1
|
Isik OG, Ing C. Maternal exposure to general anesthesia and labor epidural analgesia during pregnancy and delivery, and subsequent neurodevelopmental outcomes in children. Int J Obstet Anesth 2024; 61:104318. [PMID: 39754838 DOI: 10.1016/j.ijoa.2024.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Oliver G Isik
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Caleb Ing
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
2
|
Xiao QX, Geng MJ, Wang QL, Fang CL, Zhang JH, Liu Q, Xiong LL. Unraveling the effects of prenatal anesthesia on neurodevelopment: A review of current evidence and future directions. Neurotoxicology 2024; 105:96-110. [PMID: 39276873 DOI: 10.1016/j.neuro.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Human brain development is a complex, multi-stage, and sensitive process, especially during the fetal stage. Animal studies over the last two decades have highlighted the potential risks of anesthetics to the developing brain, impacting its structure and function. This has raised concerns regarding the safety of anesthesia during pregnancy and its influence on fetal brain development, garnering significant attention from the anesthesiology community. Although preclinical studies predominantly indicate the neurotoxic effects of prenatal anesthesia, these findings cannot be directly extrapolated to humans due to interspecies variations. Clinical research, constrained by ethical and technical hurdles in accessing human prenatal brain tissues, often yields conflicting results compared to preclinical data. The emergence of brain organoids as a cutting-edge research tool shows promise in modeling human brain development. When integrated with single-cell sequencing, these organoids offer insights into potential neurotoxic mechanisms triggered by prenatal anesthesia. Despite several retrospective and cohort studies exploring the clinical impact of anesthesia on brain development, many findings remain inconclusive. As such, this review synthesizes preclinical and clinical evidence on the effects of prenatal anesthesia on fetal brain development and suggests areas for future research advancement.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Min-Jian Geng
- The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Qiu-Lin Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Chang-Le Fang
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Jing-Han Zhang
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Qi Liu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China.
| |
Collapse
|
3
|
Zhang M, Wei R, Jing J, Huang S, Qiu G, Xia X, Zhang Y, Li Y. Subsequent maternal sleep deprivation aggravates cognitive impairment by modulating hippocampal neuroinflammatory responses and synaptic function in maternal isoflurane-exposed offspring mice. Brain Behav 2024; 14:e3610. [PMID: 38945806 PMCID: PMC11214875 DOI: 10.1002/brb3.3610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
INTRODUCTION Pregnant women may need to undergo non-obstetric surgery under general anesthesia owing to medical needs, and pregnant women frequently experience sleep disturbances during late gestation. Preclinical studies demonstrated that maternal isoflurane exposure (MISO) or maternal sleep deprivation (MSD) contributed to cognitive impairments in offspring. Research studies in mice have revealed that SD can aggravate isoflurane-induced cognitive deficits. However, it remains unclear whether MSD aggravates MISO-induced cognitive deficits in offspring. The purpose of this research was to explore the combined effects of MSD and MISO on offspring cognitive function and the role of neuroinflammation and synaptic function in the process of MSD + MISO. METHODS Pregnant mice were exposed to 1.4% isoflurane by inhalation for 4 h on gestational day (GD) 14. Dams were then subjected to SD for 6 h (12:00-18:00 h) during GD15-21. At 3 months of age, the offspring mice were subjected to the Morris water maze test to assess cognitive function. Then the levels of inflammatory and anti-inflammatory markers and synaptic function-related proteins were assessed using molecular biology methods. RESULTS The results of this study demonstrated that MISO led to cognitive dysfunction, an effect that was aggravated by MSD. In addition, MSD exacerbated the maternal isoflurane inhalation, leading to an enhancement in the expression levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha and a reduction in the hippocampal levels of IL-10, synaptophysin, post-synaptic density-95, growth-associated protein-43, and brain-derived neurotrophic factor. CONCLUSION Our findings revealed that MSD aggravated the cognitive deficits induced by MISO in male offspring mice, and these results were associated with neuroinflammation and alternations in synaptic function.
Collapse
Affiliation(s)
- Meng‐Ying Zhang
- Department of Anesthesiologythe Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Ru‐Meng Wei
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Jun Jing
- Department of AnesthesiologyMaanshan People's HospitalMaanshanAnhuiP. R. China
| | - Shu‐Ren Huang
- Department of Anesthesiologythe Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Gao‐Lin Qiu
- Department of Anesthesiologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Xiao‐Qiong Xia
- Department of Anesthesiologythe Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Yue‐Ming Zhang
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Yuan‐Hai Li
- Department of Anesthesiologythe Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
- Department of Anesthesiologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| |
Collapse
|
4
|
Fan P, Lu Y, Wei H, Wang K, Jia P, Zhang Y, Zhang Y, Wang T, Yang L, Zhao J, Zhang S, Lu H, Chen X, Liu Y, Zhang P. Metformin attenuates sevoflurane-induced neurogenesis damage and cognitive impairment: involvement of the Nrf2/G6PD pathway. Metab Brain Dis 2023; 38:2037-2053. [PMID: 37119382 DOI: 10.1007/s11011-023-01218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
Anesthetics such as sevoflurane are commonly administered to infants and children. However, the possible neurotoxicity caused by prolonged or repetitive exposure to it should be a concern. The neuroprotective effects of metformin are observed in many models of neurological disorders. In this study, we investigated whether metformin could reduce the developmental neurotoxicity induced by sevoflurane exposure in neonatal rats and the potential mechanism. Postnatal day 7 (PND 7) Sprague-Dawley rats and neural stem cells (NSCs) were treated with normal saline or metformin before sevoflurane exposure. The Morris water maze (MWM) was used to observe spatial memory and learning at PND 35-42. Immunofluorescence staining was used to detect neurogenesis in the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus at PND 14. MTT assays, immunofluorescence staining, and TUNEL staining were used to assess the viability, proliferation, differentiation, and apoptosis of NSCs. Western blotting and ELISA were used to assess the protein expression of cleaved caspase-3, nuclear factor erythroid 2-related factor 2 (Nrf2), and glucose-6-phosphate dehydrogenase (G6PD) pathway-related molecules. Exposure to sevoflurane resulted in late cognitive defects, impaired neurogenesis in both the SVZ and SGZ, reduced NSC viability and proliferation, increased NSC apoptosis, and decreased protein expression of G6PD in vitro. Metformin pretreatment attenuated sevoflurane-induced cognitive functional decline and neurogenesis inhibition. Metformin pretreatment also increased the protein expression of Nrf2 and G6PD. However, treatment with the Nrf2 inhibitor, ML385 or the G6PD inhibitor, dehydroepiandrosterone (DHEA) reversed the protective effect of metformin on sevoflurane-induced NSC damage in vitro. Our findings suggested that metformin could reduce sevoflurane-induced neurogenesis damage and neurocognitive defects in the developing rat brain by influencing the Nrf2/G6PD signaling pathways.
Collapse
Affiliation(s)
- Pei Fan
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Yuying Lu
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Pengyu Jia
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Yuanyuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Tianyue Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Liufei Yang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Jing Zhao
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China
| | - Shuyue Zhang
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, 76 # Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Haixia Lu
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, 76 # Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Xinlin Chen
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, 76 # Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yong Liu
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University, 76 # Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 # West 5 road, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
5
|
Garnier R. Isoflurane et fertilité. ARCH MAL PROF ENVIRO 2022. [DOI: 10.1016/j.admp.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Bleeser T, Van Der Veeken L, Fieuws S, Devroe S, Van de Velde M, Deprest J, Rex S. Effects of general anaesthesia during pregnancy on neurocognitive development of the fetus: a systematic review and meta-analysis. Br J Anaesth 2021; 126:1128-1140. [PMID: 33836853 DOI: 10.1016/j.bja.2021.02.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The US Food and Drug Administration warned that exposure of pregnant women to general anaesthetics may impair fetal brain development. This review systematically evaluates the evidence underlying this warning. METHODS PubMed, EMBASE, and Web of Science were searched from inception until April 3, 2020. Preclinical and clinical studies were eligible. Exclusion criteria included case reports, in vitro models, chronic exposures, and exposure only during delivery. Meta-analyses were performed on standardised mean differences. The primary outcome was overall effect on learning/memory. Secondary outcomes included markers of neuronal injury (apoptosis, synapse formation, neurone density, and proliferation) and subgroup analyses. RESULTS There were 65 preclinical studies included, whereas no clinical studies could be identified. Anaesthesia during pregnancy impaired learning and memory (standardised mean difference -1.16, 95% confidence interval -1.46 to -0.85) and resulted in neuronal injury in all experimental models, irrespective of the anaesthetic drugs and timing in pregnancy. Risk of bias was high in most studies. Rodents were the most frequently used animal species, although their brain development differs significantly from that in humans. In a minority of studies, anaesthesia was combined with surgery. Monitoring and strict control of physiological homeostasis were below preclinical and clinical standards in many studies. The duration and frequency of exposure and anaesthetic doses were often much higher than in clinical routine. CONCLUSION Anaesthesia-induced neurotoxicity during pregnancy is a consistent finding in preclinical studies, but translation of these results to the clinical situation is limited by several factors. Clinical observational studies are needed. PROSPERO REGISTRATION NUMBER CRD42018115194.
Collapse
Affiliation(s)
- Tom Bleeser
- Department of Anaesthesiology, UZ Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Lennart Van Der Veeken
- Department of Obstetrics and Gynaecology, UZ Leuven, Leuven, Belgium; Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Steffen Fieuws
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, KU Leuven, Leuven, Belgium
| | - Sarah Devroe
- Department of Anaesthesiology, UZ Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Marc Van de Velde
- Department of Anaesthesiology, UZ Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Obstetrics and Gynaecology, UZ Leuven, Leuven, Belgium; Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Institute for Women's Health, University College London, London, UK
| | - Steffen Rex
- Department of Anaesthesiology, UZ Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Alipour M, Asl MK, Khordad E, Alipour F, Raoofi A, Ebrahimzadeh-Bideskan A, Ebrahimi V. Histopathological study on neuroapoptotic alterations induced by etomidate in rat hippocampus. Acta Histochem 2021; 123:151693. [PMID: 33601320 DOI: 10.1016/j.acthis.2021.151693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 11/19/2022]
Abstract
In human, there is substantial neurogenesis in the hippocampus that is implicated in memory formation and learning. These new-born neurons can be affected by neuropathological conditions. Anesthesia and surgical procedures are associated with postoperative cognitive changes particularly, impaired memory and learning. Therefore, the aim of this study was to evaluate the possible neurodegenerative effects of etomidate in rat hippocampus. Thirty male Wistar rats weighing 250 ± 30 g were randomly divided into 3 groups: 1) Etomidate group; four times 20 mg intraperitoneal injection with 1-h intervals, 2) Control group; the equal volume of normal saline, and 3) Normal group; without any intervention. 6 h after the last injection, the brains were removed and processed according to routine histological methods. TUNEL assay and toluidine blue staining were performed to evaluate neuro-histopathological changes in different regions of hippocampus. Our results showed that the number of TUNEL positive cells and dark neurons (DNs) in etomidate group were significantly higher in the CA1, CA2, CA3, and dentate gyrus (DG) of hippocampus compared with the control and normal groups (p < 0.05). While, there was no significant difference between the various regions of hippocampus in control and normal groups. Our findings showed that etomidate can increase apoptotic cells and dark neurons induction in different regions of hippocampus mainly in DG.
Collapse
Affiliation(s)
- Mohammad Alipour
- Department of Anesthesia, School of Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Kamkar Asl
- Department of Anesthesia, School of Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Khordad
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Raoofi
- Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran; Department of Anatomy, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Liao Z, Li J, Miao L, Huang Z, Huang W, Liu Y, Li Y. Inhibition of RhoA Activity Does Not Rescue Synaptic Development Abnormalities and Long-Term Cognitive Impairment After Sevoflurane Exposure. Neurochem Res 2021; 46:468-481. [PMID: 33237472 DOI: 10.1007/s11064-020-03180-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022]
Abstract
General anesthetics interfere with dendritic development and synaptogenesis, resulting in cognitive impairment in the developing animals. RhoA signal pathway plays important roles in dendritic development by regulating cytoskeleton protein such as tubulin and actin. However, it's not clear whether RhoA pathway is involved in inhaled general anesthetics sevoflurane-induced synaptic development abnormalities and long-term cognitive dysfunction. Rats at postnatal day 7 (PND7) were injected intraperitoneally with RhoA pathway inhibitor Y27632 or saline 20 min before exposed to 2.8% sevoflurane for 4 h. The apoptosis-related proteins and RhoA/CRMP2 pathway proteins in the hippocampus were measured 6 h after sevoflurane exposure. Cognitive functions were evaluated by the open field test on PND25 rats and contextual fear conditioning test on PND32-33 rats. The dendritic morphology and density of dendritic spines in the pyramidal neurons of hippocampus were determined by Golgi staining and the synaptic plasticity-related proteins were also measured on PND33 rats. Long term potentiation (LTP) from hippocampal slices was recorded on PND34-37 rats. Sevoflurane induced caspase-3 activation, decreased the ratio of Bcl-2/Bax and increased TUNEL-positive neurons in hippocampus of PND7 rats, which were attenuated by inhibition of RhoA. However, sevoflurane had no significant effects on activity of RhoA/CRMP2 pathway. Sevoflurane disturbed dendritic morphogenesis, reduced the number of dendritic spines, decreased proteins expression of PSD-95, drebrin and synaptophysin, inhibited LTP in hippocampal slices and impaired memory ability in the adolescent rats, while inhibition of RhoA activity did not rescue the changes above induced by sevoflurane. RhoA signal pathway did not participate in sevoflurane-induced dendritic and synaptic development abnormalities and cognitive dysfunction in developing rats.
Collapse
Affiliation(s)
- Zhaoxia Liao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Junhua Li
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liping Miao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zeqi Huang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wujian Huang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yafang Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yujuan Li
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Bleeser T, Van Der Veeken L, Devroe S, Vergote S, Emam D, van der Merwe J, Ghijsens E, Joyeux L, Basurto D, Van de Velde M, Deprest J, Rex S. Effects of Maternal Abdominal Surgery on Fetal Brain Development in the Rabbit Model. Fetal Diagn Ther 2021; 48:189-200. [PMID: 33631746 PMCID: PMC7613467 DOI: 10.1159/000512489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/22/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Anesthesia during pregnancy can impair fetal neurodevelopment, but effects of surgery remain unknown. The aim is to investigate effects of abdominal surgery on fetal brain development. Hypothesis is that surgery impairs outcome. METHODS Pregnant rabbits were randomized at 28 days of gestation to 2 h of general anesthesia (sevoflurane group, n = 6) or to anesthesia plus laparoscopic appendectomy (surgery group, n = 13). On postnatal day 1, neurobehavior of pups was assessed and brains harvested. Primary outcome was neuron density in the frontal cortex, and secondary outcomes included neurobehavioral assessment and other histological parameters. RESULTS Fetal survival was lower in the surgery group: 54 versus 100% litters alive at birth (p = 0.0442). In alive litters, pup survival until harvesting was 50 versus 69% (p = 0.0352). No differences were observed for primary outcome (p = 0.5114) for surviving pups. Neuron densities were significantly lower in the surgery group in the caudate nucleus (p = 0.0180), but not different in other regions. No differences were observed for secondary outcomes. Conclusions did not change after adjustment for mortality. CONCLUSION Abdominal surgery in pregnant rabbits at a gestational age corresponding to the end of human second trimester results in limited neurohistological changes but not in neurobehavioral impairments. High intrauterine mortality limits translation to clinical scenario, where fetal mortality is close to zero.
Collapse
Affiliation(s)
- Tom Bleeser
- Department of Anesthesiology, UZ Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
| | - Lennart Van Der Veeken
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, Leuven, Belgium
| | - Sarah Devroe
- Department of Anesthesiology, UZ Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
| | - Simen Vergote
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, Leuven, Belgium
| | - Doaa Emam
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, Leuven, Belgium
- Department Obstetrics and Gynecology, University Hospitals Tanta, Tanta, Egypt
| | - Johannes van der Merwe
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, Leuven, Belgium
| | - Elina Ghijsens
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Luc Joyeux
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, Leuven, Belgium
- Department of Pediatric Surgery, Great Ormond Street Hospital, University College London Hospitals, London, United Kingdom
| | - David Basurto
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, Leuven, Belgium
| | - Marc Van de Velde
- Department of Anesthesiology, UZ Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, My FetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ Leuven, Leuven, Belgium
- Institute for Women's Health, University College London, London, United Kingdom
| | - Steffen Rex
- Department of Anesthesiology, UZ Leuven, Leuven, Belgium,
- Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium,
| |
Collapse
|
10
|
Regulation of CRMP2 by Cdk5 and GSK-3β participates in sevoflurane-induced dendritic development abnormalities and cognitive dysfunction in developing rats. Toxicol Lett 2021; 341:68-79. [PMID: 33548343 DOI: 10.1016/j.toxlet.2021.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND General anesthetics such as sevoflurane interfere with dendritic development and synaptogenesis, resulting in cognitive impairment. The collapsin response mediator protein2 (CRMP2) plays important roles in dendritic development and synaptic plasticity and its phosphorylation is regulated by cycline dependent kinase-5 (Cdk5) and glycogen synthase kinase-3β (GSK-3β). Here we investigated whether Cdk5/CRMP2 or GSK-3β/CRMP2 pathway is involved in sevoflurane-induced developmental neurotoxicity. METHODS Rats at postnatal day 7 (PND7) were i.p. injected with Cdk5 inhibitor roscovitine, GSK-3β inhibitor SB415286 or saline 20 min. before exposure to 2.8% sevoflurane for 4 h. Western-blotting was applied to measure the expression of Cdk5/CRMP2 and GSK-3β/CRMP2 pathway proteins in the hippocampus 6 h after the sevoflurane exposure. When rats grew to adolescence (from PND25), they were tested for open-field and contextual fear conditioning, and then long term potentiation (LTP) from hippocampal slices was recorded, and morphology of pyramidal neuron was examined by Golgi staining and synaptic plasticity-related proteins expression in hippocampus were measured by western-blotting. In another batch of experiment, siRNA-CRMP2 or vehicle control was injected into hippocampus on PND5. RESULTS Sevoflurane activated Cdk5/CRMP2 and GSK-3β/CRMP2 pathways in the hippocampus of neonatal rats, reduced dendritic length, branches and the density of dendritic spine in pyramidal neurons. It also reduced the expressions of PSD-95, drebrin and synaptophysin in hippocampus, impaired memory ability of rats and inhibited LTP in hippocampal slices. All the impairment effects by sevoflurane were attenuated by pretreatment with inhibitor of Cdk5 or GSK-3β. Furthermore, rat transfected with siRNA-CRMP2 eliminated the neuroprotective effects of Cdk5 or GSK-3β blocker in neurobehavioral and LTP tests. CONCLUSION Cdk5/CRMP2 and GSK-3β/CRMP2 pathways participate in sevoflurane-induced dendritic development abnormalities and cognitive dysfunction in developing rats.
Collapse
|
11
|
Fan D, Yang S, Han Y, Zhang R, Yang L. Isoflurane-induced expression of miR-140-5p aggravates neurotoxicity in diabetic rats by targeting SNX12. J Toxicol Sci 2020; 45:69-76. [PMID: 32062618 DOI: 10.2131/jts.45.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
MicroRNAs (miRNAs) are widely known as critical regulators in isoflurane-induced neurotoxicity during the development of brain. Moreover, isoflurane could aggravate cognitive impairment in diabetic rats. The present study was designed to investigate the role and mechanism of miR-140-5p on isoflurane-induced neurotoxicity in diabetic rats. Firstly, a diabetic rat model was established by injection of streptozotocin (STZ) and identified by Morris water maze test. The result indicated that isoflurane treatment exacerbated STZ-induced cognitive impairment, as demonstrated by increase of the latency to the platform and decrease of the proportion of time spent in the target quadrant. Secondly, miR-140-5p was up-regulated in diabetic rats treated with isoflurane. Functional assays revealed that knockdown of miR-140-5p attenuated neurotoxicity in diabetic rats, which was shown by a decrease of the latency to the platform and an increase of the proportion of time spent in the target quadrant. Mechanistically, we demonstrated that miR-140-5p directly bonded to SNX12 (sorting nexin 12). At last, the neuroprotective effect of miR-140-5p knockdown against isoflurane-aggravated neurotoxicity in diabetic rats was dependent on up-regulation of SNX12 and inhibition of cell apoptosis. In summary, these meaningful results demonstrated the mitigation of miR-140-5p knockdown against isoflurane-aggravated neurotoxicity in diabetic rats via SNX12, suggesting a novel target for neuroprotection in diabetes under isoflurane treatment.
Collapse
Affiliation(s)
- Dongyi Fan
- Department of Anesthesiology, the Fifth Affiliated Hospital of Sun Yat-Sen University, China
| | - Simin Yang
- Department of Anesthesiology, the Fifth Affiliated Hospital of Sun Yat-Sen University, China
| | - Yuxiang Han
- Department of Anesthesiology, the Fifth Affiliated Hospital of Sun Yat-Sen University, China
| | - Ru Zhang
- Department of Anesthesiology, the Fifth Affiliated Hospital of Sun Yat-Sen University, China
| | - Lukun Yang
- Department of Anesthesiology, the Fifth Affiliated Hospital of Sun Yat-Sen University, China
| |
Collapse
|
12
|
Perkins SE, Hankenson FC. Nonexperimental Xenobiotics: Unintended Consequences of Intentionally Administered Substances in Terrestrial Animal Models. ILAR J 2020; 60:216-227. [PMID: 32574354 DOI: 10.1093/ilar/ilaa003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
Review of the use of nonexperimental xenobiotics in terrestrial animal models and the potential unintended consequences of these compounds, including drug-related side effects and adverse reactions.
Collapse
Affiliation(s)
- Scott E Perkins
- Tufts Comparative Medicine Services, Tufts University, Boston, Massachusetts; and Department of Environmental and Population Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - F Claire Hankenson
- Campus Animal Resources, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
13
|
Zhang Y, Zhao Y, Ran Y, Guo J, Cui H, Liu S. Notoginsenoside R1 attenuates sevoflurane-induced neurotoxicity. Transl Neurosci 2020; 11:215-226. [PMID: 33335762 PMCID: PMC7711878 DOI: 10.1515/tnsci-2020-0118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Sevoflurane, a volatile anesthetic, is known to induce widespread neuronal degeneration and apoptosis. Recently, the stress-inducible protein sestrin 2 and adenosine monophosphate-activated protein kinase (AMPK) have been found to regulate the levels of intracellular reactive oxygen species (ROS) and suppress oxidative stress. Notoginsenoside R1 (NGR1), a saponin isolated from Panax notoginseng, has been shown to exert neuroprotective effects. The effects of NGR1 against neurotoxicity induced by sevoflurane were assessed. Methods Sprague-Dawley rat pups on postnatal day 7 (PD7) were exposed to sevoflurane (3%) anesthesia for 6 h. NGR1 at doses of 12.5, 25, or 50 mg/kg body weight was orally administered to pups from PD2 to PD7. Results Pretreatment with NGR1 attenuated sevoflurane-induced generation of ROS and reduced apoptotic cell counts. Western blotting revealed decreased cleaved caspase 3 and Bad and Bax pro-apoptotic protein expression. NGR1 substantially upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression along with increased heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 levels, suggesting Nrf2 signaling activation. Enhanced sestrin-2 and phosphorylated AMPK expression were noticed following NGR1 pretreatment. Conclusion This study revealed the neuroprotective effects of NGR1 through effective suppression of apoptosis and ROS via regulation of apoptotic proteins and activation of Nrf2/HO-1 and sestrin 2/AMPK signaling cascades.
Collapse
Affiliation(s)
- Yibing Zhang
- Comprehensive Teaching and Research Office of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401331, People's Republic of China
| | - Yong Zhao
- GLP Laboratory, Institute of Chinese Materia Medica, China Academy of Traditional Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Yongwang Ran
- Department of Radiology, Qianjiang Central Hospital of Chongqing, Chongqing, 409099, People's Republic of China
| | - Jianyou Guo
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Haifeng Cui
- GLP Laboratory, Institute of Chinese Materia Medica, China Academy of Traditional Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Sha Liu
- Comprehensive Teaching and Research Office of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401331, People's Republic of China
| |
Collapse
|
14
|
Chai D, Yan J, Li C, Sun Y, Jiang H. Sevoflurane inhibits neuronal migration and axon growth in the developing mouse cerebral cortex. Aging (Albany NY) 2020; 12:6436-6455. [PMID: 32271715 PMCID: PMC7185136 DOI: 10.18632/aging.103041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/10/2020] [Indexed: 11/25/2022]
Abstract
The highly organized laminar structure of the mammalian brain is dependent on successful neuronal migration, and migration deficits can cause lissencephaly and behavioral and cognitive defects. Here, we investigated the contribution of neuronal migration dysregulation to anesthesia-induced neurotoxicity in the fetal brain. Pregnant C57BL/6 mice at embryonic day 14.5 received 2.5% sevoflurane daily for two days. Cortical neuron migration and axon lengths were evaluated using GFP immunostaining. Morris water maze tests were performed to assess the effects of sevoflurane exposure on spatial memory in offspring. We found that sevoflurane exposure decreased axon length and caused cognitive defects in young mice. RNA sequencing revealed that these defects were associated with reduced neuro-oncological ventral antigen 2 (Nova2) expression. In utero electroporation experiments using Nova2 shRNA recapitulated this finding. Nova2 shRNA inhibited neuronal migration and decreased axon lengths. Finally, we found that Netrin-1/Deleted in Colorectal Cancer (Dcc) proteins acted downstream of Nova2 to suppresses neuronal migration. These findings describe a novel mechanism by which prenatal anesthesia exposure affects embryonic neural development and postnatal behavior.
Collapse
Affiliation(s)
- Dongdong Chai
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Yan
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunzhu Li
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Yu X, Ma F, Cao X, Ma X, Hu C. Effects of the application of general anesthesia with propofol during the early stage of pregnancy on brain development and function of SD rat offspring and the intervention of DHA. Neurol Res 2019; 41:1008-1014. [PMID: 31573411 DOI: 10.1080/01616412.2019.1672381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: To investigate the effects of propofol used in early pregnancy on brain development and function of offspring, and further to explore the effects of docosahexaenoic acid (DHA) intervention. Methods: Forty pregnant rats were randomly divided into four groups: control group (C), propofol group (P), DHA intervention group (D), and propofol + DHA group (P + D). The DHA treatment was before propofol was administered. Morris water maze test was performed 30 days after delivery. The levels of amyloid beta (Aβ), IL-1β and reactive oxygen species (ROS) in hippocampus were detected by enzyme-linked immunosorbent assay (ELISA). The expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase-B (Trk-B), protein kinase B (Akt), p-Akt and cAMP response element-binding protein (CREB) in hippocampus were detected by western blot. Results: The learning and memory abilities of the rats in P group were reduced. The levels of Aβ, IL-1β and ROS were increased, while the levels of BDNF, Trk-B and CREB, and p-Akt/Akt ratio were reduced. In addition, compared with P group, DHA in P + D group reversed or alleviated adverse changes caused by propofol. Conclusions: Application of general anesthesia with propofol during the early stage of pregnancy can negatively affect the brain development of the offspring to reduce the learning and memory ability, while DHA can reverse it.
Collapse
Affiliation(s)
- Xiangming Yu
- Department of Neurology, 970th Hospital of the PLA , Yantai , China
| | - Fei Ma
- Department of Neurology, 404th Hospital of the PLA , Weihai , China
| | - Xingnian Cao
- Department of Neurology, 404th Hospital of the PLA , Weihai , China
| | - Xiaodi Ma
- Department of Neurology, 404th Hospital of the PLA , Weihai , China
| | - Chenhu Hu
- Department of Intensive Care Unit, 970th Hospital of the PLA , Yantai , China
| |
Collapse
|
16
|
Li Y, Li X, Guo C, Li L, Wang Y, Zhang Y, Chen Y, Liu W, Gao L. Long-term neurocognitive dysfunction in offspring via NGF/ ERK/CREB signaling pathway caused by ketamine exposure during the second trimester of pregnancy in rats. Oncotarget 2018; 8:30956-30970. [PMID: 28415680 PMCID: PMC5458180 DOI: 10.18632/oncotarget.16042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
Early life exposure to ketamine caused neurohistopathologic changes and persistent cognitive dysfunction. For this study, a pregnant rat model was developed to investigate neurocognitive effects in the offspring, following ketamine exposure during the second trimester. Pregnant rats on gestational day 14 (equal to midtrimester pregnancy in humans), intravenously received 200 mg/kg ketamine for 3 h. Their behavior was tested (Morris water maze, odor recognition test, and fear conditioning) at postnatal days (P25-30). Furthermore, hippocampal morphology of the offspring (P30) was examined via Nissl staining and hippocampal dendritic spine density was determined via Golgi staining. The hippocampal protein levels of nerve growth factor (NGF), extracellular signal-regulated kinase (ERK), phosphorylated-ERK (p-ERK), cyclic adenosine monophosphate response element-binding (CREB), p-CREB, synaptophysin (SYP), synapsin (SYN), and postsynaptic density-95 (PSD95) were measured via western blot. Additionally, SCH772984 (an ERK inhibitor) was used to evaluate both role and underlying mechanism of the ERK pathway in PC12 cells. We found that ketamine caused long-term neurocognitive dysfunction, reduced the density of the dendritic spin, caused neuronal loss, and down-regulated the expression of NGF, ERK, p-ERK, mitogen, and stress-activated protein kinase (MSK), CREB, p-CREB, SYP, SYN, and PSD95 in the hippocampus. These results suggest that ketamine induced maternal anesthesia during period of the fetal brain development can cause long-term neurocognitive dysfunction in the offspring, which likely happens via inhibition of the NGF-ERK-CREB pathway in the hippocampus. Our results highlight the central role of ERK in neurocognition.
Collapse
Affiliation(s)
- Yanan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xinran Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Cen Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lina Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yuxin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yu Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wenhan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
17
|
Wang Y, Yin S, Xue H, Yang Y, Zhang N, Zhao P. Mid-gestational sevoflurane exposure inhibits fetal neural stem cell proliferation and impairs postnatal learning and memory function in a dose-dependent manner. Dev Biol 2018; 435:185-197. [PMID: 29410165 DOI: 10.1016/j.ydbio.2018.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/25/2022]
Abstract
Advancements in fetal intervention procedures have led to increases in the number of pregnant women undergoing general anesthesia during the second trimester-a period characterized by extensive proliferation of fetal neural stem cells (NSCs). However, few studies have investigated the effects of mid-gestational sevoflurane exposure on fetal NSC proliferation or postnatal learning and memory function. In the present study, pregnant rats were randomly assigned to a control group (C group), a low sevoflurane concentration group (2%; L group), a high sevoflurane concentration group (3.5%; H group), a high sevoflurane concentration plus lithium chloride group (H + Li group), and a lithium chloride group (Li group) at gestational day 14. Rats received different concentrations of sevoflurane anesthesia for 2 h. The offspring rats were weaned at 28 days for behavioral testing (i.e., Morris Water Maze [MWM]), and fetal brains or postnatal hippocampal tissues were harvested for immunofluorescence staining, real-time PCR, and Western blotting analyses in order to determine the effect of sevoflurane exposure on NSC proliferation and the Wnt/β-catenin signaling pathway. Our results indicated that maternal exposure to 3.5% sevoflurane (H group) during the mid-gestational period impaired the performance of offspring rats in the MWM test, reduced NSC proliferation, and increased protein levels of fetal glycogen synthase kinase-3 beta (GSK-3β). Such treatment also decreased levels of β-catenin protein, CD44 RNA, and Cyclin D1 RNA relative to those observed in the C group. However, these effects were transiently attenuated by treatment with lithium chloride. Conversely, maternal exposure to 2% sevoflurane (L group) did not influence NSC proliferation or the Wnt signaling pathway. Our results suggest that sevoflurane exposure during the second trimester inhibits fetal NSC proliferation via the Wnt/β-catenin pathway and impairs postnatal learning and memory function in a dose-dependent manner.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, China Medical University, Shenyang 110004, China
| | - Shaowei Yin
- Department of Obstetrics, Shengjing Hospital of China Medical University, China Medical University, Shenyang 110004, China
| | - Hang Xue
- Department of Anesthesiology, Shengjing Hospital of China Medical University, China Medical University, Shenyang 110004, China
| | - Yating Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, China Medical University, Shenyang 110004, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, China Medical University, Shenyang 110004, China.
| |
Collapse
|
18
|
Lin J, Wang S, Feng Y, Zhao W, Zhao W, Luo F, Feng N. Propofol exposure during early gestation impairs learning and memory in rat offspring by inhibiting the acetylation of histone. J Cell Mol Med 2018; 22:2600-2611. [PMID: 29461008 PMCID: PMC5908131 DOI: 10.1111/jcmm.13524] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022] Open
Abstract
Propofol is widely used in clinical practice, including non-obstetric surgery in pregnant women. Previously, we found that propofol anaesthesia in maternal rats during the third trimester (E18) caused learning and memory impairment to the offspring rats, but how about the exposure during early pregnancy and the underlying mechanisms? Histone acetylation plays an important role in synaptic plasticity. In this study, propofol was administered to the pregnant rats in the early pregnancy (E7). The learning and memory function of the offspring were tested by Morris water maze (MWM) test on post-natal day 30. Two hours before each MWM trial, histone deacetylase 2 (HDAC2) inhibitor, suberoylanilide hydroxamic acid (SAHA), Senegenin (SEN, traditional Chinese medicine), hippyragranin (HGN) antisense oligonucleotide (HGNA) or vehicle were given to the offspring. The protein levels of HDAC2, acetylated histone 3 (H3) and 4 (H4), cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), N-methyl-D-aspartate receptor (NMDAR) 2 subunit B (NR2B), HGN and synaptophysin in offspring's hippocampus were determined by Western blot or immunofluorescence test. It was discovered that infusion with propofol in maternal rats on E7 leads to impairment of learning and memory in offspring, increased the protein levels of HDAC2 and HGN, decreased the levels of acetylated H3 and H4 and phosphorylated CREB, NR2B and synaptophysin. HDAC2 inhibitor SAHA, Senegenin or HGN antisense oligonucleotide reversed all the changes. Thus, present results indicate exposure to propofol during the early gestation impairs offspring's learning and memory via inhibiting histone acetylation. SAHA, Senegenin and HGN antisense oligonucleotide might have therapeutic value for the adverse effect of propofol.
Collapse
Affiliation(s)
- Jiamei Lin
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang, China.,Department of Anesthesiology, the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shengqiang Wang
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yunlin Feng
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Weihong Zhao
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Weilu Zhao
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Foquan Luo
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Namin Feng
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Yang Z, Lv J, Lu X, Li X, An X, Wang J, Weng H, Li Y. Emulsified isoflurane induces release of cytochrome C in human neuroblastoma SHSY-5Y cells via JNK (c-Jun N-terminal kinases) signaling pathway. Neurotoxicol Teratol 2018; 65:19-25. [DOI: 10.1016/j.ntt.2017.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023]
|
20
|
Wang Y, Yin SW, Zhang N, Zhao P. High-concentration sevoflurane exposure in mid-gestation induces apoptosis of neural stem cells in rat offspring. Neural Regen Res 2018; 13:1575-1584. [PMID: 30127118 PMCID: PMC6126114 DOI: 10.4103/1673-5374.237121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Sevoflurane is the most commonly used volatile anesthetic during pregnancy. The viability of neural stem cells directly affects the development of the brain. However, it is unknown whether the use of sevoflurane during the second trimester affects the survival of fetal neural stem cells. Therefore, in this study, we investigated whether exposure to sevoflurane in mid-gestation induces apoptosis of neural stem cells and behavioral abnormalities. On gestational day 14, pregnant rats were anesthetized with 2% or 3.5% sevoflurane for 2 hours. The offspring were weaned at 28 days and subjected to the Morris water maze test. The brains were harvested to examine neural stem cell apoptosis by immunofluorescence and to measure Nestin and SOX-2 levels by western blot assay at 6, 24 and 48 hours after anesthesia as well as on postnatal day (P) 0, 14 and 28. Vascular endothelial growth factor (VEGF) and phosphoinositide 3-kinase (PI3K)/AKT pathway protein levels in fetal brain at 6 hours after anesthesia were assessed by western blot assay. Exposure to high-concentration (3.5%) sevoflurane during mid-gestation increased escape latency and path length to the platform, and it reduced the average duration spent in the target quadrant and platform crossing times. At 6, 24 and 48 hours after anesthesia and at P0, P14 and P28, the percentage of Nestin/terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells was increased, but Nestin and SOX-2 protein levels were decreased in the hippocampus of the offspring. At 6 hours after anesthesia, VEGF, PI3K and phospho-AKT (p-AKT) levels were decreased in the fetal brain. These changes were not observed in animals given low-concentration (2%) sevoflurane exposure. Together, our findings indicate that exposure to a high concentration of sevoflurane (3.5%) in mid-gestation decreases VEGF, PI3K and p-AKT protein levels and induces neural stem cell apoptosis, thereby causing learning and memory dysfunction in the offspring.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shao-Wei Yin
- Department of Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
21
|
Li X, Wu Z, Zhang Y, Xu Y, Han G, Zhao P. Activation of Autophagy Contributes to Sevoflurane-Induced Neurotoxicity in Fetal Rats. Front Mol Neurosci 2017; 10:432. [PMID: 29311820 PMCID: PMC5744904 DOI: 10.3389/fnmol.2017.00432] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Numerous animal studies have demonstrated that commonly used general anesthetics may result in cognitive impairment in the immature brain. The prevailing theory is that general anesthetics could induce developmental neurotoxicity via enhanced apoptosis. In addition, inhibited proliferation induced by anesthetics has also been reported. So far, whether autophagy, a well-conserved cellular process that is critical for cell fate, also participates in anesthesia-induced neurotoxicity remains elusive. Here, we first examined autophagy-related changes after sevoflurane exposure and the effect of autophagy on apoptosis and proliferation, and we also explored the underlying mechanisms of autophagy activation. Pregnant rats were exposed to 2 or 3.5% sevoflurane for 2 h on gestational day 14 (G14); then, markers of autophagy and expression of autophagy pathway components were measured in fetal brains 2, 12, 24, and 48 h after anesthesia. Changes in neural stem cell (NSC) apoptosis, neurogenesis, neuron quantity and learning and memory function were examined after administration of an autophagy or PTEN inhibitor. The expression of microtubule-associated protein 1 light chain 3 (LC3)-II, Beclin-1 and phosphatase and tensin homolog on chromosome 10 (PTEN) were increased in the 3.5% sevoflurane group, while Sequestosome 1 (P62/SQSTM1), phospho-protein kinase B/protein kinase B (p-Akt/Akt) and mammalian target of rapamycin (mTOR) were decreased. 3-methyladenine (3-MA), an inhibitor of autophagy, or dipotassium bisperoxo-(5-hydroxypyridine-2-carboxyl)-oxovanadate (V) (bpV), a PTEN inhibitor, significantly attenuated the activation of autophagy, reversed the decreased expression of B-cell lymphoma-2 (Bcl-2) and reduced the number of terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) positive cells, ameliorated the decline of Nestin expression, Ki67 positive cell rate, neuron quantity and cross platform times, and shortened the prolonged escape latency. Our results demonstrated that 2 h 3.5% sevoflurane exposure at G14 induced excessive autophagy in the fetal brain via the PTEN/Akt/mTOR pathway. Autophagy inhibition reversed anesthesia-induced NSC apoptosis, proliferation decline and memory deficits.
Collapse
Affiliation(s)
| | | | | | | | | | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
22
|
Jiang T, Wang XQ, Ding C, Du XL. Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:579-589. [PMID: 29200900 PMCID: PMC5709474 DOI: 10.4196/kjpp.2017.21.6.579] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/02/2016] [Accepted: 08/18/2016] [Indexed: 01/16/2023]
Abstract
Anesthetics are used extensively in surgeries and related procedures to prevent pain. However, there is some concern regarding neuronal degeneration and cognitive deficits arising from regular anesthetic exposure. Recent studies have indicated that brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB) are involved in learning and memory processes. Genistein, a plant-derived isoflavone, has been shown to exhibit neuroprotective effects. The present study was performed to examine the protective effect of genistein against isoflurane-induced neurotoxicity in rats. Neonatal rats were exposed to isoflurane (0.75%, 6 hours) on postnatal day 7 (P7). Separate groups of rat pups were orally administered genistein at doses of 20, 40, or 80 mg/kg body weight from P3 to P15 and then exposed to isoflurane anesthesia on P7. Neuronal apoptosis was detected by TUNEL assay and FluoroJade B staining following isoflurane exposure. Genistein significantly reduced apoptosis in the hippocampus, reduced the expression of proapoptotic factors (Bad, Bax, and cleaved caspase-3), and increased the expression of Bcl-2 and Bcl-xL. RT-PCR analysis revealed enhanced BDNF and TrkB mRNA levels. Genistein effectively upregulated cAMP levels and phosphorylation of CREB and TrkB, leading to activation of cAMP/CREB-BDNF-TrkB signaling. PI3K/Akt signaling was also significantly activated. Genistein administration improved general behavior and enhanced learning and memory in the rats. These observations suggest that genistein exerts neuroprotective effects by suppressing isoflurane-induced neuronal apoptosis and by activating cAMP/CREB-BDNF-TrkB-PI3/Akt signaling.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anesthesiology, Shandong Cancer Hospital, Jinan 250117, Shandong Province, China
| | - Xiu-Qin Wang
- Department of Anesthesiology, Shandong Cancer Hospital, Jinan 250117, Shandong Province, China
| | - Chuan Ding
- Department of Anesthesiology, Shandong Cancer Hospital, Jinan 250117, Shandong Province, China
| | - Xue-Lian Du
- Department of Gynecology, Shandong Cancer Hospital, Jinan 250117, Shandong Province, China
| |
Collapse
|
23
|
Ding ML, Ma H, Man YG, Lv HY. Protective effects of a green tea polyphenol, epigallocatechin-3-gallate, against sevoflurane-induced neuronal apoptosis involve regulation of CREB/BDNF/TrkB and PI3K/Akt/mTOR signalling pathways in neonatal mice. Can J Physiol Pharmacol 2017; 95:1396-1405. [PMID: 28679060 DOI: 10.1139/cjpp-2016-0333] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigallocatechin-3-gallate (EGCG), a polyphenol in green tea, is an effective antioxidant and possesses neuroprotective effects. Brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB) are crucial for neurogenesis and synaptic plasticity. In this study, we aimed to assess the protective effects of EGCG against sevoflurane-induced neurotoxicity in neonatal mice. Distinct groups of C57BL/6 mice were given EGCG (25, 50, or 75 mg/kg body weight) from postnatal day 3 (P3) to P21 and were subjected to sevoflurane (3%; 6 h) exposure on P7. EGCG significantly inhibited sevoflurane-induced neuroapoptosis as determined by Fluoro-Jade B staining and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Increased levels of cleaved caspase-3, downregulated Bad and Bax, and significantly enhanced Bcl-2, Bcl-xL, xIAP, c-IAP-1, and survivin expression were observed. EGCG induced activation of the PI3K/Akt pathway as evidenced by increased Akt, phospho-Akt, GSK-3β, phospho-GSK-3β, and mTORc1 levels. Sevoflurane-mediated downregulation of cAMP/CREB and BDNF/TrkB signalling was inhibited by EGCG. Reverse transcription PCR analysis revealed enhanced BDNF and TrkB mRNA levels upon EGCG administration. Improved performance of mice in Morris water maze tests suggested enhanced learning and memory. The study indicates that EGCG was able to effectively inhibit sevoflurane-induced neurodegeneration and improve learning and memory retention of mice via activation of CREB/BDNF/TrkB-PI3K/Akt signalling.
Collapse
Affiliation(s)
- Mei-Li Ding
- a Department of Pediatrics, Shandong Jining No. 1 People's Hospital, Shandong 272011, China
| | - Hui Ma
- b Department of Neurosurgery, Shandong Jining No. 1 People's Hospital, Shandong 272011, China
| | - Yi-Gang Man
- a Department of Pediatrics, Shandong Jining No. 1 People's Hospital, Shandong 272011, China
| | - Hong-Yan Lv
- a Department of Pediatrics, Shandong Jining No. 1 People's Hospital, Shandong 272011, China
| |
Collapse
|
24
|
Xu G, Huang YL, Li PL, Guo HM, Han XP. Neuroprotective effects of artemisinin against isoflurane-induced cognitive impairments and neuronal cell death involve JNK/ERK1/2 signalling and improved hippocampal histone acetylation in neonatal rats. ACTA ACUST UNITED AC 2017; 69:684-697. [PMID: 28294340 DOI: 10.1111/jphp.12704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/12/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study was performed to assess the effect of artemisinin against isoflurane-induced neuronal apoptosis and cognitive impairment in neonatal rats. METHODS Artemisinin (50, 100 or 200 mg/kg b.wt/day; oral gavage) was administered to separate groups of neonatal rats starting from postnatal day 3 (P3) to postnatal day 21 (P21). On postnatal day 7 (P7), animals were exposed to inhalation anaesthetic isoflurane (0.75%) for 6 h. KEY FINDINGS Neuronal apoptosis following anaesthetic exposure was significantly reduced by artemisinin. Isoflurane-induced upregulated cleaved caspase-3, Bax and Bad expression were downregulated. Western blotting analysis revealed that treatment with artemisinin significantly enhanced the expression of anti-apoptotic proteins (Bcl-2, Bcl-xL, c-IAP-1, c-IAP-2, xIAP and survivin). Artemisinin increased the acetylation of H3K9 and H4K12 while reducing the expression of histone deacetlyases (HDACs) - HDAC-2 and HDAC-3. Isoflurane-induced activation of JNK signalling and downregulated ERK1/2 expression was effectively modulated by artemisinin. General behaviour of the animals in open-field and T-maze test were improved. Morris water maze test and object recognition test revealed better learning, working memory and also better memory retention on artemisinin treatment. CONCLUSIONS Artemisinin effectively inhibited neuronal apoptosis and improved cognition and memory via regulating histone acetylation and JNK/ERK1/2 signalling.
Collapse
Affiliation(s)
- Guang Xu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun-Li Huang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ping-le Li
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Ming Guo
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xue-Ping Han
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Li W, Li DY, Zhao SM, Zheng ZJ, Hu J, Li ZZ, Xiong SB. Rutin attenuates isoflurane-induced neuroapoptosis via modulating JNK and p38 MAPK pathways in the hippocampi of neonatal rats. Exp Ther Med 2017; 13:2056-2064. [PMID: 28565808 DOI: 10.3892/etm.2017.4173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/06/2016] [Indexed: 12/20/2022] Open
Abstract
An increasing number of infants and children undergo surgery and are exposed to anesthesia as a part of medical care each year. Isoflurane is a commonly used anesthetic in the pediatric population. However, previous studies have reported widespread isoflurane-induced neuroapoptosis and cognitive impairments in neonatal animal models, raising concerns over the administration of isoflurane in the pediatric population. The current study investigated the effects of rutin, a flavonoid, on isoflurane-induced neuroapoptosis in a neonatal rodent model. Groups of neonatal rat pups were administered rutin at doses of 10, 20 or 40 mg/kg body weight from postnatal day 1 (P1) to P15. On P7, pups were exposed to 0.75% isoflurane for 6 h. Rat pups in the control groups did not receive rutin, and did not receive anesthesia in one group. Neuroapoptosis following isoflurane exposure was determined by TUNEL assay. The expression levels of cleaved caspase-3, apoptotic pathway proteins [Bcl2-associated agonist of cell death (Bad), phospho-Bad, Bax, B-cell lymphoma 2 (Bcl-2) and Bcl-xL and mitogen-activated protein kinases (MAPK)] signalling pathway proteins [c-Jun N-terminal kinase (JNK), phospho-JNK, extracellular-signal-regulated kinase 1/2 (ERK1/2), phosphoERK1/2, p38, phospho-p38 and phospho-c-Jun], were determined by western blot analysis. The Morris water maze test was used to assess the learning and memory of pups on P30 and P31. The present study found that rutin at the tested doses of 10, 20 and 40 mg significantly reduced (P<0.05) the isoflurane-induced elevation in apoptotic cell count. The expression levels of caspase-3, Bad, Bax and MAPK proteins, which were increased following isoflurane treatment, were rescued by rutin treatment. Furthermore, rutin prevented the increase in Bcl-xL, Bcl-2 and phospho-Bad expression following isoflurane treatment, and enhanced the memory of the rats. Rutin provided neuroprotection against isoflurane-induced neuronal apoptosis and improved the learning and memory of rats by effectively regulating the expression levels of proteins in the MAPK pathway.
Collapse
Affiliation(s)
- Wei Li
- Hubei Cooperative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, Hubei 430035, P.R. China
| | - De-Yuan Li
- Department of Nutrition and Food Research Institute, Wuhan Economic College, Wuhan, Hubei 430035, P.R. China
| | - Si-Ming Zhao
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430035, P.R. China
| | - Zhe-Jun Zheng
- Department of Nutrition and Food Research Institute, Wuhan Economic College, Wuhan, Hubei 430035, P.R. China
| | - Jie Hu
- Department of Nutrition and Food Research Institute, Wuhan Economic College, Wuhan, Hubei 430035, P.R. China
| | - Zong-Zhe Li
- Department of Nutrition and Food Research Institute, Wuhan Economic College, Wuhan, Hubei 430035, P.R. China
| | - Shan-Bai Xiong
- Department of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430035, P.R. China
| |
Collapse
|
26
|
De Tina A, Palanisamy A. General Anesthesia During the Third Trimester: Any Link to Neurocognitive Outcomes? Anesthesiol Clin 2017; 35:69-80. [PMID: 28131121 DOI: 10.1016/j.anclin.2016.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rodent studies on the effect of general anesthesia during the third trimester on neurocognitive outcomes are mixed, but primate studies suggest that a clinically relevant exposure to anesthetic agents during the third trimester can trigger neuronal and glial cell death. Human studies are conflicting and the evidence is weak. This is an up-to-date review of the literature on the neurodevelopmental effects of anesthetic agents administered during the third trimester. Early brain development and critical periods of neurodevelopment as it relates to neurotoxicity are highlighted. Rodent, nonhuman primate, and population studies are discussed and placed in the context of clinical practice.
Collapse
Affiliation(s)
- Annemaria De Tina
- Obstetric Anesthesiology, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, 75 Francis Street - CWN L1, Boston, MA 02115, USA
| | - Arvind Palanisamy
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street - CWN L1, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Si Y, Zhang Y, Han L, Chen L, Xu Y, Sun F, Ji M, Yang J, Bao H. Dexmedetomidine Acts via the JAK2/STAT3 Pathway to Attenuate Isoflurane-Induced Neurocognitive Deficits in Senile Mice. PLoS One 2016; 11:e0164763. [PMID: 27768775 PMCID: PMC5074497 DOI: 10.1371/journal.pone.0164763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
Background Previous studies showed that isoflurane-induced cognitive deficits could be alleviated by dexmedetomidine in young animal subjects. In the current study, we examine whether dexmedetomidine could also alleviate isoflurane-induced cognitive deficits in senile animals. Methods Senile male C57BL/6 mice (20 months) received dexmedetomidine (50 μg/kg, i.p.) or vehicle 30 minutes prior to isoflurane exposure (1.3% for 4 h). Cognitive function was assessed 19 days later using a 5-day testing regimen with Morris water maze. Some subjects also received pretreatment with α2 adrenoreceptor antagonist atipamezole (250 μg/kg, i.p.), JAK2 inhibitor AG490 (15 mg/kg i.p.) or STAT3 inhibitor WP1066 (40 mg/kg i.p.) 30 minutes prior to dexmedetomidine. Results Isoflurane exposure increased and reduced the time spent in the quadrant containing the target platform in training sessions. The number of crossings over the original target quadrant was also decreased. Dexmedotomidine attenuated such effects. Effects of dexmedotomidine were reduced by pretreatment with atipamezole, AG490 and WP1066. Increased phosphorylation of JAK2 and STAT3 in the hippocampus induced by isoflurane was augmented by dexmedetomidine. Effects of dexmedetomidine on JAK2/STAT3 phosphorylation were attenuated by atipamezole, AG490 and WP1066. Isoflurane promoted neuronal apoptosis and increased the expression of cleaved caspase-3 and BAD, and reduced Bcl-2 expression. Attenuation of such effects by dexmedotomidine was partially blocked by atipamezole, AG490 and WP1066. Conclusion Dexmedetomidine could protect against isoflurane-induced spatial learning and memory impairment in senile mice by stimulating the JAK2/STAT3 signaling pathway. Such findings encourage the use of dexmedetomidine in geriatric patients receiving isoflurane anesthesia.
Collapse
Affiliation(s)
- Yanna Si
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Zhang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liu Han
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lihai Chen
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yajie Xu
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Sun
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Muhuo Ji
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, College of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jianjun Yang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, College of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
28
|
Hua FZ, Ying J, Zhang J, Wang XF, Hu YH, Liang YP, Liu Q, Xu GH. Naringenin pre-treatment inhibits neuroapoptosis and ameliorates cognitive impairment in rats exposed to isoflurane anesthesia by regulating the PI3/Akt/PTEN signalling pathway and suppressing NF-κB-mediated inflammation. Int J Mol Med 2016; 38:1271-80. [DOI: 10.3892/ijmm.2016.2715] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 07/21/2016] [Indexed: 11/06/2022] Open
|
29
|
Luo F, Hu Y, Zhao W, Zuo Z, Yu Q, Liu Z, Lin J, Feng Y, Li B, Wu L, Xu L. Maternal Exposure of Rats to Isoflurane during Late Pregnancy Impairs Spatial Learning and Memory in the Offspring by Up-Regulating the Expression of Histone Deacetylase 2. PLoS One 2016; 11:e0160826. [PMID: 27536989 PMCID: PMC4990207 DOI: 10.1371/journal.pone.0160826] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 06/06/2016] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence indicates that most general anesthetics can harm developing neurons and induce cognitive dysfunction in a dose- and time-dependent manner. Histone deacetylase 2 (HDAC2) has been implicated in synaptic plasticity and learning and memory. Our previous results showed that maternal exposure to general anesthetics during late pregnancy impaired the offspring's learning and memory, but the role of HDAC2 in it is not known yet. In the present study, pregnant rats were exposed to 1.5% isoflurane in 100% oxygen for 2, 4 or 8 hours or to 100% oxygen only for 8 hours on gestation day 18 (E18). The offspring born to each rat were randomly subdivided into 2 subgroups. Thirty days after birth, the Morris water maze (MWM) was used to assess learning and memory in the offspring. Two hours before each MWM trial, an HDAC inhibitor (SAHA) was given to the offspring in one subgroup, whereas a control solvent was given to those in the other subgroup. The results showed that maternal exposure to isoflurane impaired learning and memory of the offspring, impaired the structure of the hippocampus, increased HDAC2 mRNA and downregulated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) mRNA, N-methyl-D-aspartate receptor 2 subunit B (NR2B) mRNA and NR2B protein in the hippocampus. These changes were proportional to the duration of the maternal exposure to isoflurane and were reversed by SAHA. These results suggest that exposure to isoflurane during late pregnancy can damage the learning and memory of the offspring rats via the HDAC2-CREB -NR2B pathway. This effect can be reversed by HDAC2 inhibition.
Collapse
Affiliation(s)
- Foquan Luo
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang 33006, China
- * E-mail:
| | - Yan Hu
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang 33006, China
- Department of Anesthesiology, Jiangxi Province Traditional Chinese Medicine Hospital, Nanchang 33006, China
| | - Weilu Zhao
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang 33006, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, 22908, United States of America
| | - Qi Yu
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang 33006, China
| | - Zhiyi Liu
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang 33006, China
| | - Jiamei Lin
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang 33006, China
| | - Yunlin Feng
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang 33006, China
| | - Binda Li
- Department of Anesthesiology, Jiangxi Province Tumor Hospital, Nanchang 330006, China
| | - Liuqin Wu
- Department of Anesthesiology, Jiangxi Province Tumor Hospital, Nanchang 330006, China
| | - Lin Xu
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang 33006, China
| |
Collapse
|
30
|
Propofol-Induced Neurotoxicity in the Fetal Animal Brain and Developments in Modifying These Effects-An Updated Review of Propofol Fetal Exposure in Laboratory Animal Studies. Brain Sci 2016; 6:brainsci6020011. [PMID: 27043637 PMCID: PMC4931488 DOI: 10.3390/brainsci6020011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/17/2022] Open
Abstract
In the past twenty years, evidence of neurotoxicity in the developing brain in animal studies from exposure to several general anesthetics has been accumulating. Propofol, a commonly used general anesthetic medication, administered during synaptogenesis, may trigger widespread apoptotic neurodegeneration in the developing brain and long-term neurobehavioral disturbances in both rodents and non-human primates. Despite the growing evidence of the potential neurotoxicity of different anesthetic agents in animal studies, there is no concrete evidence that humans may be similarly affected. However, given the growing evidence of the neurotoxic effects of anesthetics in laboratory studies, it is prudent to further investigate the mechanisms causing these effects and potential ways to mitigate them. Here, we review multiple studies that investigate the effects of in utero propofol exposure and the developmental agents that may modify these deleterious effects.
Collapse
|
31
|
Ge HW, Hu WW, Ma LL, Kong FJ. Endoplasmic reticulum stress pathway mediates isoflurane-induced neuroapoptosis and cognitive impairments in aged rats. Physiol Behav 2015; 151:16-23. [DOI: 10.1016/j.physbeh.2015.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/07/2015] [Accepted: 07/06/2015] [Indexed: 12/16/2022]
|
32
|
Toxic and protective effects of inhaled anaesthetics on the developing animal brain: systematic review and update of recent experimental work. Eur J Anaesthesiol 2015; 31:669-77. [PMID: 24922049 DOI: 10.1097/eja.0000000000000073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Accumulating preclinical data indicate that neonatal exposure to general anaesthetics is detrimental to the central nervous system. Some studies, however, display potential protective effects of exactly the same anaesthetic agents on the immature brain. The effects of inhaled anaesthetics on the developing brain have received close attention from researchers, clinicians and the public in recent decades. OBJECTIVES To summarise the preclinical evidence reported in the last 5 years on both the deleterious effects and the neuroprotective potential in special indications, of inhaled anaesthetics on the developing brain. DESIGN A systematic review. DATA SOURCES PubMed search performed in June 2013. ELIGIBILITY CRITERIA Search terms included brain, development, inhaled anaesthetic, toxicity and protection within the scope of the last 5 years with animals. The reference lists of relevant articles and recent reviews were also hand-searched for additional studies. The type, dose and exposure duration of anaesthetics, species and age of animals, histopathologic indicators, outcomes and affected brain areas, neuro developmental test modules and outcomes, as well as other outcomes and comments were summarised. RESULTS Two hundred and nineteen relevant titles were initially revealed. In total, 81 articles were identified, with 68 articles assessing the detrimental effects induced by inhaled anaesthetics in the immature brain along with possible treatments. The remaining 13 articles focused on the protective profile of inhaled anaesthetics on perinatal hypoxic-ischaemic brain injury. Administration of inhaled anaesthetic agents to the immature brain was shown to be deleterious in several preclinical studies. In perinatal hypoxic-ischaemic brain injury models, pre- and postconditioning of inhalational anaesthetics exerted neuroprotective effects. CONCLUSION The majority of studies have linked inhaled anaesthetics to toxic effects in the neonatal brain of rodents, piglets and primates. Only a few studies, however, could demonstrate long-lasting cognitive impairment. The results of inhalational anaesthetic-induced neuroprotection in perinatal hypoxic-ischaemic brain injury are a promising basis for more research in this field. In general, prospective clinical trials are needed to further differentiate the effects of inhaled anaesthetics on the immature brain.
Collapse
|
33
|
Prenatal exposure to a novel antipsychotic quetiapine: Impact on neuro‐architecture, apoptotic neurodegeneration in fetal hippocampus and cognitive impairment in young rats. Int J Dev Neurosci 2015; 42:59-67. [DOI: 10.1016/j.ijdevneu.2015.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/31/2015] [Accepted: 02/21/2015] [Indexed: 01/28/2023] Open
|
34
|
Peng J, Drobish JK, Liang G, Wu Z, Liu C, Joseph DJ, Abdou H, Eckenhoff MF, Wei H. Anesthetic preconditioning inhibits isoflurane-mediated apoptosis in the developing rat brain. Anesth Analg 2014; 119:939-946. [PMID: 25099925 DOI: 10.1213/ane.0000000000000380] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND We hypothesized that preconditioning (PC) with a short exposure to isoflurane (ISO) would reduce neurodegeneration induced by prolonged exposure to ISO in neonatal rats, as previously shown in neuronal cell culture. METHODS We randomly divided 7-day-old Sprague-Dawley rats into 3 groups: control, 1.5% ISO, and PC + 1.5% ISO. The control group was exposed to carrier gas (30% oxygen balanced in nitrogen) for 30 minutes and then to carrier gas again for 6 hours the following day. The 1.5% ISO group was exposed to carrier gas for 30 minutes and then to 1.5% ISO for 6 hours the following day. The PC + 1.5% ISO group was preconditioned with a 30-minute 1.5% ISO exposure and then exposed to 1.5% ISO for 6 hours the following day. Blood and brain samples were collected 2 hours after the exposures for determination of neurodegenerative biomarkers, including caspase-3, S100β, caspase-12, and an autophagy biomarker Beclin-1. RESULTS Prolonged exposure to ISO significantly increased cleaved caspase-3 expression in the cerebral cortex of 7-day-old rats compared with the group preconditioned with ISO and the controls using Western blot assays. However, significant differences were not detected for other markers of neuronal injury. CONCLUSIONS The ISO-mediated increase in cleaved caspase-3 in the postnatal day 7 rat brain is ameliorated by PC with a brief anesthetic exposure, and differences were not detected in other markers of neuronal injury.
Collapse
Affiliation(s)
- Jun Peng
- From the Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Alpha 7 nicotinic acetylcholine receptor agonist GTS-21 mitigates isoflurane-induced cognitive impairment in aged rats. J Surg Res 2014; 194:255-61. [PMID: 25450597 DOI: 10.1016/j.jss.2014.09.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/19/2014] [Accepted: 09/29/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND Postoperative cognitive dysfunction is increasingly recognized as an important clinical syndrome. Inhalation anesthetics are commonly used during surgery, and it has been proposed that inhalation anesthetics impair cognitive function. However, there are few clinical interventions and treatments available to prevent this disorder. GTS-21, a selective agonist of alpha 7 nicotinic acetylcholine receptor, has been indicated to exert neuroprotective effects in the experimental animal models of neurodegenerative diseases. Therefore, we hypothesized that pretreatment with GTS-21 attenuates isoflurane-induced cognitive decline in aged rats. METHODS In the present study, 20-mo-old rats were administered GTS-21 or an equal volume of saline by intraperitoneal injection 30 min before exposure to isoflurane. Then the rats were exposed to 1.3% isoflurane for 4 h. Spatial learning and memory of the rats were assessed at 2 wk after isoflurane exposure. The expression levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in the hippocampus and cerebral cortex were determined by enzyme-linked immunosorbent assay. Simultaneously, neuronal apoptosis in the hippocampus was also observed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining and Nissl staining. RESULTS We found that exposure to isoflurane induces learning and memory deficits of old rats. IL-1β in the hippocampus was increased at 4 h after isoflurane exposure. Isoflurane also increased neuroapoptosis in the hippocampus and decreased neuronal density in the CA1 region. And GTS-21 pretreatment effectively alleviated these changes. CONCLUSIONS The study demonstrated that pretreatment with α7 nicotinic acetylcholine receptor agonist GTS-21 attenuates isoflurane-induced learning and memory impairment in aged rats.
Collapse
|
36
|
Li J, Wang B, Wu H, Yu Y, Xue G, Hou Y. 17β-estradiol attenuates ketamine-induced neuroapoptosis and persistent cognitive deficits in the developing brain. Brain Res 2014; 1593:30-9. [PMID: 25234726 DOI: 10.1016/j.brainres.2014.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Previous studies have demonstrated that the commonly used anesthetic ketamine can induce widespread neuroapoptosis in the neonatal brain and can cause persistent cognitive impairments as the animal matures. Therefore, searching for adjunctive neuroprotective strategies that inhibit ketamine-induced neuroapoptosis and persistent cognitive impairments is highly warranted. The primary goal of this study was to investigate the protective effect of 17β-estradiol against ketamine-induced neuroapoptosis and persistent cognitive impairments in adult rats. Starting from postnatal day 7, Sprague-Dawley male rat pups were given a daily administration of ketamine (75mg/kg, i.p.) or 17β-estradiol (600μg/kg, s.c.) in combination with ketamine (75mg/kg, i.p.). The animals were treated for three consecutive days. 24h after the last injection, the rats were decapitated, and the prefrontal cortex (PFC) was isolated to detect neuroapoptosis by cleaved caspase-3 immunohistochemistry and by using the TUNEL assay. The neuroactive steroid 17β-estradiol was quantified using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The protein levels of BDNF and pAkt were measured by western blot analysis. At two months of age (60 days), the learning and memory abilities were tested using the Morris water maze. The results showed that ketamine triggered significant neuroapoptosis in the neonatal PFC accompanied by the downregulation of 17β-estradiol, BDNF and pAkt. The co-administration of 17β-estradiol with ketamine attenuated these changes. Moreover, 17β-estradiol significantly reversed the learning and memory deficits observed at 60 days of age. In brief, our present data demonstrate that 17β-estradiol attenuates ketamine-induced neuroapoptosis and reverses long-term cognitive deficits in developing rats and thus may be a potential therapeutic and neuroprotective method for the treatment of neurodevelopmental disorders. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Jianli Li
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei province 050051, China
| | - Bei Wang
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, Hebei province 050051, China
| | - Honghai Wu
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang, Hebei province 050082, China
| | - Yang Yu
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang, Hebei province 050082, China
| | - Gai Xue
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang, Hebei province 050082, China
| | - Yanning Hou
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang, Hebei province 050082, China.
| |
Collapse
|
37
|
Liao Z, Cao D, Han X, Liu C, Peng J, Zuo Z, Wang F, Li Y. Both JNK and P38 MAPK pathways participate in the protection by dexmedetomidine against isoflurane-induced neuroapoptosis in the hippocampus of neonatal rats. Brain Res Bull 2014; 107:69-78. [PMID: 25026397 DOI: 10.1016/j.brainresbull.2014.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 12/12/2022]
Abstract
Dexmedetomidine, a highly selective α2-adrenergic agonist, has been reported to attenuate isoflurane-induced cognitive impairment and neuroapoptosis. However, the underlying molecular mechanisms remain poorly understood. The aim of this study was to investigate whether mitogen-activated protein kinase (MAPK) pathway was involved in dexmedetomidine-induced neuroprotection against isoflurane effects. Seven-day-old (P7) neonatal Sprague-Dawley rats were pretreated with various concentrations of dexmedetomidine, and then exposed to 0.75% isoflurane or air for 6h. Terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling (TUNEL) was used to detect neuronal apoptosis in their hippocampus. Activated caspase-3, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinases (JNK), p38, phospho-ERK1/2, phospho-JNK and phospho-p38 proteins were detected by Western blotting in the hippocampus at the end of exposure. Also, P7 rats were pretreated with 75 μg/kg dexmedetomidine alone, or given the ERK inhibitor U0126 before dexmedetomidine pretreatment, or pretreated with the p38 MAPK inhibitor SB203580 or JNK inhibitor SP600125 alone, and then exposed to 0.75% isoflurane for 6h. Isoflurane induced significant neuroapoptosis, increased the protein expression of phospho-JNK, phospho-c-Jun, phospho-p38 and phospho-nuclear factor-κB (NF-κB), decreased the level of phospho-ERK1/2 protein and reduced the ratio of Bcl-2/Bax in the hippocampus. Dexmedetomidine pretreatment inhibited isoflurane-induced neuroapoptosis and restored proteins expression of MAPK pathways and the Bcl-2/Bax ratio after isoflurane exposure. Moreover, SB203580 and SP600125 also partly attenuated the isoflurane-induced protein changes. However, U0126 did not reverse dexmedetomidine-induced neuroprotection. Our results indicate that the JNK and p38 pathways, not the ERK pathway are involved in dexmedetomidine-induced neuroprotection against isoflurane effects.
Collapse
Affiliation(s)
- Zhaoxia Liao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Dexiong Cao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Xue Han
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Chuiliang Liu
- Department of Anesthesiology, ChanCheng Center Hospital, Foshan 528030, China.
| | - Jun Peng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Zhiyi Zuo
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Anesthesiology, University of Virginia Health System, PO Box 800710, Charlottesville, VA 22908-0710, USA.
| | - Fei Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Yujuan Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
38
|
Propofol exposure in pregnant rats induces neurotoxicity and persistent learning deficit in the offspring. Brain Sci 2014; 4:356-75. [PMID: 24961766 PMCID: PMC4101482 DOI: 10.3390/brainsci4020356] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 11/23/2022] Open
Abstract
Propofol is a general anesthetic widely used in surgical procedures, including those in pregnant women. Preclinical studies suggest that propofol may cause neuronal injury to the offspring of primates if it is administered during pregnancy. However, it is unknown whether those neuronal changes would lead to long-term behavioral deficits in the offspring. In this study, propofol (0.4 mg/kg/min, IV, 2 h), saline, or intralipid solution was administered to pregnant rats on gestational day 18. We detected increased levels of cleaved caspase-3 in fetal brain at 6 h after propofol exposure. The neuronal density of the hippocampus of offspring was reduced significantly on postnatal day 10 (P10) and P28. Synaptophysin levels were also significantly reduced on P28. Furthermore, exploratory and learning behaviors of offspring rats (started at P28) were assessed in open-field trial and eight-arm radial maze. The offspring from propofol-treated dams showed significantly less exploratory activity in the open-field test and less spatial learning in the eight-arm radial maze. Thus, this study suggested that propofol exposure during pregnancy in rat increased cleaved caspsase-3 levels in fetal brain, deletion of neurons, reduced synaptophysin levels in the hippocampal region, and persistent learning deficits in the offspring.
Collapse
|
39
|
Li Y, Zeng M, Chen W, Liu C, Wang F, Han X, Zuo Z, Peng S. Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats. PLoS One 2014; 9:e93639. [PMID: 24743508 PMCID: PMC3990549 DOI: 10.1371/journal.pone.0093639] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/04/2014] [Indexed: 12/03/2022] Open
Abstract
Prolonged exposure to volatile anesthetics, such as isoflurane and sevoflurane, causes neurodegeneration in the developing animal brains. Recent studies showed that dexmedetomidine, a selective α2-adrenergic agonist, reduced isoflurane-induced cognitive impairment and neuroapoptosis. However, the mechanisms for the effect are not completely clear. Thus, we investigated whether exposure to isoflurane or sevoflurane at an equivalent dose for anesthesia during brain development causes different degrees of neuroapoptosis and whether this neuroapoptosis is reduced by dexmedetomidine via effects on PI3K/Akt pathway that can regulate cell survival. Seven-day-old (P7) neonatal Sprague-Dawley rats were randomly exposed to 0.75% isoflurane, 1.2% sevoflurane or air for 6 h. Activated caspase-3 was detected by immunohistochemistry and Western blotting. Phospho-Akt, phospho-Bad, Akt, Bad and Bcl-xL proteins were detected by Western blotting in the hippocampus at the end of exposure. Also, P7 rats were pretreated with various concentrations of dexmedetomidine alone or together with PI3K inhibitor LY294002, and then exposed to 0.75% isoflurane. Terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling (TUNEL) and activated caspase-3 were used to detect neuronal apoptosis in their hippocampus. Isoflurane, not sevoflurane at the equivalent dose, induced significant neuroapoptosis, decreased the levels of phospho-Akt and phospho-Bad proteins, increased the expression of Bad protein and reduced the ratio of Bcl-xL/Bad in the hippocampus. Dexmedetomidine pretreatment dose-dependently inhibited isoflurane-induced neuroapoptosis and restored protein expression of phospho-Akt and Bad as well as the Bcl-xL/Bad ratio induced by isoflurane. Pretreatment with single dose of 75 µg/kg dexmedetomidine provided a protective effect similar to that with three doses of 25 µg/kg dexmedetomidine. Moreover, LY294002, partly inhibited neuroprotection of dexmedetomidine. Our results suggest that dexmedetomidine pretreatment provides neuroprotection against isoflurane-induced neuroapoptosis in the hippocampus of neonatal rats by preserving PI3K/Akt pathway activity.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (YL); (SP)
| | - Minting Zeng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiqiang Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Anesthesiology, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong, China
| | - Chuiliang Liu
- Department of Anesthesiology, ChanCheng Center Hospital, Foshan, Guangdong, China
| | - Fei Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xue Han
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiyi Zuo
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Shuling Peng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (YL); (SP)
| |
Collapse
|
40
|
JNK pathway may be involved in isoflurane-induced apoptosis in the hippocampi of neonatal rats. Neurosci Lett 2013; 545:17-22. [DOI: 10.1016/j.neulet.2013.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/30/2013] [Accepted: 04/01/2013] [Indexed: 11/23/2022]
|
41
|
Kong F, Chen S, Cheng Y, Ma L, Lu H, Zhang H, Hu W. Minocycline attenuates cognitive impairment induced by isoflurane anesthesia in aged rats. PLoS One 2013; 8:e61385. [PMID: 23613842 PMCID: PMC3629183 DOI: 10.1371/journal.pone.0061385] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 03/08/2013] [Indexed: 11/18/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery, especially in geriatric surgical patients. Although it has been documented that isoflurane exposure impaired cognitive function in several aged animal models, there are few clinical interventions and treatments available to prevent this disorder. Minocycline has been well established to exert neuroprotective effects in various experimental animal models and neurodegenerative diseases. Therefore, we hypothesized that pretreatment with minocycline attenuates isoflurane-induced cognitive decline in aged rats. In the present study, twenty-month-old rats were administered minocycline or an equal volume of saline by intraperitoneal injection 12 h before exposure to isoflurane. Then the rats were exposed to 1.3% isoflurane for 4 h. Two weeks later, spatial learning and memory of the rats were examined using the Morris Water Maze. We found that pretreatment with minocycline mitigated isoflurane-induced cognitive deficits and suppressed the isoflurane-induced excessive release of IL-1β and caspase-3 in the hippocampal CA1 region at 4 h after isoflurane exposure, as well as the number of TUNEL-positive nuclei. In addition, minocycline treatment also prevented the changes of synaptic ultrastructure in the hippocampal CA1 region induced by isoflurane. In conclusion, pretreatment with minocycline attenuated isoflurane-induced cognitive impairment in aged rats.
Collapse
Affiliation(s)
- Feijuan Kong
- Department of Anesthesiology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
- * E-mail: (FJK); (LLM)
| | - Shuping Chen
- Department of Anesthesiology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Yuan Cheng
- Department of Anesthesiology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Leilei Ma
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (FJK); (LLM)
| | - Huishun Lu
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Honghai Zhang
- Department of Anesthesiology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Wenwen Hu
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Pan T, Zhong M, Zhong X, Zhang Y, Zhu D. Levothyroxine replacement therapy with vitamin E supplementation prevents oxidative stress and cognitive deficit in experimental hypothyroidism. Endocrine 2013; 43:434-9. [PMID: 23001627 DOI: 10.1007/s12020-012-9801-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/12/2012] [Indexed: 12/21/2022]
Abstract
Hypothyroidism has a variety of adverse effects on cognitive function. The treatment of levothyroxine alone cannot restore cognitive defects of hypothyroid patients. Antioxidant vitamin E supplementation could be useful in disturbances which are associated with oxidative stress and could effectively slow the progression of Alzheimer disease. Thus, the purpose of this study was to evaluate oxidative stress status of the serum and hippocampus in hypothyroidism and to examine the effects of levothyroxine replacement therapy with vitamin E supplementation on cognitive deficit. Sprague-Dawley rats were randomly divided into five groups: control group, PTU group, PTU + Vit E group, PTU + L-T4 group, and PTU + L-T4 + Vit E group. Serum and hippocampus malondialdehyde (MDA) levels were determined using the thiobarbituric-acid reactive substances method. Serum and hippocampus superoxide dismutase (SOD) levels were determined by measuring its ability to inhibit the photoreduction of nitroblue tetrazolium. Learning and memory was assessed by Morris water maze test. In the present study, we found that the rats of PTU + Vit E group spent less time to find the platform on days 2, 3, 4, and 5 than the PTU group. Moreover, the rats of PTU + L-T4 + Vit E group spent less time to find the platform on days 4 and 5 than the PTU + L-T4 group. The time spent in the target quadrants was measured in the probe test and no difference was observed in all groups. Oxidative damage has been observed in the serum and hippocampus of hypothyroidism rat. SOD levels of serum and hippocampus tissue were significantly increased and MDA levels were significantly decreased in the PTU + Vit E and PTU + L-T4 + Vit E groups than the PTU and PTU + L-T4 groups. Therefore, these findings indicate that levothyroxine replacement therapy with vitamin E supplementation may ameliorate cognitive deficit in PTU-induced hypothyroidism through the decrease of oxidative stress status.
Collapse
Affiliation(s)
- Tianrong Pan
- Department of Endocrinology, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | | | | | | | | |
Collapse
|
43
|
Fetal exposure to high isoflurane concentration induces postnatal memory and learning deficits in rats. Biochem Pharmacol 2012; 84:558-63. [PMID: 22705347 DOI: 10.1016/j.bcp.2012.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/01/2012] [Accepted: 06/01/2012] [Indexed: 11/22/2022]
Abstract
We developed a maternal fetal rat model to study the effects of isoflurane-induced neurotoxicity on the fetuses of pregnant rats exposed in utero. Pregnant rats at gestational day 14 were exposed to 1.3 or 3% isoflurane for 1h. At postnatal day 28, spatial learning and memory of the offspring were examined using the Morris Water Maze. The apoptosis was evaluated by caspase-3 immunohistochemistry in the hippocampal CA1 region. Simultaneously, the ultrastructure changes of synapse in the hippocampal CA1 and dentate gyrus region were observed by transmission electron microscopy (TEM). The 3% isoflurane treatment group showed significantly longer escape latency, less time spent in the third quadrant and fewer original platform crossings in the Morris Water Maze test, significantly increased number and optical densities of caspase-3 neurons. This treatment also produced remarkable changes in synaptic ultrastructure compared with the control and the 1.3% isoflurane groups. There were no differences in the Morris Water Maze test, densities of caspase-3 positive cells, or synaptic ultrastructure between the control and 1.3% isoflurane groups. High isoflurane concentration (3%) exposure during pregnancy caused spatial memory and learning impairments and more neurodegeneration in the offspring rats compared with control or lower isoflurane concentrations.
Collapse
|
44
|
Palanisamy A. Maternal anesthesia and fetal neurodevelopment. Int J Obstet Anesth 2012; 21:152-62. [DOI: 10.1016/j.ijoa.2012.01.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 01/21/2012] [Accepted: 01/28/2012] [Indexed: 12/01/2022]
|