1
|
Li T, Zhang Z, Zhang X, Chen Z, Cheng HJ, Ahmad S, Ferrario CM, Cheng CP. Reversal of angiotensin-(1-12)-caused positive modulation on left ventricular contractile performance in heart failure: Assessment by pressure-volume analysis. Int J Cardiol 2019; 301:135-141. [PMID: 31521437 DOI: 10.1016/j.ijcard.2019.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/19/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Angiotensin-(1-12) [Ang-(1-12)] is a renin-independent precursor for direct angiotensin-II production by chymase. Substantial evidence suggests that heart failure (HF) may alter cardiac Ang-(1-12) expression and activity; this novel Ang-(1-12)/chymase axis may be the main source for angiotensin-II deleterious actions in HF. We hypothesized that HF alters cardiac response to Ang-(1-12). Its stimulation may produce cardiac negative modulation and exacerbate left ventricle (LV) systolic and diastolic dysfunction. METHODS AND RESULTS We assessed the effects of Ang-(1-12) (2 nmol/kg/min, iv, 10 min) on LV contractility, LV diastolic filling, and LV-arterial coupling (AVC) in 16 SD male rats with HF-induced by isoproterenol (3 mo after 170 mg/kg sq. for 2 consecutive days) and 10 age-matched male controls. In normal controls, versus baseline, Ang-(1-12) increased LV end-systolic pressure, without altering heart rate, arterial elastance (EA), LV end-diastolic pressure (PED), the time constant of LV relaxation (τ) and ejection fraction (EF). Ang-(1-12) significantly increased the slopes (EES) of LV end-systolic pressure (P)-volume (V) relations and the slopes (MSW) of LV stroke wok-end-diastolic V relations, indicating increased LV contractility. AVC (quantified as EES/EA) improved. In contrast, in HF, versus HF baseline, Ang-(1-12) produced a similar increase in PES, but significantly increased τ, EA, and PED. The early diastolic portion of LV PV loop was shifted upward with reduced in EF. Moreover, Ang-(1-12) significantly decreased EES and MSW, demonstrating decreased LV contractility. AVC was decreased by 43%. CONCLUSIONS In both normal and HF rats, Ang-(1-12) causes similar vasoconstriction. In normal, Ang-(1-12) increases LV contractile function. In HF, Ang-(1-12) has adverse effects and depresses LV systolic and diastolic functional performance.
Collapse
Affiliation(s)
- Tiankai Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America
| | - Zhi Zhang
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America; Department of cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, China
| | - Xiaowei Zhang
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America; Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Zhe Chen
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America; Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Heng-Jie Cheng
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Che Ping Cheng
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America.
| |
Collapse
|
2
|
Nehme A, Zouein FA, Zayeri ZD, Zibara K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J Cardiovasc Dev Dis 2019. [PMID: 30934934 DOI: 10.3390/jcdd6020014.pmid:30934934;pmcid:pmc6617132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In its classical view, the renin angiotensin system (RAS) was defined as an endocrinesystem involved in blood pressure regulation and body electrolyte balance. However, the emergingconcept of tissue RAS, along with the discovery of new RAS components, increased thephysiological and clinical relevance of the system. Indeed, RAS has been shown to be expressed invarious tissues where alterations in its expression were shown to be involved in multiple diseasesincluding atherosclerosis, cardiac hypertrophy, type 2 diabetes (T2D) and renal fibrosis. In thischapter, we describe the new components of RAS, their tissue-specific expression, and theiralterations under pathological conditions, which will help achieve more tissue- and conditionspecifictreatments.
Collapse
Affiliation(s)
- Ali Nehme
- EA4173, Functional genomics of arterial hypertension, Univeristy Claude Bernard Lyon-1 (UCBL-1),69008 Lyon, France.
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Heart Repair Division, Faculty of Medicine,American University of Beirut, Beirut 11-0236, Lebanon.
| | - Zeinab Deris Zayeri
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz JundishapurUniversity of Medical Sciences, Ahvaz, Iran.
| | - Kazem Zibara
- PRASE, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
3
|
Nehme A, Zouein FA, Zayeri ZD, Zibara K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J Cardiovasc Dev Dis 2019; 6:jcdd6020014. [PMID: 30934934 PMCID: PMC6617132 DOI: 10.3390/jcdd6020014] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
In its classical view, the renin angiotensin system (RAS) was defined as an endocrine system involved in blood pressure regulation and body electrolyte balance. However, the emerging concept of tissue RAS, along with the discovery of new RAS components, increased the physiological and clinical relevance of the system. Indeed, RAS has been shown to be expressed in various tissues where alterations in its expression were shown to be involved in multiple diseases including atherosclerosis, cardiac hypertrophy, type 2 diabetes (T2D) and renal fibrosis. In this chapter, we describe the new components of RAS, their tissue-specific expression, and their alterations under pathological conditions, which will help achieve more tissue- and condition-specific treatments.
Collapse
Affiliation(s)
- Ali Nehme
- EA4173, Functional genomics of arterial hypertension, Univeristy Claude Bernard Lyon-1 (UCBL-1),69008 Lyon, France.
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Heart Repair Division, Faculty of Medicine,American University of Beirut, Beirut 11-0236, Lebanon.
| | - Zeinab Deris Zayeri
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz JundishapurUniversity of Medical Sciences, Ahvaz, Iran.
| | - Kazem Zibara
- PRASE, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
4
|
Liu X, Chen J, Liu X, Wang D, Zheng P, Qi A, Yi T, Li S. Jian-Pi-Yi-Shen Formula ameliorates chronic kidney disease: involvement of mitochondrial quality control network. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:340. [PMID: 30572886 PMCID: PMC6302435 DOI: 10.1186/s12906-018-2395-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 11/28/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Jian-Pi-Yi-Shen Formula (JPYSF), a Chinese herbal decoction with the efficacies of 'fortify the spleen and tonify the kidney' and 'activate blood and resolve stasis', is effective for the treatment of chronic kidney disease in clinic. However, the underlying mechanism remains unclear. The aim of this study was to investigate the therapeutic effects and possible mechanisms of JPYSF on retarding chronic kidney disease progression in 5/6 nephrectomized (5/6 Nx) rats. METHODS Perindopril (4 mg/kg/d) and JPYSF (2.72 g/kg/d) were administrated by gavage to 5/6 Nx rats daily for 6 weeks. The therapeutic effects of JPYSF were evaluated by renal function, pathological injury, and fibrosis. The protein levels associated with mitochondrial quality control network were measured by Western blot and immunofluorescence analysis. RESULTS 5/6 Nx rats showed obvious decline in renal function as evidenced by increased serum creatinine, blood urea nitrogen, and urinary protein excretion, and significant injury in kidney structure as evidenced by glomerular hypertrophy, tubular atrophy, and interstitial fibrosis. Administration of JPYSF for 6 weeks could improve renal function and ameliorate kidney structure injury in 5/6 Nx rats. Furthermore, the remnant kidneys of 5/6 Nx rats showed unbalanced mitochondrial quality control network manifested as decreased mitochondrial biogenesis, fusion, and mitophagy, and increased mitochondrial fission. Treatment of JPYSF could restore aforesaid aspects of mitochondrial quality control network. CONCLUSIONS These results indicate that JPYSF can notably ameliorate 5/6 Nx-induced chronic kidney disease, which may be related with modulation of mitochondrial quality control network.
Collapse
|
5
|
Inhibitory effects of losartan and azelnidipine on augmentation of blood pressure variability induced by angiotensin II in rats. Eur J Pharmacol 2017; 806:91-95. [PMID: 28419822 DOI: 10.1016/j.ejphar.2017.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
Increased blood pressure variability has been shown to be associated with cardiovascular morbidity and mortality. Recently we reported that continuous infusion of angiotensin II not only elevated blood pressure level, but also increased blood pressure variability in a manner assumed to be independent of blood pressure elevation in rats. In the present study, the effects of the angiotensin type I receptor blocker losartan and the calcium channel blocker azelnidipine on angiotensin II-induced blood pressure variability were examined and compared with that of the vasodilator hydralazine in rats. Nine-week-old male Wistar rats were subcutaneously infused with 240 pmol/kg/min angiotensin II for two weeks without or with oral administration of losartan, azelnidipine, or hydralazine. Blood pressure variability was evaluated using a coefficient of variation of blood pressure recorded every 15min under an unrestrained condition via an abdominal aortic catheter by a radiotelemetry system. Treatment with losartan suppressed both blood pressure elevation and augmentation of systolic blood pressure variability in rats infused with angiotensin II at 7 and 14 days. Azelnidipine also inhibited angiotensin II-induced blood pressure elevation and augmentation of blood pressure variability; meanwhile, hydralazine attenuated the pressor effect of angiotensin II, but had no effect on blood pressure variability. In conclusion, angiotensin II augmented blood pressure variability in an angiotensin type 1 receptor-dependent manner, and azelnidipine suppressed angiotensin II-induced augmentation of blood pressure variability, an effect mediated by the mechanism independent of the blood pressure-lowering action.
Collapse
|
6
|
Ferrario CM, Ahmad S, Varagic J, Cheng CP, Groban L, Wang H, Collawn JF, Dell Italia LJ. Intracrine angiotensin II functions originate from noncanonical pathways in the human heart. Am J Physiol Heart Circ Physiol 2016; 311:H404-14. [PMID: 27233763 PMCID: PMC5008653 DOI: 10.1152/ajpheart.00219.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/26/2016] [Indexed: 12/11/2022]
Abstract
Although it is well-known that excess renin angiotensin system (RAS) activity contributes to the pathophysiology of cardiac and vascular disease, tissue-based expression of RAS genes has given rise to the possibility that intracellularly produced angiotensin II (Ang II) may be a critical contributor to disease processes. An extended form of angiotensin I (Ang I), the dodecapeptide angiotensin-(1-12) [Ang-(1-12)], that generates Ang II directly from chymase, particularly in the human heart, reinforces the possibility that an alternative noncanonical renin independent pathway for Ang II formation may be important in explaining the mechanisms by which the hormone contributes to adverse cardiac and vascular remodeling. This review summarizes the work that has been done in evaluating the functional significance of Ang-(1-12) and how this substrate generated from angiotensinogen by a yet to be identified enzyme enhances knowledge about Ang II pathological actions.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Departments of Surgery, Internal Medicine-Nephrology and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston-Salem, North Carolina;
| | - Sarfaraz Ahmad
- Departments of Surgery, Internal Medicine-Nephrology and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - Jasmina Varagic
- Departments of Surgery, Internal Medicine-Nephrology and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston-Salem, North Carolina; Hypertension and Vascular Research Center, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - Che Ping Cheng
- Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - Leanne Groban
- Hypertension and Vascular Research Center, Wake Forest University Health Science Center, Winston-Salem, North Carolina; Department of Anesthesiology, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - Hao Wang
- Department of Anesthesiology, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - James F Collawn
- Departments of Cell Biology, Microbiology, Physiology, University of Alabama Birmingham, Alabama; and
| | - Louis J Dell Italia
- Departments of Cell Biology, Microbiology, Physiology, University of Alabama Birmingham, Alabama; and Division of Cardiovascular Disease, University of Alabama at Birmingham and Department of Veterans Affairs, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
7
|
Jiang D, Tokashiki M, Hayashi H, Kawagoe Y, Kuwasako K, Kitamura K, Kato J. Augmented Blood Pressure Variability in Hypertension Induced by Angiotensin II in Rats. Am J Hypertens 2016; 29:163-9. [PMID: 26112866 DOI: 10.1093/ajh/hpv102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/05/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Augmented blood pressure (BP) variability is associated with cardiovascular diseases in some clinical conditions including hypertension. Drugs that effectively reduce BP variability need to be identified, while few animal models are currently available to study BP variability. Here, we report that hypertension induced by continuous infusion of angiotensin II (Ang II) was accompanied by increased BP variability in rats. METHODS Ang II was subcutaneously infused at a rate of 240 pmol/kg/min into male Wistar rats undergoing intraperitoneal implantation of a transmitter connected to an abdominal aortic catheter. BP was continuously monitored via a telemetry system before and after the Ang II infusion in a conscious, unrestrained condition. BP variability was evaluated by coefficient of variation (CV) of BP levels measured every 15 minutes. In addition, spontaneously hypertensive and Wistar-Kyoto rats (SHR and WKY) were subjected to the BP monitoring experiment at 15 weeks of age. RESULTS Both systolic and diastolic BP levels were significantly elevated following the Ang II infusion. Similarly, CVs of systolic and diastolic BP in the Ang II infusion group were significantly higher than in the vehicle group upon 1 and 2 weeks of the infusion. Meanwhile, CVs of systolic and diastolic BP of SHR were in a range similar to those of WKY despite significantly higher BP than in WKY. CONCLUSIONS Hypertension induced by the continuous infusion of Ang II was accompanied by augmented BP variability in rats, an effect assumed to be at least in part, independent of BP elevation.
Collapse
Affiliation(s)
- Danfeng Jiang
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Mariko Tokashiki
- Department of Internal Medicine, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| | - Hidetaka Hayashi
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Yukiko Kawagoe
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Kenji Kuwasako
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Kazuo Kitamura
- Department of Internal Medicine, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| | - Johji Kato
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan;
| |
Collapse
|
8
|
Su YH, Tang WC, Cheng YW, Sia P, Huang CC, Lee YC, Jiang HY, Wu MH, Lai IL, Lee JW, Lee KH. Targeting of multiple oncogenic signaling pathways by Hsp90 inhibitor alone or in combination with berberine for treatment of colorectal cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2261-72. [PMID: 25982393 DOI: 10.1016/j.bbamcr.2015.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/24/2015] [Accepted: 05/08/2015] [Indexed: 12/24/2022]
Abstract
There is a wide range of drugs and combinations under investigation and/or approved over the last decade to treat colorectal cancer (CRC), but the 5-year survival rate remains poor at stages II-IV. Therefore, new, more-efficient drugs still need to be developed that will hopefully be included in first-line therapy or overcome resistance when it appears, as part of second- or third-line treatments in the near future. In this study, we revealed that heat shock protein 90 (Hsp90) inhibitors have high therapeutic potential in CRC according to combinative analysis of NCBI's Gene Expression Omnibus (GEO) repository and chemical genomic database of Connectivity Map (CMap). We found that second generation Hsp90 inhibitor, NVP-AUY922, significantly downregulated the activities of a broad spectrum of kinases involved in regulating cell growth arrest and death of NVP-AUY922-sensitive CRC cells. To overcome NVP-AUY922-induced upregulation of survivin expression which causes drug insensitivity, we found that combining berberine (BBR), a herbal medicine with potency in inhibiting survivin expression, with NVP-AUY922 resulted in synergistic antiproliferative effects for NVP-AUY922-sensitive and -insensitive CRC cells. Furthermore, we demonstrated that treatment of NVP-AUY922-insensitive CRC cells with the combination of NVP-AUY922 and BBR caused cell growth arrest through inhibiting CDK4 expression and induction of microRNA-296-5p (miR-296-5p)-mediated suppression of Pin1-β-catenin-cyclin D1 signaling pathway. Finally, we found that the expression level of Hsp90 in tumor tissues of CRC was positively correlated with CDK4 and Pin1 expression levels. Taken together, these results indicate that combination of NVP-AUY922 and BBR therapy can inhibit multiple oncogenic signaling pathways of CRC.
Collapse
Affiliation(s)
- Yen-Hao Su
- Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Wan-Chun Tang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ya-Wen Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Peik Sia
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chi-Chen Huang
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chao Lee
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yi Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Heng Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - I-Lu Lai
- Division of Medicinal Chemistry, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Jun-Wei Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Ahmad S, Varagic J, Groban L, Dell'Italia LJ, Nagata S, Kon ND, Ferrario CM. Angiotensin-(1-12): a chymase-mediated cellular angiotensin II substrate. Curr Hypertens Rep 2014; 16:429. [PMID: 24633843 DOI: 10.1007/s11906-014-0429-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The classical view of biochemical pathways for the formation of biologically active angiotensins continues to undergo significant revision as new data uncovers the existence of important species differences between humans and rodents. The discovery of two novel substrates that, cleaved from angiotensinogen, can lead to direct tissue angiotensin II formation has the potential of radically altering our understanding of how tissues source angiotensin II production and explain the relative lack of efficacy that characterizes the use of angiotensin converting enzyme inhibitors in cardiovascular disease. This review addresses the discovery of angiotensin-(1-12) as an endogenous substrate for the production of biologically active angiotensin peptides by a non-renin dependent mechanism and the revealing role of cardiac chymase as the angiotensin II convertase in the human heart. This new information provides a renewed argument for exploring the role of chymase inhibitors in the correction of cardiac arrhythmias and left ventricular systolic and diastolic dysfunction.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- Division of Surgical Sciences, Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Ferrario CM, Ahmad S, Nagata S, Simington SW, Varagic J, Kon N, Dell'italia LJ. An evolving story of angiotensin-II-forming pathways in rodents and humans. Clin Sci (Lond) 2014; 126:461-9. [PMID: 24329563 PMCID: PMC4280795 DOI: 10.1042/cs20130400] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lessons learned from the characterization of the biological roles of Ang-(1-7) [angiotensin-(1-7)] in opposing the vasoconstrictor, proliferative and prothrombotic actions of AngII (angiotensin II) created an underpinning for a more comprehensive exploration of the multiple pathways by which the RAS (renin-angiotensin system) of blood and tissues regulates homoeostasis and its altered state in disease processes. The present review summarizes the progress that has been made in the novel exploration of intermediate shorter forms of angiotensinogen through the characterization of the expression and functions of the dodecapeptide Ang-(1-12) [angiotensin-(1-12)] in the cardiac production of AngII. The studies reveal significant differences in humans compared with rodents regarding the enzymatic pathway by which Ang-(1-12) undergoes metabolism. Highlights of the research include the demonstration of chymase-directed formation of AngII from Ang-(1-12) in human left atrial myocytes and left ventricular tissue, the presence of robust expression of Ang-(1-12) and chymase in the atrial appendage of subjects with resistant atrial fibrillation, and the preliminary observation of significantly higher Ang-(1-12) expression in human left atrial appendages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Louis Joseph Dell'italia
- §Birmingham Veterans Affair Medical Center, University of Alabama Medical Center, Alabama, AL 35294, U.S.A
| |
Collapse
|