1
|
Ozma MA, Alileh NF, Abbasi A, Mahdavi S, Fadaee M, Nezhadi J, Ozma MA, Asgharzadeh M, Kafil HS. Antibacterial, antibiofilm, and gene expression assessment of ajwain (Trachyspermum ammi) essential oil on drug-resistant gastrointestinal pathogens and its combination effect with ampicillin. Lett Appl Microbiol 2025; 78:ovae138. [PMID: 39701813 DOI: 10.1093/lambio/ovae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024]
Abstract
Essential oils are natural substances used as therapeutic agents and food preservatives to inhibit harmful microorganisms. This study aimed to assess the synergistic effect of Trachyspermum ammi essential oil and ampicillin on antibiotic-resistant gastrointestinal pathogens, including Escherichia coli, Enterococcus faecalis, Shigella flexneri, and Salmonella serotype Typhimurium. Using gas chromatography-mass spectrometry (GC-MS), the main components of T. ammi essential oil were identified as thymol, gamma terpenes, and cymene. The antibacterial and antibiofilm properties were evaluated by minimum inhibitory concentration (MIC), disk diffusion, and microtiter plate methods, revealing MIC values of 2, 1, 4, and 4 mg ml-1 for E. coli, E. faecalis, S. flexneri, and S. Typhimurium, respectively, and inhibition zones between 10 and 14 mm. Pathogens were examined for their biofilm-related virulence genes, including aggR, esp, icsA, and fliC, using real-time polymerase chain reaction (RT-PCR) in E. coli, E. faecalis, S. flexneri, and S. Typhimurium, respectively. The methyl thiazole tetrazolium (MTT) assay was used to evaluate the essential oil's effect on the viability of human embryonic kidney 293 (HEK293) cells, which showed cell viability of over 80%. The combination of T. ammi oil and ampicillin demonstrated a synergistic effect, and biofilm formation was inhibited. E. faecalis exhibited the greatest sensitivity, while S. flexneri exhibited the lowest sensitivity.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | | | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Sina Mahdavi
- Department of Microbiology and Virology, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Javad Nezhadi
- Department of Microbiology and Virology, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Masoud Asghari Ozma
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz 5157944533, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| |
Collapse
|
2
|
Salikin NH, Keong LC, Azemin WA, Philip N, Yusuf N, Daud SA, Rashid SA. Combating multidrug-resistant (MDR) Staphylococcus aureus infection using terpene and its derivative. World J Microbiol Biotechnol 2024; 40:402. [PMID: 39627623 DOI: 10.1007/s11274-024-04190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus represents a major global health issue resulting in a wide range of debilitating infections and fatalities. The slow progression of new antibiotics, limited choices for treatment, and scarcity of new drug approvals create immense obstacles in new drug line development. S. aureus poses a significant public health risk, due to the emergence of methicillin-resistant (MRSA) and vancomycin-resistant strains (VRSA), necessitating novel antibiotics for effective control management. Current studies are delving into the terpenes' potential as an antimicrobial agent, indicating positive prospects as promising substitutes or complementary to conventional antibiotics. Concurrent reactions of terpenes with conventional antibiotics create synergistic effects that significantly enhance antibiotic efficacy. Accumulated evidence has shown that while efflux pump (e.g., NorA, TetK, and MepA) is revealed as an essential defense of S. aureus against antibiotics, terpene and its derivative act as its potent inhibitor, suggesting the promising potential of terpenes in combating those infectious pathogens. Furthermore, pronounced cell membrane disruptive activity and antibiofilm properties by terpenes have been exerted, signifying their significance as promising prevention against microbial pathogenesis and antimicrobial resistance. This review provides an overview of the potential of terpenes and their derivatives in combating S. aureus infections, highlighting their potential mechanisms of action (MOA), synergistic effects with conventional antibiotics, and challenges in clinical translation. The unique properties of terpenes offer an opportunity for their use in developing an exceptional defense strategy against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Nor Hawani Salikin
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Lee Chee Keong
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Noraini Philip
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Nurhaida Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Aceh, Indonesia
| | - Siti Aisyah Daud
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Syarifah Ab Rashid
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia.
| |
Collapse
|
3
|
Herrera-Bravo J, Belén LH, Reyes ME, Silva V, Fuentealba S, Paz C, Loren P, Salazar LA, Sharifi-Rad J, Calina D. Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8259-8284. [PMID: 38847831 DOI: 10.1007/s00210-024-03196-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 10/30/2024]
Abstract
Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme (Thymus vulgaris) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges as a promising candidate in cancer prevention and therapy. This study aims to consolidate current research on thymol's anticancer effects, elucidating its mechanisms and potential to enhance standard chemotherapy, and to identify gaps for future research. A comprehensive review was conducted using databases like PubMed/MedLine, Google Scholar, and ScienceDirect, focusing on studies from the last 6 years. All cancer types were included, assessing thymol's impact in both cell-based (in vitro) and animal (in vivo) studies. Thymol has been shown to induce programmed cell death (apoptosis), halt the cell division cycle (cell cycle arrest), and inhibit cancer spread (metastasis) through modulation of critical signaling pathways, including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinase (ERK), mechanistic target of rapamycin (mTOR), and Wnt/β-catenin. It also enhances the efficacy of 5-fluorouracil (5-FU) in colorectal cancer treatments. Thymol's broad-spectrum anticancer activities and non-toxic profile to normal cells underscore its potential as an adjunct in cancer therapy. Further clinical trials are essential to fully understand its therapeutic benefits and integration into existing treatment protocols.
Collapse
Affiliation(s)
- Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - María Elena Reyes
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de La Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Victor Silva
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de La Salud, Universidad Católica de Temuco, Temuco, Chile
| | - Soledad Fuentealba
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Department of Basic Sciences, Faculty of Medicine, Center CEBIM, Universidad de La Frontera, Temuco, Chile
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Javad Sharifi-Rad
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| |
Collapse
|
4
|
Puiu RA, Bîrcă AC, Grumezescu V, Duta L, Oprea OC, Holban AM, Hudiță A, Gălățeanu B, Balaure PC, Grumezescu AM, Andronescu E. Multifunctional Polymeric Biodegradable and Biocompatible Coatings Based on Silver Nanoparticles: A Comparative In Vitro Study on Their Cytotoxicity towards Cancer and Normal Cell Lines of Cytostatic Drugs versus Essential-Oil-Loaded Nanoparticles and on Their Antimicrobial and Antibiofilm Activities. Pharmaceutics 2023; 15:1882. [PMID: 37514068 PMCID: PMC10385235 DOI: 10.3390/pharmaceutics15071882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
We report on a comparative in vitro study of selective cytotoxicity against MCF7 tumor cells and normal VERO cells tested on silver-based nanocoatings synthesized by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Silver nanoparticles (AgNPs) were loaded with five representative cytostatic drugs (i.e., doxorubicin, fludarabine, paclitaxel, gemcitabine, and carboplatin) and with five essential oils (EOs) (i.e., oregano, rosemary, ginger, basil, and thyme). The as-obtained coatings were characterized by X-ray diffraction, thermogravimetry coupled with differential scanning calorimetry, Fourier-transform IR spectroscopy, IR mapping, and scanning electron microscopy. A screening of the impact of the prepared nanocoatings on the MCF7 tumor and normal VERO cell lines was achieved by means of cell viability MTT and cytotoxicity LDH assays. While all nanocoatings loaded with antitumor drugs exhibited powerful cytotoxic activity against both the tumor and the normal cells, those embedded with AgNPs loaded with rosemary and thyme EOs showed remarkable and statistically significant selective cytotoxicity against the tested cancercells. The EO-loaded nanocoatings were tested for antimicrobial and antibiofilm activity against Staphylococcus aureus, Escherichia coli, and Candida albicans. For all studied pathogens, the cell viability, assessed by counting the colony-forming units after 2 and 24 h, was significantly decreased by all EO-based nanocoatings, while the best antibiofilm activity was evidenced by the nanocoatings containing ginger and thyme EOs.
Collapse
Affiliation(s)
- Rebecca Alexandra Puiu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Liviu Duta
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 077206 Bucharest, Romania
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Paul Cătălin Balaure
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
5
|
Mueed A, Shibli S, Al-Quwaie DA, Ashkan MF, Alharbi M, Alanazi H, Binothman N, Aljadani M, Majrashi KA, Huwaikem M, Abourehab MAS, Korma SA, El-Saadony MT. Extraction, characterization of polyphenols from certain medicinal plants and evaluation of their antioxidant, antitumor, antidiabetic, antimicrobial properties, and potential use in human nutrition. Front Nutr 2023; 10:1125106. [PMID: 37415912 PMCID: PMC10320526 DOI: 10.3389/fnut.2023.1125106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Dietary medicinal plants are among the most sought-after topics in alternative medicine today due to their preventive and healing properties against many diseases. Aim This study aimed to extract and determine the polyphenols from indigenous plants extracts, i.e., Mentha longifolia, M. arvensis, Tinospora cordifolia, Cymbopogon citratus, Foeniculum vulgare, Cassia absus, Camellia sinensis, Trachyspermum ammi, C. sinensis and M. arvensis, then evaluate the antioxidant, cytotoxicity, and antimicrobial properties, besides enzyme inhibition of isolated polyphenols. Methods The antioxidant activity was evaluated by DPPH, Superoxide radical, Hydroxyl radical (OH.), and Nitric oxide (NO.) scavenging activity; the antidiabetic activity was evaluated by enzymatic methods, and anticancer activity using MTT assay, while the antibacterial activity. Results The results showed that tested medicinal plants' polyphenolic extracts (MPPE) exhibited the most significant antioxidant activity in DPPH, hydroxyl, nitric oxide, and superoxide radical scavenging methods because of the considerable amounts of total polyphenol and flavonoid contents. UHPLC profile showed twenty-five polyphenol complexes in eight medicinal plant extracts, categorized into phenolic acids, flavonoids, and alkaloids. The main polyphenol was 3-Feroylquinic acid (1,302 mg/L), also found in M. longifolia, C. absus, and C. sinensis, has a higher phenolic content, i.e., rosmarinic acid, vanillic acid, chlorogenic acid, p-coumaric acid, ferulic acid, gallic acid, catechin, luteolin, 7-O-neohesperideside, quercetin 3,7-O-glucoside, hesperidin, rutin, quercetin, and caffeine in the range of (560-780 mg/L). At the same time, other compounds are of medium content (99-312 mg/L). The phenolics in C. sinensis were 20-116% more abundant than those in M. longifolia, C. absus, and other medicinal plants. While T. cordifolia is rich in alkaloids, T. ammi has a lower content. The MTT assay against Caco-2 cells showed that polyphenolic extracts of T. ammi and C. citratus had maximum cytotoxicity. While M. arvensis, C. sinensis, and F. vulgare extracts showed significant enzyme inhibition activity, C. sinensis showed minor inhibition activity against α-amylase. Furthermore, F. vulgare and C. sinensis polyphenolic extracts showed considerable antibacterial activity against S. aureus, B. cereus, E. coli, and S. enterica. Discussion The principal component analysis demonstrated clear separation among medicinal plants' extracts based on their functional properties. These findings prove the therapeutic effectiveness of indigenous plants and highlight their importance as natural reserves of phytogenic compounds with untapped potential that needs to be discovered through advanced analytical methods.
Collapse
Affiliation(s)
- Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Department of Food Technology, Institute of Food and Nutrition, Arid Agriculture University, Rawalpindi, Pakistan
| | - Sahar Shibli
- Food Science Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Diana A Al-Quwaie
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mada F Ashkan
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mona Alharbi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Humidah Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Majidah Aljadani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Kamlah Ali Majrashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mashael Huwaikem
- Cinical Nutrition Department, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Yazdanshenas H, Tafrihi M. The biological and therapeutic potentials of Cyclotrichium genus: a systematic review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2589-2599. [PMID: 34528839 DOI: 10.1080/09603123.2021.1977784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The genus Cyclotrichium includes nine species that are mainly distributed in Turkey, Lebanon, Iraq, and Iran, and are used in the kitchen, and also in complementary medicine to treat various diseases. During recent years, considerable progress has been made in analyzing their phytochemical composition in parallel with their antimicrobial properties and their therapeutic potentials. This study reviews the present knowledge about investigations on antimicrobial, insecticidal, and anticancer properties of the essential oils and any other purified chemical compounds of the Cyclotrichium species. Various phytochemicals have been isolated from the extracts of the plants of this genus having significant biological and therapeutic potentials. In conclusion, these gathered data strongly support the viewpoint that the species belonging to the genus Cyclotrichium have various biological and pharmaceutical activities to treat various diseases including cancer in addition to the remarkable antimicrobial and insecticidal potential with no or minimal health and environmental hazards.
Collapse
Affiliation(s)
- Homayoon Yazdanshenas
- Department of Cellular and Molecular Biology, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Majid Tafrihi
- Department of Cellular and Molecular Biology, University of Mazandaran, Babolsar, Mazandaran, Iran
| |
Collapse
|
7
|
Natural Products for Cancer Therapy: A Review of Their Mechanism of Actions and Toxicity in the Past Decade. J Trop Med 2022; 2022:5794350. [PMID: 35309872 PMCID: PMC8933079 DOI: 10.1155/2022/5794350] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/13/2021] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
The ethnopharmacological information gathered over many centuries and the presence of diverse metabolites have made the medicinal plants as the prime source of drugs. Despite the positive attributes of natural products, there are many questions pertaining to their mechanism of actions and molecular targets that impede their development as therapeutic agents. One of the major challenges in cancer research is the toxicity exerted by investigational agents towards the host. An understanding of their molecular targets, underlying mechanisms can reveal their anticancer efficacy, help in optimal therapeutic dose selection, to mitigate their side effects and toxicity towards the host. The purpose of this review is to collate details on natural products that are recently been investigated extensively in the past decade for their anticancer potential. Besides, critical analysis of their molecular targets and underlying mechanisms on multiple cancer cell lines, an in-depth probe of their toxicological screening on rodent models is outlined as well to observe the prevalence of their toxicity towards host. This review can provide valuable insights for researchers in developing methods, strategies during preclinical and clinical evaluation of anticancer candidates.
Collapse
|
8
|
Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review. Cancers (Basel) 2022; 14:cancers14051100. [PMID: 35267408 PMCID: PMC8909202 DOI: 10.3390/cancers14051100] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is a life-threatening disease and is considered to be among the leading causes of death worldwide. Chemoresistance, severe toxicity, relapse and metastasis are the major obstacles in cancer therapy. Therefore, introducing new therapeutic agents for cancer remains a priority to increase the range of effective treatments. Terpenoids, a large group of secondary metabolites, are derived from plant sources and are composed of several isoprene units. The high diversity of terpenoids has drawn attention to their potential anticancer and pharmacological activities. Some terpenoids exhibit an anticancer effect by triggering various stages of cancer progression, for example, suppressing the early stage of tumorigenesis via induction of cell cycle arrest, inhibiting cancer cell differentiation and activating apoptosis. At the late stage of cancer development, certain terpenoids are able to inhibit angiogenesis and metastasis via modulation of different intracellular signaling pathways. Significant progress in the identification of the mechanism of action and signaling pathways through which terpenoids exert their anticancer effects has been highlighted. Hence, in this review, the anticancer activities of twenty-five terpenoids are discussed in detail. In addition, this review provides insights on the current clinical trials and future directions towards the development of certain terpenoids as potential anticancer agents.
Collapse
|
9
|
New Perspective of Origanum vulgare L. and Satureja montana L. Essential Oils as Bovine Mastitis Treatment Alternatives. Antibiotics (Basel) 2021; 10:antibiotics10121460. [PMID: 34943672 PMCID: PMC8698621 DOI: 10.3390/antibiotics10121460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Mastitis represents a heavy burden for the dairy sector worldwide with high economic and animal welfare impact. Antibiotic treatment is an important component of mastitis control programs. However, emergence and transfer of antimicrobial-resistant (AMR) bacteria is becoming a growing concern. Therefore, the development of novel agents is required for prevention and treatment of mastitis. Hence, our aim was to assess the antibacterial properties of two essential oils (EOs) obtained from oregano (Origanum vulgare L., Lamiaceae) and mountain savory (Satureja montana L., Lamiaceae) against mastitis-associated bacteria in Serbia. The chemical composition and antioxidant potential of these EOs were also evaluated. The present study was conducted on strains derived from aseptic milk samples collected from Holstein-Friesian cows with clinical or subclinical mastitis, during the morning milking. Clinical mastitis was assessed by clinical examination, while subclinical mastitis was confirmed using somatic cell count in the milk samples. The microdilution method was used to determine the antibacterial activity, while antioxidant potential of the EOs was evaluated in several in vitro assays. The values of minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) were used to quantitatively measure the antibacterial activity of each EO. MIC/MBC ranged from 0.78/6.25 and 0.39/0.78 mg/mL for oregano and mountain savory, respectively. A total of 25 compounds were identified in the oregano EO, while 47 were identified in winter savory EO, among which aromatic oxygenated monoterpenes were the most abundant compounds. The tested EOs have shown promising antimicrobial activity and could be considered as one of the treatment approaches in mastitis-affected cows.
Collapse
|
10
|
Sampaio LA, Pina LTS, Serafini MR, Tavares DDS, Guimarães AG. Antitumor Effects of Carvacrol and Thymol: A Systematic Review. Front Pharmacol 2021; 12:702487. [PMID: 34305611 PMCID: PMC8293693 DOI: 10.3389/fphar.2021.702487] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background: It is estimated that one in five people worldwide faces a diagnosis of a malignant neoplasm during their lifetime. Carvacrol and its isomer, thymol, are natural compounds that act against several diseases, including cancer. Thus, this systematic review aimed to examine and synthesize the knowledge on the antitumor effects of carvacrol and thymol. Methods: A systematic literature search was carried out in the PubMed, Web of Science, Scopus and Lilacs databases in April 2020 (updated in March 2021) based on the PRISMA 2020 guidelines. The following combination of health descriptors, MeSH terms and their synonyms were used: carvacrol, thymol, antitumor, antineoplastic, anticancer, cytotoxicity, apoptosis, cell proliferation, in vitro and in vivo. To assess the risk of bias in in vivo studies, the SYRCLE Risk of Bias tool was used, and for in vitro studies, a modified version was used. Results: A total of 1,170 records were identified, with 77 meeting the established criteria. The studies were published between 2003 and 2021, with 69 being in vitro and 10 in vivo. Forty-three used carvacrol, 19 thymol, and 15 studies tested both monoterpenes. It was attested that carvacrol and thymol induced apoptosis, cytotoxicity, cell cycle arrest, antimetastatic activity, and also displayed different antiproliferative effects and inhibition of signaling pathways (MAPKs and PI3K/AKT/mTOR). Conclusions: Carvacrol and thymol exhibited antitumor and antiproliferative activity through several signaling pathways. In vitro, carvacrol appears to be more potent than thymol. However, further in vivo studies with robust methodology are required to define a standard and safe dose, determine their toxic or side effects, and clarify its exact mechanisms of action. This systematic review was registered in the PROSPERO database (CRD42020176736) and the protocol is available at https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=176736.
Collapse
Affiliation(s)
- Laeza Alves Sampaio
- Graduate Program of Applied Sciences to Health, Federal University of Sergipe, Lagarto, Brazil
| | | | | | | | | |
Collapse
|
11
|
Niksic H, Becic F, Koric E, Gusic I, Omeragic E, Muratovic S, Miladinovic B, Duric K. Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci Rep 2021; 11:13178. [PMID: 34162964 PMCID: PMC8222331 DOI: 10.1038/s41598-021-92679-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/09/2021] [Indexed: 12/09/2022] Open
Abstract
Among natural products, essential oils from aromatic plants have been reported to possess potent anticancer properties. In this work, we aimed to perform the cytotoxic concentration range screening and antiproliferative activity screening of chemically characterized Thymus vulgaris L. essential oil. In vivo bioassay was conducted using the brine shrimp lethality test (BSLT). In vitro evaluation of antiproliferative activity was carried out on three human tumor cell lines: breast adenocarcinoma MCF-7, lung carcinoma H460 and acute lymphoblastic leukemia MOLT-4 using MTT assay. Essential oil components thymol (36.7%), p-cymene (30.0%), γ-terpinene (9.0%) and carvacrol (3.6%) were identified by gas chromatography/mass spectrometry. Analyzed essential oil should be considered as toxic/highly toxic with LC50 60.38 µg/mL in BSLT and moderate/weakly cytotoxic with IC50 range 52.65-228.78 µg/mL in vitro, according to evaluated cytotoxic criteria. Essential oil induced a dose-dependent inhibition of cell proliferation in all tested tumor cell lines and showed different sensitivity. Dose dependent toxicity observed in bioassay as well as the in vitro assay confirmed that brine shrimp lethality test is an adequate method for preliminary toxicity testing of Thymus vulgaris L. essential oil in tumor cell lines.
Collapse
Affiliation(s)
- Haris Niksic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Fahir Becic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Emina Koric
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina.
| | - Irma Gusic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Elma Omeragic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Samija Muratovic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Bojana Miladinovic
- Faculty of Medicine, University of Nis, Dr Zoran Djindjic Boulevard 81, 18000, Niš, Serbia
| | - Kemal Duric
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
12
|
Vuko E, Dunkić V, Ruščić M, Nazlić M, Mandić N, Soldo B, Šprung M, Fredotović Ž. Chemical Composition and New Biological Activities of Essential Oil and Hydrosol of Hypericum perforatum L. ssp. veronense (Schrank) H. Lindb. PLANTS (BASEL, SWITZERLAND) 2021; 10:1014. [PMID: 34069597 PMCID: PMC8161325 DOI: 10.3390/plants10051014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
The chemical profile, antiproliferative, antioxidant and antiphytoviral activities of the species Hypericum perforatum ssp. veronense (Schrank) H. Lindb. (Clusiaceae) were investigated. Free volatiles were isolated and the chemical composition was determined in the lipophilic fraction (essential oil) and for the first time in the water fraction (hydrosol). The aim is to provide phytochemical data for H. perforatum ssp. veronense useful for distinguishing ssp. veronense from ssp. angustifolium, as there are taxonomic disagreements between them and the composition of the secretory products may be helpful in this respect. In the essential oil, the most abundant compounds identified were α-pinene and n-nonane, while in the hydrosol, myrtenol, carvacrol and α-pinene were the most abundant. Overall, the class of monoterpenes and oxygenated monoterpenes dominated in the EO and hydrosol samples. The essential oil showed high antioxidant activity, in contrast to the antiproliferative activity, where the hydrosol showed exceptional activity against three cancer cell lines: Hela (cervical cancer cell line), HCT116 (human colon cancer cell line) and U2OS (human osteosarcoma cell line). Both the essential oil and hydrosol showed antiphytoviral activity against tobacco mosaic virus infection on the local host plants. This is the first report dealing with biological activities of hydrosol of H. perforatum ssp. veronense, and the obtained results suggest that this traditional medicinal plant is a valuable source of volatiles with promising antiproliferative, antioxidant and antiphytoviral activities.
Collapse
Affiliation(s)
- Elma Vuko
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (M.R.); (M.N.); (N.M.)
| | - Valerija Dunkić
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (M.R.); (M.N.); (N.M.)
| | - Mirko Ruščić
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (M.R.); (M.N.); (N.M.)
| | - Marija Nazlić
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (M.R.); (M.N.); (N.M.)
| | - Nela Mandić
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (M.R.); (M.N.); (N.M.)
| | - Barbara Soldo
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (B.S.); (M.Š.)
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (B.S.); (M.Š.)
| | - Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia; (E.V.); (V.D.); (M.R.); (M.N.); (N.M.)
| |
Collapse
|
13
|
Ali R, Khan S, Khan M, Adnan M, Ali I, Khan TA, Haleem S, Rooman M, Norin S, Khan SN. A systematic review of medicinal plants used against Echinococcus granulosus. PLoS One 2020; 15:e0240456. [PMID: 33048959 PMCID: PMC7553295 DOI: 10.1371/journal.pone.0240456] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic helminthiasis caused by different species of the genus Echinococcus, and is a major economic and public health concern worldwide. Synthetic anthelmintics are most commonly used to control CE, however, prolonged use of these drugs may result in many adverse effects. This study aims to discuss the in vitro/in vivo scolicidal efficacy of different medicinal plants and their components used against Echinococcus granulosus. Google Scholar, ScienceDirect, PubMed and Scopus were used to retrieve the published literature from 2000-2020. A total of 62 published articles met the eligibility criteria and were reviewed. A total of 52 plant species belonging to 22 families have been reported to be evaluated as scolicidal agents against E. granulosus worldwide. Most extensively used medicinal plants against E. granulosus belong to the family Lamiaceae (25.0%) followed by Apiaceae (11.3%). Among various plant parts, leaves (36.0%) were most commonly used. Essential oils of Zataria multiflora and Ferula asafetida at a concentration of 0.02, and 0.06 mg/ml showed 100% in vitro scolicidal activity after 10 min post application, respectively. Z. multiflora also depicted high in vivo efficacy by decreasing weight and size while also causing extensive damage to the germinal layer of the cysts. Plant-based compounds like berberine, thymol, and thymoquinone have shown high efficacy against E. granulosus. These plant species and compounds could be potentially used for the development of an effective drug against E. granulosus, if further investigated for in vivo efficacy, toxicity, and mechanism of drug action in future research.
Collapse
Affiliation(s)
- Rehman Ali
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Sanaullah Khan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Marina Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Adnan
- Department of Botanical and Environmental Sciences, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ijaz Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Taj Ali Khan
- Department of Biotechnology and Genetics Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Sumbal Haleem
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Rooman
- Department of Zoology, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Sadia Norin
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
14
|
In Vitro Hormetic Effect Investigation of Thymol on Human Fibroblast and Gastric Adenocarcinoma Cells. Molecules 2020; 25:molecules25143270. [PMID: 32709059 PMCID: PMC7397309 DOI: 10.3390/molecules25143270] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
The concept of hormesis includes a biphasic cellular dose-response to a xenobiotic stimulus defined by low dose beneficial and high dose inhibitory or toxic effects. In the present study, an attempt has been made to help elucidate the beneficial and detrimental effects of thymol on different cell types by evaluating and comparing the impact of various thymol doses on cancerous (AGS) and healthy (WS-1) cells. Cytotoxic, genotoxic, and apoptotic effects, as well as levels of reactive oxygen species and glutathione were studied in both cell lines exposed to thymol (0–600 µM) for 24 h. The results showed significant differences in cell viability of AGS compared to WS-1 cells exposed to thymol. The differences observed were statistically significant at all doses applied (P ≤ 0.001) and revealed hormetic thymol effects on WS-1 cells, whereas toxic effects on AGS cells were detectable at all thymol concentrations. Thymol at low concentrations provides antioxidative protection to WS-1 cells in vitro while already inducing toxic effects in AGS cells. In that sense, the findings of the present study suggest that thymol exerts a dose-dependent hormetic impact on different cell types, thereby providing crucial information for future in vivo studies investigating the therapeutic potential of thymol.
Collapse
|
15
|
Sugier P, Jakubowicz-Gil J, Sugier D, Kowalski R, Gawlik-Dziki U, Kołodziej B, Dziki D. Chemical Characteristics and Anticancer Activity of Essential Oil from Arnica Montana L. Rhizomes and Roots. Molecules 2020; 25:molecules25061284. [PMID: 32178275 PMCID: PMC7143959 DOI: 10.3390/molecules25061284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Arnica montana L. is a medicinal plant with diverse biological activities commonly used in pharmacy and cosmetics. The attributes of A. montana are mainly related to the concentration and chemical composition of essential oils (EOs). Therefore, the objective of this study was to characterize the chemical composition of EOs derived from A. montana rhizomes and roots taking into account the age of the plants and to investigate the effect of the analyzed EOs on induction of apoptosis, necrosis, and autophagy in human glioblastoma multiforme T98G and anaplastic astrocytoma MOGGCCM cell lines. Rhizomes and roots of mountain arnica were harvested at the end of the third and fourth vegetation periods. The chemical composition of essential oils was determined with the GC–MS technique. Among the 37 components of the essential oil of A. montana, 2,5-dimethoxy-p-cymene (46.47%–60.31%), 2,6-diisopropylanisole (14.48%–23.10%), thymol methyl ether (5.31%–17.79%), p-methoxyheptanophenone (5.07%–9.65%), and α-isocomene (0.68%–2.87%), were detected in the rhizomes and roots of the three-year-old plants and in the rhizomes and roots of the four-year-old plants. The plant part (rhizome, root) and plant age can be determinants of the essential oil composition and, consequently, their biological activity. The induction of apoptosis (but not autophagy nor necrosis) at a level of 28.5%–32.3% is a promising result, for which 2,5-dimethoxy-p-cymene, 2,6-diisopropylanisole, thymol methyl ether, and p-methoxyheptanophenone are probably mainly responsible. The present study is the first report on the anticancer activities of essential oils from A. montana rhizomes and roots.
Collapse
Affiliation(s)
- Piotr Sugier
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Danuta Sugier
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland; (D.S.); (B.K.)
| | - Radosław Kowalski
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland;
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland
- Correspondence:
| | - Barbara Kołodziej
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland; (D.S.); (B.K.)
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences, Głęboka 31, 20-612 Lublin, Poland;
| |
Collapse
|
16
|
Effects of Monoterpenes of Trachyspermum ammi on the Viability of Spermatogonia Stem Cells In Vitro. PLANTS 2020; 9:plants9030343. [PMID: 32182777 PMCID: PMC7154887 DOI: 10.3390/plants9030343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 11/23/2022]
Abstract
Trachyspermum ammi (Apiaceae) plants have several medicinal and condimentary applications and are considered an aphrodisiac agent in Iranian Traditional Medicine. Thus, the present study aims to evaluate the effects of oil from Iranian T. ammi plants on the viability of spermatogonial stem cells in vitro. The essential oil of T. ammi fruits was extracted by hydrodistillation, and the amount of thymol was calculated by a gas-chromatography method. Spermatogonial stem cells were isolated from the testes of mice using enzyme digestion. Real-time polymerase chain reaction (RT-PCR) was applied to assess the gene expressions of promyelocytic leukemia zinc finger protein (Plzf), DNA-binding protein inhibitor (ID-4), tyrosine-protein kinase (c-Kit), B-cell lymphoma 2 (Bcl2) and Bcl2-associated X protein (BAX). The number and diameter of colonies were also measured in the treated cells. The amount of thymol in the oil was 130.7 ± 7.6 µg/mL. Flow cytometry analysis showed that 92.8% of all cells expressed stimulated by retinoic acid 8 (Stra8), a spermatogonial stem cell marker. Expression of Plzf and ID-4 genes significantly increased in the treatment groups, while c-Kit and BAX decreased, and Bcl2 increased in the presence of essential oil. The numbers and diameters of cells were also improved by the application of the plant oil. These data indicated that monoterpenes from the oil of T. ammi improved the quality and viability of spermatogonia cells in the cell culture.
Collapse
|
17
|
Maccelli A, Vitanza L, Imbriano A, Fraschetti C, Filippi A, Goldoni P, Maurizi L, Ammendolia MG, Crestoni ME, Fornarini S, Menghini L, Carafa M, Marianecci C, Longhi C, Rinaldi F. Satureja montana L. Essential Oils: Chemical Profiles/Phytochemical Screening, Antimicrobial Activity and O/W NanoEmulsion Formulations. Pharmaceutics 2019; 12:pharmaceutics12010007. [PMID: 31861717 PMCID: PMC7022231 DOI: 10.3390/pharmaceutics12010007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
Chemical fingerprints of four different Satureja montana L. essential oils (SEOs) were assayed by an untargeted metabolomics approach based on Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) coupled with either electrospray ionization or atmospheric pressure chemical ionization ion sources. Analysis and relative quantification of the non-polar volatile fraction were conducted by gas chromatography (GC) coupled to MS. FT-ICR MS confirmed significant differences in the polar metabolite composition, while GC-MS analyses confirmed slight fluctuations in the relative amount of major terpenes and terpenoids, known to play a key role in antimicrobial mechanisms. Oil in eater (O/W) nanoemulsions (NEs) composed by SEOs and Tween 20 or Tween 80 were prepared and analyzed in terms of hydrodynamic diameter, ζ-potential and polydispersity index. The results confirm the formation of stable NEs homogeneous in size. Minimum inhibitory and minimum bactericidal concentrations of SEOs were determined towards Gram-positive (Listeria monocytogenes, Staphylococcus aureus, Staphylococcus haemolyticus) and Gram-negative clinical isolates (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Serratia marcescens). Commercial SEO showed strongest antibacterial activity, while SEO 3 was found to be the most active among the lab made extractions. MIC and MBC values ranged from 0.39 to 6.25 mg·mL−1. Furthermore, a SEO structured in NEs formulation was able to preserve and improve antimicrobial activity.
Collapse
Affiliation(s)
- Alessandro Maccelli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma-Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.M.); (A.I.); (C.F.); (A.F.); (M.E.C.); (S.F.); (M.C.); (C.M.); (F.R.)
| | - Luca Vitanza
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (L.V.); (P.G.); (L.M.)
| | - Anna Imbriano
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma-Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.M.); (A.I.); (C.F.); (A.F.); (M.E.C.); (S.F.); (M.C.); (C.M.); (F.R.)
| | - Caterina Fraschetti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma-Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.M.); (A.I.); (C.F.); (A.F.); (M.E.C.); (S.F.); (M.C.); (C.M.); (F.R.)
| | - Antonello Filippi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma-Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.M.); (A.I.); (C.F.); (A.F.); (M.E.C.); (S.F.); (M.C.); (C.M.); (F.R.)
| | - Paola Goldoni
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (L.V.); (P.G.); (L.M.)
| | - Linda Maurizi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (L.V.); (P.G.); (L.M.)
| | - Maria Grazia Ammendolia
- National Center of Innovative Technologies in Public Health, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma-Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.M.); (A.I.); (C.F.); (A.F.); (M.E.C.); (S.F.); (M.C.); (C.M.); (F.R.)
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma-Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.M.); (A.I.); (C.F.); (A.F.); (M.E.C.); (S.F.); (M.C.); (C.M.); (F.R.)
| | - Luigi Menghini
- Dipartimento di Farmacia, Università G. d’Annunzio Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Maria Carafa
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma-Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.M.); (A.I.); (C.F.); (A.F.); (M.E.C.); (S.F.); (M.C.); (C.M.); (F.R.)
| | - Carlotta Marianecci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma-Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.M.); (A.I.); (C.F.); (A.F.); (M.E.C.); (S.F.); (M.C.); (C.M.); (F.R.)
| | - Catia Longhi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy; (L.V.); (P.G.); (L.M.)
- Correspondence: ; Tel.: +39-06-4991-4629
| | - Federica Rinaldi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma-Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.M.); (A.I.); (C.F.); (A.F.); (M.E.C.); (S.F.); (M.C.); (C.M.); (F.R.)
- Center for Life Nano Science@Sapienza, Fondazione Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
18
|
Sugier D, Sugier P, Jakubowicz-Gil J, Winiarczyk K, Kowalski R. Essential Oil from Arnica Montana L. Achenes: Chemical Characteristics and Anticancer Activity. Molecules 2019; 24:molecules24224158. [PMID: 31744121 PMCID: PMC6891426 DOI: 10.3390/molecules24224158] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/03/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022] Open
Abstract
Mountain arnica Arnica montana L. is a source of several metabolite classes with diverse biological activities. The chemical composition of essential oil and its major volatile components in arnica may vary depending on the geographical region, environmental factors, and plant organ. The objective of this study was to characterize the chemical composition of essential oil derived from A. montana achenes and to investigate its effect on induction of apoptosis and autophagy in human anaplastic astrocytoma MOGGCCM and glioblastoma multiforme T98G cell lines. The chemical composition of essential oil extracted from the achenes was examined with the use of Gas Chromatography–Mass Spectrometry GC-MS. Only 16 components of the essential oil obtained from the achenes of 3-year-old plants and 18 components in the essential oil obtained from the achenes of 4-year-old plants constituted ca. 94.14% and 96.38% of the total EO content, respectively. The main components in the EO from the arnica achenes were 2,5-dimethoxy-p-cymene (39.54 and 44.65%), cumene (13.24 and 10.71%), thymol methyl ether (8.66 and 8.63%), 2,6-diisopropylanisole (8.55 and 8.41%), decanal (7.31 and 6.28%), and 1,2,2,3-tetramethylcyclopent-3-enol (4.33 and 2.94%) in the 3- and 4-year-old plants, respectively. The essential oils were found to exert an anticancer effect by induction of cell death in anaplastic astrocytoma and glioblastoma multiforme cells. The induction of apoptosis at a level of 25.7–32.7% facilitates the use of this secondary metabolite in further studies focused on the development of glioma therapy in the future. Probably, this component plays a key role in the anticancer activity against the MOGGCCM and T98G cell lines. The present study is the first report on the composition and anticancer activities of essential oil from A. montana achenes, and further studies are required to explore its potential for future medicinal purposes.
Collapse
Affiliation(s)
- Danuta Sugier
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
| | - Piotr Sugier
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland
- Correspondence: ; Tel.: +48-81-537-59-46
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Krystyna Winiarczyk
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Radosław Kowalski
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland;
| |
Collapse
|
19
|
Ruiz MB, Eguizábal GV, Villarreal DP, Busso JM, López AG. Inhibitory action of thymol on fecal microbial activity in Tamandua tetradactyla and its effect on glucocorticoid metabolite measurement. Gen Comp Endocrinol 2019; 280:91-96. [PMID: 31002827 DOI: 10.1016/j.ygcen.2019.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 02/04/2019] [Accepted: 04/15/2019] [Indexed: 11/23/2022]
Abstract
Faecal glucocorticoid measurement is a potentially important tool for improving wildlife conservation, but its use is still limited by methodological issues including the need to avoid modifications of steroids by faecal microorganisms during storage. The freezing of faeces is recommended as a means of avoiding such alterations, but this is costly under non-controlled environmental conditions. The present study was designed to determine whether the application of thymol reduced the proliferation of microorganisms in the faeces of Tamandua tetradactyla and whether it influenced faecal glucocorticoid metabolite (FGM) measurements. Tamandua tetradactyla faeces were individually collected after defaecation, divided into fractions (5.5 g each) and kept in sealed glass Petri dishes at 22 ± 2 °C. A thymol solution (550 µL; 5 mg g-1 feces; 80% ethanol) or an 80% ethanol solution (550 µL, control) was added before storage of faeces. Negative controls for FGM consisted of samples without thymol or ethanol solutions. All samples were evaluated at 0, 24, 48 and 72 h post-defaecation. Thymol was first incubated with a glucocorticoid standard in a faeces-free tube or in a faecal sample in order to determine whether it interfered with FGM measurements. Data showed that thymol did not affect FGM measurements. Post-defaecation time caused a significant reduction in FGM measurements in the negative control, an increment at 48 h in the control, and no change in FGM measurements in thymol treatment. FGM measurements were significantly different between groups (negative control > control - treatment). Thymol caused a significant reduction of up to three orders of magnitude in total coliforms, total aerobic and anaerobic heterotrophic mesophilic bacteria, mold and yeast per gram of faeces at 24, 48 and 72 h. The reduction in microbial activity presumably contributed to the stability of FGM over time. Spore-forming bacteria (SFB) in faeces were not reduced by thymol. We propose thymol as an alternative to freezing since it stabilizes FGMs for at least 3 days after collection in the faeces of Tamandua tetradactyla.
Collapse
Affiliation(s)
- Micaela B Ruiz
- Instituto de Ciencia y Tecnología de los Alimentos and Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Argentina; Instituto de Diversidad y Ecología Animal (IDEA), FCEFyN, UNC and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Gabina V Eguizábal
- Instituto de Ciencia y Tecnología de los Alimentos and Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Argentina; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), FCEFyN, UNC and CONICET, Argentina
| | | | - Juan M Busso
- Instituto de Ciencia y Tecnología de los Alimentos and Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Argentina; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), FCEFyN, UNC and CONICET, Argentina.
| | - Abel G López
- Instituto de Ciencia y Tecnología de los Alimentos and Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Argentina
| |
Collapse
|
20
|
Luo P, Wang L, Luo L, Wang L, Yang K, Shu G, Wang S, Zhu X, Gao P, Jiang Q. Ca2+-Calcineurin-NFAT pathway mediates the effect of thymol on oxidative metabolism and fiber-type switch in skeletal muscle. Food Funct 2019; 10:5166-5173. [DOI: 10.1039/c8fo02248h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thymol is a major component of thyme, and it has been reported that thymol administration reduces body weight, plasma insulin and blood glucose in type-2 diabetes.
Collapse
|
21
|
Bouyahya A, Abrini J, Bakri Y, Dakka N. Les huiles essentielles comme agents anticancéreux : actualité sur le mode d’action. ACTA ACUST UNITED AC 2018. [DOI: 10.3166/s10298-016-1058-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Le cancer est une maladie complexe qui présente un réel problème de santé publique à travers le monde et cause statiquement sept millions de décès chaque année. Au cours des dernières décennies, la thérapie anticancéreuse a connu un réel bouleversement et un foisonnement de découvertes fondamentales. Plusieurs études accumulatives ont révélé l’activité antitumorale des substances naturelles isolées à partir de plantes. Les huiles essentielles (HE) et leurs constituants ont montré des activités anticancéreuses puissantes in vitro et in vivo. Cependant, les mécanismes d’action sont encore peu étudiés et moins connus. Par ailleurs, leur application dans l’industrie pharmaceutique nécessite une spécificité– sélectivité pharmacodynamique absolue. Dans le présent travail, nous présentons une synthèse des travaux réalisés sur les mécanismes d’actions anticancéreuses des HE et leurs composés bioactifs.
Collapse
|
22
|
Islam MT, Khalipha ABR, Bagchi R, Mondal M, Smrity SZ, Uddin SJ, Shilpi JA, Rouf R. Anticancer activity of thymol: A literature-based review and docking study with Emphasis on its anticancer mechanisms. IUBMB Life 2018; 71:9-19. [DOI: 10.1002/iub.1935] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/30/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Muhammad T. Islam
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City Vietnam
- Faculty of Pharmacy; Ton Duc Thang University; Ho Chi Minh City Vietnam
| | - Abul B. R. Khalipha
- Department of Pharmacy; Bangabandhu Sheikh Mujibur Rahman Science & Technology University; Gopalganj Bangladesh
| | - Rajat Bagchi
- Department of Pharmacy; Bangabandhu Sheikh Mujibur Rahman Science & Technology University; Gopalganj Bangladesh
| | - Milon Mondal
- Department of Pharmacy; Bangabandhu Sheikh Mujibur Rahman Science & Technology University; Gopalganj Bangladesh
| | - Shanita Z. Smrity
- Department of Pharmacy; Bangabandhu Sheikh Mujibur Rahman Science & Technology University; Gopalganj Bangladesh
| | - Shaikh J. Uddin
- Pharmacy Discipline, Life Science School; Khulna University; Khulna Bangladesh
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science School; Khulna University; Khulna Bangladesh
| | - Razina Rouf
- Department of Pharmacy; Bangabandhu Sheikh Mujibur Rahman Science & Technology University; Gopalganj Bangladesh
| |
Collapse
|
23
|
De La Chapa JJ, Singha PK, Lee DR, Gonzales CB. Thymol inhibits oral squamous cell carcinoma growth via mitochondria-mediated apoptosis. J Oral Pathol Med 2018; 47:674-682. [PMID: 29777637 DOI: 10.1111/jop.12735] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Thymol is a transient receptor potential ankyrin subtype 1 channel, (TRPA1) agonist found in thyme and oregano. Thymol has antioxidant, anti-inflammatory, and antimicrobial properties; thus, thymol is added to many commercially available products including Listerine mouthwash. Thymol is also cytotoxic to HL-60 (acute promyelocytic leukemia) cells in vitro. Therefore, we evaluated the effects of thymol against oral squamous cell carcinoma (OSCC) and its anticancer mechanism-of-action. METHODS The antiproliferative effects of thymol in OSCC Cal27 cells were determined by MTS assays. Antitumor effects were evaluated in Cal27- and HeLa-derived mouse xenografts. Calcium imaging, mitochondrial transmembrane potential (ΔΨm) studies, and Western blot analysis of cleaved PARP (c-PARP) evaluated thymol's mechanism-of-action. RESULTS Thymol had significant, long-lasting antiproliferative effects in vitro. In vivo, thymol displayed significant antitumor effects in Cal27-derived tumors. Thymol's anticancer effects were confirmed in HeLa-derived xenografts demonstrating that thymol effects are not tumor-type specific. Calcium imaging verified calcium influx in Cal27 cells that were reversed with the TRPA1 antagonist, HC030031. However, no calcium influx was seen in HeLa cells indicating that TRP channels do not regulate thymol cytotoxicity. This was confirmed using cell viability assays in which pre-treatment with HC030031 had no effect on thymol cytotoxicity. Instead, ΔΨm studies revealed that thymol induces significant ΔΨm depolarization and apoptosis. CONCLUSION Our findings provide the first evidence of thymol's novel antitumor effects against OSCC in vivo, which do not rely on TRPA1 activity. Instead, we show that thymol induces mitochondrial dysfunction and apoptosis and may be efficacious against multiple cancers.
Collapse
Affiliation(s)
- Jorge J De La Chapa
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio School of Dentistry, San Antonio, TX, USA
| | - Prajjal Kanti Singha
- Department of Pathology, University of Texas Health Science Center at San Antonio School of Medicine, San Antonio, TX, USA
| | - Debbie R Lee
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio School of Dentistry, San Antonio, TX, USA
| | - Cara B Gonzales
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio School of Dentistry, San Antonio, TX, USA.,Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
24
|
Günes-Bayir A, Kocyigit A, Güler EM. In vitro effects of two major phenolic compounds from the family Lamiaceae plants on the human gastric carcinoma cells. Toxicol Ind Health 2018; 34:525-539. [PMID: 29848188 DOI: 10.1177/0748233718761698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phenolic compounds of essential oils from the family Lamiaceae are commonly used substances in the food industry because of their flavouring, antimicrobial and antioxidant properties. In this context, it has become important to have healthy and safe products for consumers who are exposed to these phenolic compounds. The present study was aimed to investigate the toxic effects of carvacrol, thymol and their mixture on human gastric carcinoma (AGS) cells. Cells were analyzed after 24 h of exposure to different concentrations of carvacrol, thymol and their mixture by the ATP cell viability, 2',7' dichlorodihydrofluorescein diacetate (H2DCF-DA), reducte glutatione/oxide glutathione ((GSH)/GSSG-Glo) and comet assays. Apoptosis induction was studied by acridine orange/ethidium bromide staining and western blotting. Carvacrol, thymol and their mixture induced cytotoxicity, genotoxicity, apoptosis, increased reactive oxygen species (ROS) and decreased GSH levels after 24 h of their exposure in a dose-dependent manner. A close negative relationship was found between cell viability and ROS generation. We examined dose-dependent cytotoxic effects of carvacrol, thymol and their mixture in human AGS cells. Increased intracellular ROS causes oxidative stress in cells. The results indicated that these compounds should be used carefully in the food industry.
Collapse
Affiliation(s)
- Ayse Günes-Bayir
- 1 Faculty of Health Sciences, Department of Nutrition and Dietetics, Bezmialem Vakif University, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- 2 Faculty of Medicine, Department of Medical Biochemistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Eray Metin Güler
- 2 Faculty of Medicine, Department of Medical Biochemistry, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
25
|
Cytotoxicity and genotoxicity of thymol verified in murine macrophages (RAW 264.7) after antimicrobial analysis in Candida albicans, Staphylococcus aureus, and Streptococcus mutans. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Ambrus L, Kelemen B, Szabó T, Bíró T, Tóth BI. Human podocytes express functional thermosensitive TRPV channels. Br J Pharmacol 2017; 174:4493-4507. [PMID: 28945920 DOI: 10.1111/bph.14052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 08/16/2017] [Accepted: 09/10/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Heat-sensitive transient receptor potential vanilloid (TRPV) channels are expressed in various epithelial tissues regulating, among else, barrier functions. Their expression is well established in the distal nephron; however, we have no data about their presence in podocytes. As podocytes are indispensable in the formation of the glomerular filtration barrier, we investigated the presence and function of Ca2+ -permeable TRPV1-4 channels in human podocyte cultures. EXPERIMENTAL APPROACH Expression of TRPV1-4 channels was investigated at protein (immunocytochemistry, Western blot) and mRNA (Q-PCR) level in a conditionally immortalized human podocyte cell line. Channel function was assessed by measuring intracellular Ca2+ concentration using Flou-4 Ca2+ -indicator dye and patch clamp electrophysiology upon applying various activators and inhibitors. KEY RESULTS Thermosensitive TRP channels were expressed in podocytes. The TRPV1-specific agonists capsaicin and resiniferatoxin did not affect the intracellular Ca2+ concentration. Cannabidiol, an activator of TRPV2 and TRPV4 channels, induced moderate Ca2+ -influxes, inhibited by both tranilast and HC067047, blockers of TRPV2 and TRPV4 channels respectively. The TRPV4-specific agonists GSK1016790A and 4α-phorbol 12,13-didecanoate induced robust Ca2+ -signals which were abolished by HC067047. Non-specific agonists of TRPV3 channels induced marked Ca2+ transients. However, TRPV3 channel blockers, ruthenium red and isopentenyl diphosphate only partly inhibited the responses and TRPV3 silencing was ineffective suggesting remarkable off-target effects of the compounds. CONCLUSION AND IMPLICATIONS Our results indicate the functional presence of TRPV4 and other thermosensitive TRPV channels in human podocytes and raise the possibility of their involvement in the regulation of glomerular filtration barrier.
Collapse
Affiliation(s)
- Lídia Ambrus
- DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Balázs Kelemen
- DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Tamás Szabó
- Department of Pediatrics, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary.,Department of Immunology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
27
|
Guesmi F, Prasad S, Tyagi AK, Landoulsi A. Antinflammatory and anticancer effects of terpenes from oily fractions of Teucruim alopecurus, blocker of IκBα kinase, through downregulation of NF-κB activation, potentiation of apoptosis and suppression of NF-κB-regulated gene expression. Biomed Pharmacother 2017; 95:1876-1885. [PMID: 28968948 DOI: 10.1016/j.biopha.2017.09.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/23/2017] [Indexed: 12/21/2022] Open
Abstract
Teucrium alopecurus is an endemic plant limited to southern Tunisia. In the present study, the chemical composition, anticancer and nuclear factor-κB (NF-κB) inhibitory effects of Teucrium alopecurus leaf essential oil was investigated. The analysis of Teucrium alopecurus (TA-1) with Gas Chromatography-Mass Spectrometry (GC/MS) showed that α-Bisabolol, (+)-epi-Bicyclosesquiphellandrene and α-Cadinol, were found in relatively high amounts (16.16%, 15.40% and 8.52%, respectively). Cell viability was determined by 3-(4-5-dimethylthiazol-2-yl) 2-5-diphenyl-tetrazolium (MTT) assay. Cell cycle and apoptosis assay were determined by flow cytometry. TA-1 functions as an anticancer agent by triggering apoptosis potentiated by chemotherapeutic agents and TNF in human myeloid leukemia cells (KBM5) through a mechanism involving poly(ADP-ribose) polymerase (PARP) cleavage and initiator and effector caspases activation. Moreover, electrophoretic mobility shift assay (EMSA) revealed that TA-1 downregulated nuclear localization of NF-κB and its phosphorylation induced by TNF-α and this, allows the suppression of the degradation and phosphorylation of IκB and the inhibition of the phosphorylation of p65 phosphorylation and the p50-p65 heterodimer nuclear translocation, causing attenuation of NF-κB-regulated antiapoptotic (Survivin, Bcl-2, c-IAP1/2, Bcl-xL, Mcl-1, and cFLIP), invasion (ICAM1), metasatsis (MMP-9), and angiogenesis (VEGF) gene expression in KBM5; and finally reporter gene expression. Furthermore, treatment with essential oil and TNF-α suppressed the NF-κB DNA binding activity. Finally, the activation of nuclear factor-κB induced by different plasmids (TNFR1, TRADD, TRAF2, NIK, TAK1/TAB1, and IKKβ) was inhibited following treatment with TA-1. Overall, TA-1 inhibits NF-κB activation and further growth and proliferation of cancer cells.
Collapse
Affiliation(s)
- Fatma Guesmi
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunisia.
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Amit K Tyagi
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ahmed Landoulsi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| |
Collapse
|
28
|
Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front Pharmacol 2017; 8:380. [PMID: 28694777 PMCID: PMC5483461 DOI: 10.3389/fphar.2017.00380] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Thymol, chemically known as 2-isopropyl-5-methylphenol is a colorless crystalline monoterpene phenol. It is one of the most important dietary constituents in thyme species. For centuries, it has been used in traditional medicine and has been shown to possess various pharmacological properties including antioxidant, free radical scavenging, anti-inflammatory, analgesic, antispasmodic, antibacterial, antifungal, antiseptic and antitumor activities. The present article presents a detailed review of the scientific literature which reveals the pharmacological properties of thymol and its multiple therapeutic actions against various cardiovascular, neurological, rheumatological, gastrointestinal, metabolic and malignant diseases at both biochemical and molecular levels. The noteworthy effects of thymol are largely attributed to its anti-inflammatory (via inhibiting recruitment of cytokines and chemokines), antioxidant (via scavenging of free radicals, enhancing the endogenous enzymatic and non-enzymatic antioxidants and chelation of metal ions), antihyperlipidemic (via increasing the levels of high density lipoprotein cholesterol and decreasing the levels of low density lipoprotein cholesterol and low density lipoprotein cholesterol in the circulation and membrane stabilization) (via maintaining ionic homeostasis) effects. This review presents an overview of the current in vitro and in vivo data supporting thymol's therapeutic activity and the challenges concerning its use for prevention and its therapeutic value as a dietary supplement or as a pharmacological agent or as an adjuvant along with current therapeutic agents for the treatment of various diseases. It is one of the potential candidates of natural origin that has shown promising therapeutic potential, pharmacological properties and molecular mechanisms as well as pharmacokinetic properties for the pharmaceutical development of thymol.
Collapse
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hayate Javed
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hasan Al Taee
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|
29
|
Vitali LA, Beghelli D, Biapa Nya PC, Bistoni O, Cappellacci L, Damiano S, Lupidi G, Maggi F, Orsomando G, Papa F, Petrelli D, Petrelli R, Quassinti L, Sorci L, Zadeh MM, Bramucci M. Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. ARAB J CHEM 2016. [DOI: 10.1016/j.arabjc.2015.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
30
|
The effect of the phenol compound ellagic acid on Ca2+ homeostasis and cytotoxicity in liver cells. Eur J Pharmacol 2016; 780:243-51. [DOI: 10.1016/j.ejphar.2016.03.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 01/21/2023]
|
31
|
Inhibitory Effects of Angelica Polysaccharide on Activation of Mast Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6063475. [PMID: 27200102 PMCID: PMC4854997 DOI: 10.1155/2016/6063475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/25/2016] [Accepted: 02/15/2016] [Indexed: 12/13/2022]
Abstract
This study was designed to investigate the inhibitory effects of Angelica polysaccharide (AP) on activation of mast cells and its possible molecular mechanism. In our study, we determined the proinflammatory cytokines and allergic mediators in anti-DNP IgE stimulated RBL-2H3 cells and found that AP (50, 100, and 200 μg/mL) significantly decreased the release of histamine, β-hexosaminidase, leukotrienes C4 (LTC4), IL-1, IL-4, TNF-α, IL-6, and human monocyte chemotactic protein-1 (MCP-1/CCL2) (p < 0.05). In addition, Ca2+ entry was inhibited by treatment with AP. AP also downregulated the protein expressions of p-Fyn, p-Akt, p-P38, IL-4, TNF-α, and NF-κB p65 in both Fyn gene upregulated and normal RBL-2H3 cells (p < 0.05). Collectively, our results showed that AP could inhibit the activation of mast cells via suppressing the releases of proinflammatory cytokines allergic mediators, Gab2/PI3-K/Akt and Fyn/Syk pathways.
Collapse
|
32
|
Maisanaba S, Llana-Ruiz-Cabello M, Gutiérrez-Praena D, Pichardo S, Puerto M, Prieto AI, Jos A, Cameán AM. New advances in active packaging incorporated with essential oils or their main components for food preservation. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1175010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Hsu SS, Chou CT, Liao WC, Shieh P, Kuo DH, Kuo CC, Jan CR, Liang WZ. The effect of gallic acid on cytotoxicity, Ca(2+) homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Chem Biol Interact 2016; 252:61-73. [PMID: 27060209 DOI: 10.1016/j.cbi.2016.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/07/2016] [Accepted: 04/05/2016] [Indexed: 01/14/2023]
Abstract
Gallic acid, a polyhydroxylphenolic compound, is widely distributed in various plants, fruits and foods. It has been shown that gallic acid passes into blood brain barrier and reaches the brain tissue of middle cerebral artery occlusion rats. However, the effect of gallic acid on Ca(2+) signaling in glia cells is unknown. This study explored whether gallic acid affected Ca(2+) homeostasis and induced Ca(2+)-associated cytotoxicity in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Gallic acid (20-40 μM) concentration-dependently induced cytotoxicity and intracellular Ca(2+) level ([Ca(2+)]i) increases in DBTRG-05MG cells but not in CTX TNA2 cells. In DBTRG-05MG cells, the Ca(2+) response was decreased by half by removal of extracellular Ca(2+). In Ca(2+)-containing medium, gallic acid-induced Ca(2+) entry was inhibited by store-operated Ca(2+) channel inhibitors (2-APB, econazole and SKF96365). In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin abolished gallic acid-induced [Ca(2+)]i increases. Conversely, incubation with gallic acid also abolished thapsigargin-induced [Ca(2+)]i increases. Inhibition of phospholipase C with U73122 abolished gallic acid-induced [Ca(2+)]i increases. Gallic acid significantly caused cytotoxicity in DBTRG-05MG cells, which was partially prevented by prechelating cytosolic Ca(2+) with BAPTA-AM. Moreover, gallic acid activated mitochondrial apoptotic pathways that involved ROS production. Together, in DBTRG-05MG cells but not in CTX TNA2 cells, gallic acid induced [Ca(2+)]i increases by causing Ca(2+) entry via 2-APB, econazole and SKF96365-sensitive store-operated Ca(2+) entry, and phospholipase C-dependent release from the endoplasmic reticulum. This Ca(2+) signal subsequently evoked mitochondrial pathways of apoptosis that involved ROS production.
Collapse
Affiliation(s)
- Shu-Shong Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC; Department of Surgery, National Defense Medical Center, 114 Taipei, Taiwan, ROC
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi 613, Taiwan, ROC; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi 613, Taiwan, ROC
| | - Wei-Chuan Liao
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC
| | - Pochuen Shieh
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan, ROC
| | - Daih-Huang Kuo
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan, ROC
| | - Chun-Chi Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung 907, Taiwan, ROC
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan, ROC
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan, ROC.
| |
Collapse
|
34
|
Antioxidant, Antibacterial, and Cytotoxic Activities of the Ethanolic Origanum vulgare Extract and Its Major Constituents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1404505. [PMID: 27051475 PMCID: PMC4804097 DOI: 10.1155/2016/1404505] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/22/2016] [Indexed: 11/18/2022]
Abstract
Oregano is a perennial shrub that grows in the mountains of the Mediterranean and Euro/Irano-Siberian regions. This study was conducted to identify the major constituents of the ethanolic Origanum vulgare extract and examine the cytotoxic, antioxidant, and antibacterial properties of the extract but more importantly the contribution of its specific major constituent(s) or their combination to the overall extract biological activity. Gas chromatography/mass spectroscopy analysis showed that the extract contained monoterpene hydrocarbons and phenolic compounds, the major ones being carvacrol and thymol and to a lesser extent p-cymene, 1-octacosanol, creosol, and phytol. A549 epithelial cells challenged with the extract showed a concentration-dependent increase in cytotoxicity. A combination of thymol and carvacrol at equimolar concentrations to those present in the extract was less cytotoxic. The A549 cells pretreated with nonlethal extract concentrations protected against hydrogen-peroxide-induced cytotoxicity, an antioxidant effect more effective than the combination of equimolar concentrations of thymol/carvacrol. Inclusion of p-cymene and/or 1-octacosanol did not alter the synergistic antioxidant effects of the carvacrol/thymol mixture. The extract also exhibited antimicrobial properties against Gram-positive and Gram-negative bacterial strains including clinical isolates. In conclusion, the oregano extract has cytotoxic, antioxidant, and antibacterial activities mostly attributed to carvacrol and thymol.
Collapse
|
35
|
Lee KP, Kim JE, Park WH, Hong H. Regulation of C6 glioma cell migration by thymol. Oncol Lett 2016; 11:2619-2624. [PMID: 27073528 DOI: 10.3892/ol.2016.4237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 01/18/2016] [Indexed: 11/05/2022] Open
Abstract
Tumor cell motility exhibits a crucial role in tumor development. Therefore, the present study aimed to investigate whether thymol could reduce C6 glioma cell migration. Cell viability was determined using the EZ-Cytox Cell Viability kit. The scratch wound healing and Boyden chamber assays were performed to test C6 glioma cell migration in the presence of fetal bovine serum (FBS). Additionally, the study investigated whether signaling proteins relevant to C6 glioma cell migration, i.e., extracellular signal-regulated kinases (ERK)1/2, protein kinase Cα (PKCα), matrix metallopeptidase (MMP)9 and MMP2, were affected by thymol treatment. Up to 30 µM, thymol did not alter cell viability, whereas 100 µM thymol induced the death of ~20% of the cells. Furthermore, thymol (30 µM) significantly reduced FBS-induced migration. In the FBS-stimulated C6 glioma cells, thymol (30 µM) suppressed PKCα and ERK1/2 phosphorylation. MMP9 and MMP2 production was also significantly reduced by treatment with 30 µM thymol in the C6 glioma cells. Taken together, these results indicate that thymol attenuates C6 glioma cell migration. Additionally, the study suggests that the effect of thymol on the FBS-induced migration of C6 glioma cells affects PKCα and ERK1/2 signaling, and suppresses MMP9 and MMP2 production.
Collapse
Affiliation(s)
- Kang Pa Lee
- Department of Physiology, School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jai-Eun Kim
- Department of Pathology, College of Korean Medicine, Dongguk University, Goyang 410-820, Republic of Korea
| | - Won-Hwan Park
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang 410-820, Republic of Korea
| | - Heeok Hong
- Department of Medical Science, School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
36
|
In vitro pro-oxidant/antioxidant role of carvacrol, thymol and their mixture in the intestinal Caco-2 cell line. Toxicol In Vitro 2015; 29:647-56. [DOI: 10.1016/j.tiv.2015.02.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/17/2014] [Accepted: 02/12/2015] [Indexed: 11/18/2022]
|
37
|
The involvement of mitochondrial apoptotic pathway in eugenol-induced cell death in human glioblastoma cells. Toxicol Lett 2015; 232:122-32. [DOI: 10.1016/j.toxlet.2014.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 12/27/2022]
|
38
|
Sobczak M, Kalemba D, Ferenc B, Zylinska L. Limited protective properties of thymol and thyme oil on differentiated PC12 cells with downregulated Mgst1. J Appl Biomed 2014. [DOI: 10.1016/j.jab.2014.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
39
|
Wechsler JB, Hsu CL, Bryce PJ. IgE-mediated mast cell responses are inhibited by thymol-mediated, activation-induced cell death in skin inflammation. J Allergy Clin Immunol 2014; 133:1735-43. [PMID: 24486068 PMCID: PMC4040322 DOI: 10.1016/j.jaci.2013.12.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 11/12/2013] [Accepted: 12/03/2013] [Indexed: 01/23/2023]
Abstract
BACKGROUND Mast cells play a critical role in inflammatory skin diseases through releasing proinflammatory mediators; however, few therapies directly target these cells. In 1878, the use of topical thymol, a now recognized potent agonist for transient receptor potential channels, was first described to treat eczema and psoriasis. OBJECTIVE We sought to determine the mechanisms through which thymol can alter skin inflammation. METHODS We examined the effect of topical thymol on IgE-dependent responses using a mast cell-dependent passive cutaneous anaphylaxis (PCA) model, as well as in vitro-cultured mast cells. RESULTS Thymol dose-dependently inhibited PCA when administered topically 24 hours before antigen challenge but provoked an ear-swelling response directly on application. This direct effect was associated with local mast cell degranulation and was absent in histamine-deficient mice. However, unlike with PCA responses, there was no late-phase swelling. In vitro thymol directly triggered calcium flux in mast cells through transient receptor potential channel activation, along with degranulation and cytokine transcription. However, no cytokine protein was produced. Instead, thymol induced a significant increase in apoptotic cell death that was seen both in vitro and in vivo. CONCLUSIONS We propose that the efficacy of thymol in reducing IgE-dependent responses is through promotion of activation-induced apoptotic cell death of mast cells and that this likely explains the clinical benefits observed in early clinical reports.
Collapse
Affiliation(s)
- Joshua B Wechsler
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Chia-Lin Hsu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Paul J Bryce
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
40
|
Lesgards JF, Baldovini N, Vidal N, Pietri S. Anticancer Activities of Essential Oils Constituents and Synergy with Conventional Therapies: A Review. Phytother Res 2014; 28:1423-46. [DOI: 10.1002/ptr.5165] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/09/2014] [Accepted: 04/11/2014] [Indexed: 01/19/2023]
Affiliation(s)
| | - Nicolas Baldovini
- Faculté des Sciences; University of Nice-Sophia Antipolis, CNRS UMR 7272, Institut de Chimie de Nice; Avenue Valrose 06108 Nice Cedex 2 France
| | - Nicolas Vidal
- Aix Marseille Université, CNRS, ICR UMR 7273; 13397 Marseille France
| | - Sylvia Pietri
- Aix Marseille Université, CNRS, ICR UMR 7273; 13397 Marseille France
| |
Collapse
|
41
|
Kundaković T, Stanojković T, Kolundžija B, Marković S, Šukilović B, Milenković M, Lakušić B. Cytotoxicity and Antimicrobial Activity of the Essential Oil from Satureja montana subsp. pisidica (Lamiceae). Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The antimicrobial and cytotoxic activities of the essential oil of Satureja montana ssp. pisidica from two localities (mountains Korab and Galičica) were studied. Forty-nine components were identified in the each sample. Oxygenated monoterpene hydrocarbons were the major compounds: carvacrol, thymol, carvacrol methyl ether and β-linalool. Both tested essential oils showed very high and similar antimicrobial activity. Minimal inhibitory concentrations ranged from 12.5 μg/mL against S. epidermidis to 50 μg/mL against P. aeruginosa and C. albicans. The cytotoxic effect of the essential oils was tested against MDA-MB-361, MDA-MB-453, HeLa, LS174 and MRC5 cells. The essential oil from Korab demonstrated significantly better results than the oil from Galičica, particularly against HeLa and MDA-MB-453 cell lines, with IC50 values of 63.5 and 72.3 μg/mL, while the oil from Galičica was the most active on the human epithelial cervical cancer HeLa cells (IC50 99.7 μg/mL).
Collapse
Affiliation(s)
- Tatjana Kundaković
- Department of Pharmacognosy, University of Belgrade, Faculty of Pharmacy, Belgrade, Serbia
| | | | - Branka Kolundžija
- Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
| | - Stevan Marković
- University of Belgrade, Faculty of Pharmacy, Belgrade, Serbia
| | | | - Marina Milenković
- Department of Immunology and Microbiology, University of Belgrade, Faculty of Pharmacy, Belgrade, Serbia
| | - Branislava Lakušić
- Department of Botany, University of Belgrade, Faculty of Pharmacy, Belgrade, Serbia
| |
Collapse
|
42
|
Llana-Ruiz-Cabello M, Gutiérrez-Praena D, Pichardo S, Moreno FJ, Bermúdez JM, Aucejo S, Cameán AM. Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2. Food Chem Toxicol 2013; 64:281-90. [PMID: 24326232 DOI: 10.1016/j.fct.2013.12.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 11/28/2022]
Abstract
Essential oils used as additives in the food industry due to its flavour, antimicrobial and antioxidant properties. Therefore, human can be exposed orally to these compounds through the ingestion of foods. In this sense, the present work aims to assess toxicological effects of oregano essential oil on the digestive tract. In concrete, the cytotoxic effects of two components of the oregano essential oils, carvacrol and thymol, and their mixture, on the intestinal cells line Caco-2 after 24 and 48 h of exposure are studied. The basal cytotoxicity endpoints assayed (total protein content, neutral red uptake and the tetrazolium salt reduction) and the annexin/propidium iodide staining indicated that carvacrol and the mixture carvacrol/thymol induced toxic effects. Moreover, a morphological study was performed in order to determine the ultrastructural cellular damages caused by these substances. The main morphological alterations were vacuolated cytoplasm, altered organelles and finally cell death. In addition, although no cytotoxic effects were recorded for thymol at any concentration and time of exposure, ultrastructural changes evidenced cellular damage such as lipid degeneration, mitochondrial damage, nucleolar segregation and apoptosis.
Collapse
Affiliation(s)
- María Llana-Ruiz-Cabello
- Area of Toxicology, Faculty of Pharmacy, University of Seville, Profesor García González No. 2, 41012 Seville, Spain
| | - Daniel Gutiérrez-Praena
- Area of Toxicology, Faculty of Pharmacy, University of Seville, Profesor García González No. 2, 41012 Seville, Spain
| | - Silvia Pichardo
- Area of Toxicology, Faculty of Pharmacy, University of Seville, Profesor García González No. 2, 41012 Seville, Spain.
| | - F Javier Moreno
- Area of Cellular Biology, Faculty of Biology, University of Seville, Avda. Reina Mercedes s/n, 41012 Seville, Spain
| | - José María Bermúdez
- Area of Packaging Materials and Systems, ITENE, C/Albert Einstein 1, 46980 Paterna, Valencia, Spain
| | - Susana Aucejo
- Area of Packaging Materials and Systems, ITENE, C/Albert Einstein 1, 46980 Paterna, Valencia, Spain
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Seville, Profesor García González No. 2, 41012 Seville, Spain
| |
Collapse
|
43
|
Kim YS, Hwang JW, Kang SH, Kim EH, Jeon YJ, Jeong JH, Kim HR, Moon SH, Jeon BT, Park PJ. Thymol from Thymus quinquecostatus Celak. protects against tert-butyl hydroperoxide-induced oxidative stress in Chang cells. J Nat Med 2013; 68:154-62. [PMID: 23771524 DOI: 10.1007/s11418-013-0786-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/01/2013] [Indexed: 01/16/2023]
Abstract
The present work describes the protective effects of thymol isolated from Thymus quinquecostatus Celak. against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage through various experiments with Chang liver cells. Thymol significantly protected hepatocytes against t-BHP-induced cell cytotoxicity as demonstrated by increased viability. Furthermore, observation of Hoechst staining, annexin V/PI staining, and expression of Bcl-2 and Bax indicated that thymol inhibited t-BHP-induced Chang cell damage. Further, thymol inhibited the loss of mitochondrial membrane potential in t-BHP-treated Chang cells and prevented oxidative stress-triggered reactive oxygen species (ROS) and lipid peroxidation (malondialdehyde, MDA). Thymol restored the antioxidant capability of hepatocytes including glutathione (GSH) levels which were reduced by t-BHP. These results indicated that thymol prevents oxidative stress-induced damage to liver cells through suppression of ROS and MDA levels and increase of GSH level.
Collapse
Affiliation(s)
- Yon-Suk Kim
- Department of Biotechnology, Konkuk University, Chungju, Chungbuk, 380-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nagoor Meeran MF, Stanely Mainzen Prince P. Protective effects of thymol on altered plasma lipid peroxidation and nonenzymic antioxidants in isoproterenol-induced myocardial infarcted rats. J Biochem Mol Toxicol 2012; 26:368-73. [DOI: 10.1002/jbt.21431] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 06/05/2012] [Accepted: 06/15/2012] [Indexed: 11/10/2022]
|
45
|
Scolicidal effectiveness of essential oil from Zataria multiflora and Ferula assafoetida: disparity between phenolic monoterpenes and disulphide compounds. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s00580-012-1518-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|