1
|
Liu YD, Liu JF, Liu B. N,N-Dimethylformamide inhibits high glucose-induced osteoporosis via attenuating MAPK and NF-κB signalling. Bone Joint Res 2022; 11:200-209. [PMID: 35369730 PMCID: PMC9057521 DOI: 10.1302/2046-3758.114.bjr-2020-0308.r2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aims The role of N,N-dimethylformamide (DMF) in diabetes-induced osteoporosis (DM-OS) progression remains unclear. Here, we aimed to explore the effect of DMF on DM-OS development. Methods Diabetic models of mice, RAW 264.7 cells, and bone marrow macrophages (BMMs) were established by streptozotocin stimulation, high glucose treatment, and receptor activator of nuclear factor-κB ligand (RANKL) treatment, respectively. The effects of DMF on DM-OS development in these models were examined by micro-CT analysis, haematoxylin and eosin (H&E) staining, osteoclast differentiation of RAW 264.7 cells and BMMs, H&E and tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA) of TRAP5b and c-terminal telopeptides of type 1 (CTX1) analyses, reactive oxygen species (ROS) analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Cell Counting Kit-8 (CCK-8) assay, and Western blot. Results The established diabetic mice were more sensitive to ovariectomy (OVX)-induced osteoporosis, and DMF treatment inhibited the sensitivity. OVX-treated diabetic mice exhibited higher TRAP5b and c-terminal telopeptides of type 1 (CTX1) levels, and DMF treatment inhibited the enhancement. DMF reduced RAW 264.7 cell viability. Glucose treatment enhanced the levels of TRAP5b, cathepsin K, Atp6v0d2, and H+-ATPase, ROS, while DMF reversed this phenotype. The glucose-increased protein levels were inhibited by DMF in cells treated with RANKL. The expression levels of antioxidant enzymes Gclc, Gclm, Ho-1, and Nqo1 were upregulated by DMF. DMF attenuated high glucose-caused osteoclast differentiation by targeting mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signalling in BMMs. Conclusion DMF inhibits high glucose-induced osteoporosis by targeting MAPK and NF-κB signalling. Cite this article: Bone Joint Res 2022;11(4):200–209.
Collapse
Affiliation(s)
- Ya Dong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jian Feng Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Krasnovskaya O, Naumov A, Guk D, Gorelkin P, Erofeev A, Beloglazkina E, Majouga A. Copper Coordination Compounds as Biologically Active Agents. Int J Mol Sci 2020; 21:E3965. [PMID: 32486510 PMCID: PMC7312030 DOI: 10.3390/ijms21113965] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/24/2022] Open
Abstract
Copper-containing coordination compounds attract wide attention due to the redox activity and biogenicity of copper ions, providing multiple pathways of biological activity. The pharmacological properties of metal complexes can be fine-tuned by varying the nature of the ligand and donor atoms. Copper-containing coordination compounds are effective antitumor agents, constituting a less expensive and safer alternative to classical platinum-containing chemotherapy, and are also effective as antimicrobial, antituberculosis, antimalarial, antifugal, and anti-inflammatory drugs. 64Сu-labeled coordination compounds are promising PET imaging agents for diagnosing malignant pathologies, including head and neck cancer, as well as the hallmark of Alzheimer's disease amyloid-β (Aβ). In this review article, we summarize different strategies for possible use of coordination compounds in the treatment and diagnosis of various diseases, and also various studies of the mechanisms of antitumor and antimicrobial action.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
| | - Alexey Naumov
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
| | - Dmitry Guk
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
| | - Alexander Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
- Mendeleev University of Chemical Technology of Russia, Miusskaya Ploshchad’ 9, 125047 Moscow, Russia
| |
Collapse
|
3
|
González V, Pelissier T, Cazanga V, Hernández A, Constandil L. Magnesium Salt, a Simple Strategy to Improve Methadone Analgesia in Chronic Pain: An Isobolographic Preclinical Study in Neuropathic Mice. Front Pharmacol 2020; 11:566. [PMID: 32457607 PMCID: PMC7225258 DOI: 10.3389/fphar.2020.00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
Analgesic efficacy of methadone in cancer and chronic non-cancer pains is greater than that of other opioids, probably because of its unique pharmacokinetics properties and also because it targets glutamatergic receptors in addition to µ-opioid receptors. However, methadone has drawbacks which are clearly related to dosing and treatment duration. The authors hypothesized that the antinociceptive efficacy of methadone could be synergistically potentiated by magnesium and copper salts in a preclinical mouse model of chronic pain, using the intraplantar formalin test as algesimetric tool. The spared nerve injury mice model was used to generate mononeuropathy. A low dose (0.25%) formalin was injected in the neuropathic limb in order to give rise only to Phase I response, resulting from direct activation by formalin of nociceptive primary afferents. Licking/biting of the formalin-injected limb was evaluated as nociceptive behavior during a 35-min observation period. Dose-response curves for intraperitoneal magnesium sulfate (10, 30, 100, and 300 mg/kg i.p.), copper sulfate (0.1, 0.3, 1, and 3 mg/kg i.p.) and methadone (0.1, 0.3, 1, and 3 mg/kg i.p.) allowed to combine them in equieffective doses and to determine their interaction by isobolographic analysis. Magnesium sulfate, copper sulfate and methadone dose-dependently decreased the nociceptive response evoked by formalin injection, the respective ED50 being 76.38, 1.18, and 0.50 mg/kg i.p. Isobolographic analysis showed a superadditive interaction for magnesium and methadone. Indeed, despite that both ED50 are obviously equieffective, the ED50 for the MgSO4/methadone combination contained less than one third of the methadone having the ED50 for methadone alone. For the CuSO4/methadone combination, the interaction was only additive. Extrapolated to clinical settings, the results suggest that magnesium salts might be used to improve synergistically the efficacy of methadone in neuropathy, which would allow to reduce the dose of methadone and its associated side effects.
Collapse
Affiliation(s)
- Valeria González
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Teresa Pelissier
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Victoria Cazanga
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Alejandro Hernández
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Luis Constandil
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| |
Collapse
|
4
|
Wehbe M, Leung AWY, Abrams MJ, Orvig C, Bally MB. A Perspective - can copper complexes be developed as a novel class of therapeutics? Dalton Trans 2018; 46:10758-10773. [PMID: 28702645 DOI: 10.1039/c7dt01955f] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although copper-ligand complexes appear to be promising as a new class of therapeutics, other than the family of copper(ii) coordination compounds referred to as casiopeínas these compounds have yet to reach the clinic for human use. The pharmaceutical challenges associated with developing copper-based therapeutics will be presented in this article along with a discussion of the potential for high-throughput chemistry, computer-aided drug design, and nanotechnology to address the development of this important class of drug candidates.
Collapse
Affiliation(s)
- Mohamed Wehbe
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada.
| | | | | | | | | |
Collapse
|
5
|
Guan QL, Xing YH, Liu J, Wei WJ, Zhang R, Wang X, Bai FY. Application of multiple parallel perfused microbioreactors: Synthesis, characterization and cytotoxicity testing of the novel rare earth complexes with indole acid as a ligand. J Inorg Biochem 2013; 128:57-67. [DOI: 10.1016/j.jinorgbio.2013.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 12/20/2022]
|
6
|
El-Gammal OA, Elmorsy EA, Sherif YE. Evaluation of the anti-inflammatory and analgesic effects of Cu(II) and Zn(II) complexes derived from 2-(naphthalen-1-yloxy)-N'-(1-(pyridin-2-1)ethylidene) acetohydrazide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 120:332-339. [PMID: 24200647 DOI: 10.1016/j.saa.2013.09.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/11/2013] [Accepted: 09/26/2013] [Indexed: 06/02/2023]
Abstract
New Cu(II) and Zn(II) complexes of 2-(naphthalen-1-yloxy)-N'-(1-(pyridin-2-yl)ethylidene) acetohydrazide (HA2PNA) have been prepared and characterized by elemental analyses, spectral (IR, UV-visible, ESR and 1H NMR) as well as magnetic and thermal measurements. According to the data, the complexes assigned the formulae: [Cu(A2PNA)2]H2O and [Zn(A2PNA)(OAc)(H2O)], respectively. IR data revealed that the ligand acts as before ONN and after morever ONN mononegative tridentate via deprotonated carbonyl oxygen (CO) and both (CN)imine and (CN)pyridine nitrogen atoms. The bond lengths, bond angles, HOMO, LUMO, dipole moment and charges on the atoms have been calculated by using density functional theory (DFT) at B3LYP level with 6-31G and 6-31G(d,p) basis sets to confirm the geometry of the ligand and the investigated complexes. Also, the kinetic parameters were determined for each thermal degradation stage of the complexes using Coats-Redfern and Horowitz-Metzger methods. Moreover, the complexes have been tested for anti-inflammatory and analgesic activity in rat model of collagen adjuvant arthritis and compared with piroxicam. All the compounds showed a significant anti-inflammatory and analgesic effect versus piroxicam.
Collapse
Affiliation(s)
- Ola A El-Gammal
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, P.O. Box 70, Mansoura, Egypt.
| | - Elsayed A Elmorsy
- Pharmacology Department, Faculty of Medicine - North Jeddah Branch, King Abd El-Aziz University, Kingdom of Saudi Arabia; Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yousery E Sherif
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Chemistry, Faculty of Science and Arts, Ulla, Taibah University, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Tamba BI, Leon MM, Petreus T. Common trace elements alleviate pain in an experimental mouse model. J Neurosci Res 2013; 91:554-61. [PMID: 23362003 DOI: 10.1002/jnr.23191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/25/2012] [Indexed: 11/10/2022]
Abstract
Trace elements represent a group of essential metals or metaloids necessary for life, present in minute amounts. Analgesic adjuvants can enhance the effect of other pain drugs or be used for pain control themselves. Previous studies on the effects of trace elements on nociception and their potential use as analgesic adjuvants have yielded conflicting results. In this study, we tested the hypothesis that three vital trace elements (Zn²⁺, Mg²⁺, Cu²⁺) have direct antinociceptive effects. Groups of eight Swiss mice were intraperitoneally (i.p) injected with incremental concentrations of Zn²⁺ sulfate (0.5, 2.0 mg/kg), Zn²⁺ citrate (0.125, 0.5 mg/kg), Mg²⁺ chloride (37.5, 75, 150 mg/kg), Cu²⁺ chloride (0.5, 1.0, 2.0 mg/kg), and Cu²⁺ sulfate (0.5, 1.0 mg/kg) or saline (control). Evaluations were made by hot plate (HP) and tail flick (TF) tests for central antinociceptive effect, writhing test (WT) for visceral antinociceptive effect, and activity cage (AC) test for spontaneous behavior. Zn²⁺ induced pain inhibition in HP/TF tests (up to 17%) and WT (up to 25%), with no significant differences among the salts used. Mg²⁺ salts induced pain inhibition for all performed tests (up to 85% in WT). Cu²⁺ salts showed antinociceptive effects for HP/TF (up to 28.6%) and WT (57.28%). Only Mg²⁺ and Cu²⁺ salts have displayed significant effects in AC (Mg²⁺ anxiolytic/depressant effect; Cu²⁺ anxiolytic effect). We interpret these data to mean that all tested trace elements induced antinociceptive effects in central and visceral pain tests. Our data indicate the potential use of these cheap adjuvants in pain therapy.
Collapse
Affiliation(s)
- Bogdan I Tamba
- Centre for the Study and Therapy of Pain, Gr. T. Popa University of Medicine and Pharmacy, Iasi, Romania.
| | | | | |
Collapse
|