit at 24 and 72 h after transient middle cerebral artery occlusion (MCAO). Genetic deletion of β2-nAChRs associated with reduced terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL(+)) and cleaved caspase-3(+) cells after MCAO, together with a reduction of extracellular glutamate and oxygen-glucose deprivation-induced increase of excitatory inputs in cortical neurons. Pharmacologic pretreatment with a selective β2-nAChRs antagonist reduced brain infarction, neurological deficit, and MCAO-induced glutamate release. These findings suggest that deficiency of β2-nAChRs, also achievable by pharmacological blockade, can decrease brain infarction and improve the neurological status in ischemic stroke. The improved outcome is associated with reduced extracellular glutamate level and lower excitatory inputs into ischemic neurons, suggesting a reduction of glutamate-mediated excitotoxicity in the mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Q Liu
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA; Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Z Tang
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Y Gan
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - W Wu
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - A Kousari
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - A La Cava
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - F-D Shi
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA; Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
18
|
Jutkiewicz EM, Rice KC, Carroll FI, Woods JH. Patterns of nicotinic receptor antagonism II: cardiovascular effects in rats. Drug Alcohol Depend 2013; 131:284-97. [PMID: 23333294 PMCID: PMC4174279 DOI: 10.1016/j.drugalcdep.2012.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Tobacco cessation pharmacotherapies currently are limited to nicotine itself, the partial nicotine agonists varenicline and cytisine, and the antidepressant bupropion. Compared with agonists, nicotinic antagonists such as the noncompetitive, nonselective compound mecamylamine, and the competitive, α4β2-preferring antagonist dihydro-β-erythroidine (DHβE) may be a novel approach to the treatment of tobacco smoking as both are effective antagonists of nicotine's central effects. Considering nicotinic acetylcholine receptors mediate critical peripheral effects of acetylcholine, such as cardiovascular effects, it is important to study how nicotinic antagonists would alter the cardiovascular system and the cardiovascular changes induced by nicotine. METHODS The effects of several nicotinic agonists and antagonists on blood pressure and heart rate were measured in conscious, unrestrained rats following parenteral administration using a telemetry system. RESULTS Nicotine and other nicotinic receptor agonists (epibatidine, varenicline, and cytisine) produced similar increases in blood pressure, whereas their effects on heart rate were biphasic. The cardiovascular changes were attenuated by the nonselective nicotine antagonist, mecamylamine, but the peripherally restricted antagonist hexamethonium blocked only the agonist-induced changes in blood pressure. The α7-preferring antagonist, MLA, and the α4β2-preferring antagonist, DHβE, were much less effective in blocking the agonist-induced cardiovascular changes, indicating that nicotine's cardiovascular effects, are due to activation at autonomic ganglia involving nicotinic receptor subtypes other than α4, α7, or β2. CONCLUSIONS The data indicate that the cardiovascular effects of nicotine and nicotine-like agents are mediated through receptor mechanisms that are distinct from those that mediate the central effects of nicotine.
Collapse
Affiliation(s)
- Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI 48109-5632, USA
| | | | | | | |
Collapse
|
19
|
Multiple nicotine training doses in mice as a basis for differentiating the effects of smoking cessation aids. Psychopharmacology (Berl) 2013; 228:321-33. [PMID: 23494230 PMCID: PMC3695008 DOI: 10.1007/s00213-013-3037-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/12/2013] [Indexed: 02/06/2023]
Abstract
RATIONALE Receptor mechanisms underlying the behavioral effects of clinically used nicotinic acetylcholine receptor agonists have not been fully established. OBJECTIVE Drug discrimination was used to compare receptor mechanisms underlying the effects of smoking cessation aids. METHODS Separate groups of male C57BL/6J mice discriminated 0.56, 1, or 1.78 mg/kg of nicotine base. Nicotine, varenicline, and cytisine were administered alone, in combination with each other, and in combination with mecamylamine and dihydro-β-erythroidine (DHβE). Midazolam and morphine were tested to examine sensitivity to non-nicotinics. RESULTS The ED50 value of nicotine to produce discriminative stimulus effects systematically increased as training dose increased. Varenicline and cytisine did not fully substitute for nicotine and, as compared with nicotine, their ED50 values varied less systematically as a function of nicotine training dose. Morphine did not substitute for nicotine, whereas midazolam substituted for the low and not the higher training doses of nicotine. As training dose increased, the dose of mecamylamine needed to produce a significant rightward shift in the nicotine dose-effect function also increased. DHβE antagonized nicotine in animals discriminating the smallest dose of nicotine. Varenicline did not antagonize the effects of nicotine, whereas cytisine produced a modest though significant antagonism of nicotine. CONCLUSIONS These results suggest that differences in pharmacologic mechanism between nicotine, varenicline, and cytisine include not only differences in efficacy at a common subtype of nicotinic acetylcholine receptor, but also differential affinity and/or efficacy at multiple receptor subtypes.
Collapse
|
20
|
Ginsburg BC, Lamb RJ. Effects of varenicline on ethanol- and food-maintained responding in a concurrent access procedure. Alcohol Clin Exp Res 2013; 37:1228-33. [PMID: 23413834 DOI: 10.1111/acer.12085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/21/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Varenicline has been reported to reduce drinking in smokers and to selectively decrease responding for ethanol (EtOH) versus alternatives in preclinical studies. Such selectivity may reflect potential therapeutic effects and the involvement of nicotinic receptors in EtOH reinforcement. However, these studies have been conducted with EtOH and an alternative available in isolation or in separate groups, and selectivity can depend on the context in which reinforcement occurs. Whether varenicline selectivity is maintained when EtOH and an alternative are concurrently available has not been reported. To examine the effects of varenicline on EtOH self-administration when an alternative is concurrently available, male Lewis rats (n = 5) were trained to respond for EtOH and food under a concurrent FR5 FRX schedule where the fixed ratio (FR) for food was adjusted (FR = 25 or 35 for each subject) to provide similar numbers of EtOH and food deliveries during a 30-minute session. METHODS Doses of varenicline (0.56 to 5.6 mg/kg, i.p.) or vehicle were administered 30 minutes before sessions. Effects of varenicline on responding across the session and during each tenth of the session were compared to responding following vehicle treatment. RESULTS Lower doses (0.56 to 1.0 mg/kg) of varenicline increased responding for EtOH without affecting responding for food. Higher doses disrupted responding for EtOH and food similarly. CONCLUSIONS Previous reports of varenicline selectivity on EtOH-maintained responding do not generalize to other experimental conditions such as a concurrent schedule. The increase in responding for EtOH following lower doses might be due to enhanced EtOH reinforcement, decreased food reinforcement, rate dependency, or greater perseverance on the initial, EtOH response.
Collapse
Affiliation(s)
- Brett C Ginsburg
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | |
Collapse
|
21
|
AlSharari SD, Carroll FI, McIntosh JM, Damaj MI. The antinociceptive effects of nicotinic partial agonists varenicline and sazetidine-A in murine acute and tonic pain models. J Pharmacol Exp Ther 2012; 342:742-9. [PMID: 22678099 DOI: 10.1124/jpet.112.194506] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotinic agonists display a wide-range profile of antinociceptive activity in acute, tonic, and chronic pain models. However, their effectiveness is limited by their unacceptable side effects. We investigated the antinociceptive effects of two new α4β2* nicotinic partial agonists, varenicline and sazetidine-A, in acute thermal and tonic pain mouse models. Both drugs failed to induce significant effects in the tail-flick and hot-plate tests after subcutaneous administration. However, they blocked nicotine's effects in these tests at very low doses. In contrast to acute pain tests, varenicline and sazetidine-A dose-dependently induced an analgesic effect in the mouse formalin test after systemic administration. Their antinociceptive effects were mediated, however, by different nicotinic acetylcholine receptor (nAChR) subtypes. Sazetidine-A effects were mediated by β2* nAChR subtypes, whereas varenicline actions were attributed to α3β4 nAChRs. Moreover, low inactive doses of varenicline blocked nicotine's actions in phase II of the formalin test. Overall, our results suggest that the antagonistic actions of varenicline at low doses are mediated by β2*-nAChRs and at higher doses as an agonist by α3β4*-nAChRs. In contrast, both actions of sazetidine-A are mediated by β2*-nAChR subtypes. These results suggest that nicotinic partial agonists possess analgesic effects in a rodent tonic pain model and may provide a potential treatment for the treatment of chronic pain disorders.
Collapse
Affiliation(s)
- Shakir D AlSharari
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | | | | | | |
Collapse
|
22
|
Ortiz NC, O'Neill HC, Marks MJ, Grady SR. Varenicline blocks β2*-nAChR-mediated response and activates β4*-nAChR-mediated responses in mice in vivo. Nicotine Tob Res 2012; 14:711-9. [PMID: 22241831 DOI: 10.1093/ntr/ntr284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION The smoking cessation aid, varenicline, has higher affinity for the alpha4beta2-subtype of the nicotinic acetylcholine receptor (α4β2*-nAChR) than for other subtypes of nAChRs by in vitro assays. The mechanism of action of acute varenicline was studied in vivo to determine (a) subtype activation associated with physiological effects and (b) dose relationship as an antagonist of nicotine. METHODS Acute doses of saline, nicotine, and varenicline were given to mice, and locomotor depression and hypothermia were measured. Subunit null mutant mice as well as selective antagonists were used to study mode of action of varenicline as an agonist. Varenicline as an antagonist of nicotine was also investigated. RESULTS Varenicline evokes locomotor depression and hypothermia at higher doses than necessary for nicotine. Null mutation of the α7- or β2-nAChR subunit did not decrease the effectiveness of varenicline; however, null mutation of the β4 subunit significantly decreased the magnitude of the varenicline effect. Effects of the highest dose studied were blocked by mecamylamine (general nAChR antagonist) and partially antagonized by hexamethonium (largely peripheral nAChR antagonist). No significant block was seen with ondansetron antagonist of 5-hydroxytryptamine 3 receptor. Using a dose of nicotine selective for β2*-nAChR subtype effects with these tests, dose-dependent antagonism by varenicline was seen. Effective inhibitory doses were determined and appear to be in a range consistent with binding affinity or desensitization of β2*-nAChRs. CONCLUSIONS Varenicline acts as a functional antagonist of β2*-nAChRs, blocking certain effects of nicotine. At higher doses, varenicline is an agonist of β4*-nAChRs producing physiological changes in mice.
Collapse
Affiliation(s)
- Nick C Ortiz
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
23
|
Rohde LAH, Ahring PK, Jensen ML, Nielsen EØ, Peters D, Helgstrand C, Krintel C, Harpsøe K, Gajhede M, Kastrup JS, Balle T. Intersubunit bridge formation governs agonist efficacy at nicotinic acetylcholine α4β2 receptors: unique role of halogen bonding revealed. J Biol Chem 2011; 287:4248-59. [PMID: 22170047 DOI: 10.1074/jbc.m111.292243] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The α4β2 subtype of the nicotinic acetylcholine receptor has been pursued as a drug target for treatment of psychiatric and neurodegenerative disorders and smoking cessation aids for decades. Still, a thorough understanding of structure-function relationships of α4β2 agonists is lacking. Using binding experiments, electrophysiology and x-ray crystallography we have investigated a consecutive series of five prototypical pyridine-containing agonists derived from 1-(pyridin-3-yl)-1,4-diazepane. A correlation between binding affinities at α4β2 and the acetylcholine-binding protein from Lymnaea stagnalis (Ls-AChBP) confirms Ls-AChBP as structural surrogate for α4β2 receptors. Crystal structures of five agonists with efficacies at α4β2 from 21-76% were determined in complex with Ls-AChBP. No variation in closure of loop C is observed despite large efficacy variations. Instead, the efficacy of a compound appears tightly coupled to its ability to form a strong intersubunit bridge linking the primary and complementary binding interfaces. For the tested agonists, a specific halogen bond was observed to play a large role in establishing such strong intersubunit anchoring.
Collapse
Affiliation(s)
- Line Aagot Hede Rohde
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|