1
|
Rajendran P, Al-Saeedi FJ, Ammar RB, Abdallah BM, Ali EM, Al Abdulsalam NK, Tejavat S, Althumairy D, Veeraraghavan VP, Alamer SA, Bekhet GM, Ahmed EA. Geraniol attenuates oxidative stress and neuroinflammation-mediated cognitive impairment in D galactose-induced mouse aging model. Aging (Albany NY) 2024; 16:5000-5026. [PMID: 38517361 PMCID: PMC11006477 DOI: 10.18632/aging.205677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
D-galactose (D-gal) administration was proven to induce cognitive impairment and aging in rodents' models. Geraniol (GNL) belongs to the acyclic isoprenoid monoterpenes. GNL reduces inflammation by changing important signaling pathways and cytokines, and thus it is plausible to be used as a medicine for treating disorders linked to inflammation. Herein, we examined the therapeutic effects of GNL on D-gal-induced oxidative stress and neuroinflammation-mediated memory loss in mice. The study was conducted using six groups of mice (6 mice per group). The first group received normal saline, then D-gal (150 mg/wt) dissolved in normal saline solution (0.9%, w/v) was given orally for 9 weeks to the second group. In the III group, from the second week until the 10th week, mice were treated orally (without anesthesia) with D-gal (150 mg/kg body wt) and GNL weekly twice (40 mg/kg body wt) four hours later. Mice in Group IV were treated with GNL from the second week up until the end of the experiment. For comparison of young versus elderly mice, 4 month old (Group V) and 16-month-old (Group VI) control mice were used. We evaluated the changes in antioxidant levels, PI3K/Akt levels, and Nrf2 levels. We also examined how D-gal and GNL treated pathological aging changes. Administration of GNL induced a significant increase in spatial learning and memory with spontaneously altered behavior. Enhancing anti-oxidant and anti-inflammatory effects and activating PI3K/Akt were the mechanisms that mediated this effect. Further, GNL treatment upregulated Nrf2 and HO-1 to reduce oxidative stress and apoptosis. This was confirmed using 99mTc-HMPAO brain flow gamma bioassays. Thus, our data suggested GNL as a promising agent for treating neuroinflammation-induced cognitive impairment.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Fatma J. Al-Saeedi
- Department of Nuclear Medicine, College of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria PBOX 901, Hammam-Lif 2050, Tunisia
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Najla Khaled Al Abdulsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sujatha Tejavat
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Duaa Althumairy
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Sarah Abdulaziz Alamer
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Gamal M. Bekhet
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University Egypt, Alexandria 21544, Egypt
| | - Emad A. Ahmed
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
2
|
Watanabe A, Shimada M, Maeda H, Narumi T, Ichita J, Itoku K, Nakajima A. Apple Pomace Extract Improves MK-801-Induced Memory Impairment in Mice. Nutrients 2024; 16:194. [PMID: 38257087 PMCID: PMC10818464 DOI: 10.3390/nu16020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that involves progressive cognitive decline accompanied by synaptic degeneration and impaired neurotransmission. Recent studies revealed that apple pomace, a waste byproduct of the apple processing industry, has beneficial health properties, but its potential to prevent and treat AD has not been determined. Herein, we examined the effects of apple pomace extract on N-methyl-D-aspartate receptor antagonist MK-801-induced memory impairment in mice. Repeated treatment with apple pomace extract for 7 days reversed the MK-801-induced impairment of associative memory and recognition memory. RNA sequencing revealed that repeated treatment with apple pomace extract altered the gene expression profile in the hippocampus of mice. Real-time PCR showed that apple pomace extract induced upregulation of the mRNA expression for Zfp125 and Gstp1. Furthermore, gene sets related to synapse and neurotransmission were upregulated by apple pomace extract. These findings indicate that apple pomace extract may be useful for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Ayako Watanabe
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan (H.M.)
- Department of Industry Development Sciences, Graduate School of Sustainable Community Studies, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan
| | - Minori Shimada
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan (H.M.)
| | - Hayato Maeda
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan (H.M.)
- Department of Industry Development Sciences, Graduate School of Sustainable Community Studies, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan
| | - Tsuyoshi Narumi
- Nihon Haruma Co., Ltd., 398 Kanda, Hirosaki 036-8052, Japan; (T.N.); (J.I.); (K.I.)
| | - Junji Ichita
- Nihon Haruma Co., Ltd., 398 Kanda, Hirosaki 036-8052, Japan; (T.N.); (J.I.); (K.I.)
| | - Koh Itoku
- Nihon Haruma Co., Ltd., 398 Kanda, Hirosaki 036-8052, Japan; (T.N.); (J.I.); (K.I.)
| | - Akira Nakajima
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan (H.M.)
- Department of Industry Development Sciences, Graduate School of Sustainable Community Studies, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan
| |
Collapse
|
3
|
Sun W, Zhu J, Qin G, Huang Y, Cheng S, Chen Z, Zhang Y, Shu Y, Zeng X, Guo R. Lonicera japonica polysaccharides alleviate D-galactose-induced oxidative stress and restore gut microbiota in ICR mice. Int J Biol Macromol 2023:125517. [PMID: 37353132 DOI: 10.1016/j.ijbiomac.2023.125517] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Lonicera japonica polysaccharides (LJPs) exhibit anti-aging effect in nematodes. Here, we further studied the function of LJPs on aging-related disorders in D-galactose (D-gal)-induced ICR mice. Four groups of mice including the control group, the D-gal-treated group, the intervening groups with low and high dose of LJPs (50 and 100 mg/kg/day) were raised for 8 weeks. The results showed that intragastric administration with LJPs improved the organ indexes of D-gal-treated mice. Moreover, LJPs improved the activity of superoxide dismutase (SOD), catalase (CAT) as well as glutathione peroxidase (GSH-Px) and decreasing the malondialdehyde (MDA) level in serum, liver and brain. Meanwhile, LJPs restored the content of acetylcholinesterase (AChE) in the brain. Further, LJPs reversed the liver tissue damages in aging mice. Mechanistically, LJPs alleviate oxidative stress at least partially through regulating Nrf2 signaling. Additionally, LJPs restored the gut microbiota composition of D-gal-treated mice by adjusting the Firmicutes/Bacteroidetes ratio at the phylum level and upregulating the relative abundances of Lactobacillaceae and Bifidobacteriacesa. Notably, the KEGG pathways involved in hazardous substances degradation and flavone and flavonol biosynthesis were significantly enhanced by LJPs treatment. Overall, our study uncovers the role of LJPs in modulating oxidative stress and gut microbiota in the D-gal-induced aging mice.
Collapse
Affiliation(s)
- Wenwen Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiahao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guanyu Qin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yujie Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Siying Cheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhengzhi Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yeyang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yifan Shu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Renpeng Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
4
|
Chen C, Ai Q, Shi A, Wang N, Wang L, Wei Y. Oleanolic acid and ursolic acid: therapeutic potential in neurodegenerative diseases, neuropsychiatric diseases and other brain disorders. Nutr Neurosci 2023; 26:414-428. [PMID: 35311613 DOI: 10.1080/1028415x.2022.2051957] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brain disorders such as neurodegenerative diseases and neuropsychiatric diseases have become serious threatens to human health and quality of life. Oleanolic acid (OA) and ursolic acid (UA) are pentacyclic triterpenoid isomers widely distributed in various plant foods and Chinese herbal medicines. Accumulating evidence indicates that OA and UA exhibit neuroprotective effects on multiple brain disorders. Therefore, this paper reviews researches of OA and UA on neurodegenerative diseases, neuropsychiatric diseases and other brain disorders including ischemic stroke, epilepsy, etc, as well as the potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, People's Republic of China
| | - Axi Shi
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Nan Wang
- Department of General medicine, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Lina Wang
- Department of Pediatric surgery, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yuhui Wei
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
5
|
Ganoderma tsugae prevents cognitive impairment and attenuates oxidative damage in d-galactose-induced aging in the rat brain. PLoS One 2022; 17:e0266331. [PMID: 35390035 PMCID: PMC8989198 DOI: 10.1371/journal.pone.0266331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
Lingzhi has long been regarded as having life-prolonging effects. Research in recent years has also reported that Lingzhi possesses anti-tumor, anti-inflammatory, immunomodulatory, hepatoprotective, and anti-lipogenic effects. The D-galactose (D-gal, 100 mg/kg/day)-induced aging Long-Evans rats were simultaneously orally administered a DMSO extract of Ganoderma tsugae (GTDE, 200 μg/kg/day) for 25 weeks to investigate the effects of GTDE on oxidative stress and memory deficits in the D-galactose-induced aging rats. We found that GTDE significantly improved the locomotion and spatial memory and learning in the aging rats. GTDE alleviated the aging-induced reduction of dendritic branching in neurons of the hippocampus and cerebral cortex. Immunoblotting revealed a significant increase in the protein expression levels of the superoxide dismutase-1 (SOD-1) and catalase, and the brain-derived neurotrophic factor (BDNF) in rats that received GTDE. D-gal-induced increase in the lipid peroxidation product 4-hydroxynonenal (4-HNE) was significantly attenuated after the administration of GTDE, and pyrin domain-containing 3 protein (NLRP3) revealed a significant decrease in NLRP3 expression after GTDE administration. Lastly, GTDE significantly reduced the advanced glycosylation end products (AGEs). In conclusion, GTDE increases antioxidant capacity and BDNF expression of the brain, protects the dendritic structure of neurons, and reduces aging-induced neuronal damage, thereby attenuating cognitive impairment caused by aging.
Collapse
|
6
|
Liu XL, Zhao YC, Zhu HY, Wu M, Zheng YN, Yang M, Cheng ZQ, Ding CB, Liu WC. Taxifolin retards the D-galactose-induced aging process through inhibiting Nrf2-mediated oxidative stress and regulating the gut microbiota in mice. Food Funct 2021; 12:12142-12158. [PMID: 34788354 DOI: 10.1039/d1fo01349a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aging and aging-related metabolic complications are global problems that seriously threaten public health. Taxifolin (TAX) is a novel health food and has been widely proved to have a variety of biological activities used in food and medicine. However, the delayed effect of TAX on the aging process has not been investigated. The purpose of this study is to explore the role of TAX as a natural active substance on aging brain tissue induced by D-galactose (D-Gal) and to determine the effect of supplementing TAX on the metabolism of the intestinal flora in aging bodies. The aging model was established by intraperitoneal injection of D-Gal (800 mg kg-1) once per 3 days for 12 weeks, and TAX (20 and 40 mg kg-1) was administered daily by oral gavage after 6 weeks of induction with D-Gal. After testing aging mice in an eight-arm maze, the results showed that TAX treatment significantly restored spatial learning and memory impairment. Moreover, long-term D-Gal treatment incited cholinergic dysfunction of aging mice, and H&E staining revealed obvious histopathological damage and structural disorder in the hippocampus of mouse brain tissue, while TAX treatment significantly reversed these changes. Importantly, supplementing with TAX significantly mitigated oxidative stress injury by alleviating the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) while increasing antioxidant enzymes. Furthermore, TAX decreased the apoptosis of the aging brain by regulating the phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and activating nuclear factor-erythroid 2-related factor 2 (Nrf2), nuclear heme oxygenase-1 (HO-1), and NADH dehydrogenase quinone 1 (NQO1) to maximally moderate the oxidative stress injury that occurred after D-Gal induction. In addition, 16S rDNA analysis revealed that TAX treatment decelerated the D-gal-induced aging process by regulating the composition of the intestinal flora and abundance of beneficial bacteria, including Enterorhabdus, Clostridium, Bifidobacterium, and Parvibacter. In conclusion, the results of this study demonstrated that TAX alleviated oxidative stress injury in mice aged by D-Gal and also confirmed that TAX improved the aging process by regulating intestinal microbes, which provides the possibility of prevention and treatment for aging and metabolic disorders through the potential food health factors.
Collapse
Affiliation(s)
- Xing-Long Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Ying-Chun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Hong-Yan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Ming Wu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Yi-Nan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Min Yang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Zhi-Qiang Cheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Chuan-Bo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Wen-Cong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China. .,State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun 130118, China
| |
Collapse
|
7
|
Suárez Montenegro ZJ, Álvarez-Rivera G, Sánchez-Martínez JD, Gallego R, Valdés A, Bueno M, Cifuentes A, Ibáñez E. Neuroprotective Effect of Terpenoids Recovered from Olive Oil By-Products. Foods 2021; 10:foods10071507. [PMID: 34209864 PMCID: PMC8306477 DOI: 10.3390/foods10071507] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022] Open
Abstract
The neuroprotective potential of 32 natural extracts obtained from olive oil by-products was investigated. The online coupling of supercritical fluid extraction (SFE) and dynamic adsorption/desorption allowed the selective enrichment of olive leaves extracts in different terpenoids’ families. Seven commercial adsorbents based on silica gel, zeolite, aluminum oxide, and sea sand were used with SFE at three different extraction times to evaluate their selectivity towards different terpene families. Collected fractions were analyzed by gas chromatography coupled to quadrupole-time-of-flight mass spectrometry (GC-QTOF-MS) to quantify the recoveries of monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), and triterpenes (C30). A systematic analysis of the neuroprotective activity of the natural extracts was then carried out. Thus, a set of in vitro bioactivity assays including enzymatic (acetylcholinesterase (AChE), butyrylcholinesterase (BChE)), and anti-inflammatory (lipoxidase (LOX)), as well as antioxidant (ABTS), and reactive oxygen and nitrogen species (ROS and RNS, respectively) activity tests were applied to screen for the neuroprotective potential of these extracts. Statistical analysis showed that olive leaves adsorbates from SS exhibited the highest biological activity potential in terms of neuroprotective effect. Blood–brain barrier permeation and cytotoxicity in HK-2 cells and human THP-1 monocytes were studied for the selected olive leaves fraction corroborating its potential.
Collapse
|
8
|
Gudoityte E, Arandarcikaite O, Mazeikiene I, Bendokas V, Liobikas J. Ursolic and Oleanolic Acids: Plant Metabolites with Neuroprotective Potential. Int J Mol Sci 2021; 22:4599. [PMID: 33925641 PMCID: PMC8124962 DOI: 10.3390/ijms22094599] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ursolic and oleanolic acids are secondary plant metabolites that are known to be involved in the plant defence system against water loss and pathogens. Nowadays these triterpenoids are also regarded as potential pharmaceutical compounds and there is mounting experimental data that either purified compounds or triterpenoid-enriched plant extracts exert various beneficial effects, including anti-oxidative, anti-inflammatory and anticancer, on model systems of both human or animal origin. Some of those effects have been linked to the ability of ursolic and oleanolic acids to modulate intracellular antioxidant systems and also inflammation and cell death-related pathways. Therefore, our aim was to review current studies on the distribution of ursolic and oleanolic acids in plants, bioavailability and pharmacokinetic properties of these triterpenoids and their derivatives, and to discuss their neuroprotective effects in vitro and in vivo.
Collapse
Affiliation(s)
- Evelina Gudoityte
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.G.); (O.A.)
- Celignis Limited, Unit 11 Holland Road, Plassey Technology Park Castletroy, County Limerick, Ireland
| | - Odeta Arandarcikaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.G.); (O.A.)
| | - Ingrida Mazeikiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Akademija, LT-58344 Kedainiai Distr., Lithuania;
| | - Vidmantas Bendokas
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Akademija, LT-58344 Kedainiai Distr., Lithuania;
| | - Julius Liobikas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.G.); (O.A.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
9
|
Cognitive enhancing effect of diapocynin in D-galactose-ovariectomy-induced Alzheimer's-like disease in rats: Role of ERK, GSK-3β, and JNK signaling. Toxicol Appl Pharmacol 2020; 398:115028. [DOI: 10.1016/j.taap.2020.115028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
|
10
|
Xie Q, Zhang L, Xie L, Zheng Y, Liu K, Tang H, Liao Y, Li X. Z‐ligustilide: A review of its pharmacokinetics and pharmacology. Phytother Res 2020; 34:1966-1991. [DOI: 10.1002/ptr.6662] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/17/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Qingxuan Xie
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Linlin Zhang
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Long Xie
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yu Zheng
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Kai Liu
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Hailong Tang
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yanmei Liao
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaofang Li
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
11
|
Sun N, Li D, Chen X, Wu P, Lu YJ, Hou N, Chen WH, Wong WL. New Applications of Oleanolic Acid and its Derivatives as Cardioprotective Agents: A Review of their Therapeutic Perspectives. Curr Pharm Des 2019; 25:3740-3750. [DOI: 10.2174/1381612825666191105112802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 01/14/2023]
Abstract
Oleanolic acid is an analogue of pentacyclic triterpenoids. It has been used as a hepatic drug for over
20 years in China. Currently, there are only five approved drugs derived from pentacyclic triterpenoids, including
oleanolic acid (liver diseases), asiaticoside (wound healing), glycyrrhizinate (liver diseases), isoglycyrrhizinate
(liver disease) and sodium aescinate (hydrocephalus). To understand more about the bioactivity and functional
mechanisms of oleanolic acid, it can be developed as a potent therapeutic agent, in particular, for the prevention
and treatment of heart diseases that are the leading cause of death for people worldwide. The primary aim of this
mini-review is to summarize the new applications of oleanolic acid and its derivatives as cardioprotective agents
reported in recent years and to highlight their therapeutic perspectives in cardiovascular diseases.
Collapse
Affiliation(s)
- Ning Sun
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiaoqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yu-Jing Lu
- Goldenhealth Biotechnology Co. Ltd, Foshan 528000, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
12
|
Escitalopram Ameliorates Cognitive Impairment in D-Galactose-Injected Ovariectomized Rats: Modulation of JNK, GSK-3β, and ERK Signalling Pathways. Sci Rep 2019; 9:10056. [PMID: 31296935 PMCID: PMC6624366 DOI: 10.1038/s41598-019-46558-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/27/2019] [Indexed: 12/29/2022] Open
Abstract
Though selective serotonin reuptake inhibitors (SSRIs) have been found to increase cognitive performance in some studies on patients and animal models of Alzheimer's disease (AD), other studies have reported contradictory results, and the mechanism of action has not been fully described. This study aimed to examine the effect of escitalopram, an SSRI, in an experimental model of AD and to determine the involved intracellular signalling pathways. Ovariectomized rats were administered D-galactose (150 mg/kg/day, i.p) over ten weeks to induce AD. Treatment with escitalopram (10 mg/kg/day, p.o) for four weeks, starting from the 7th week of D-galactose injection, enhanced memory performance and attenuated associated histopathological changes. Escitalopram reduced hippocampal amyloid β 42, β-secretase, and p-tau, while increasing α-secretase levels. Furthermore, it decreased tumor necrosis factor-α, nuclear factor-kappa B p65, and NADPH oxidase, while enhancing brain-derived neurotrophic factor, phospho-cAMP response element binding protein, and synaptophysin levels. Moreover, escitalopram diminished the protein expression of the phosphorylated forms of c-Jun N-terminal kinase (JNK)/c-Jun, while increasing those of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), extracellular signal-regulated kinase (ERK) and its upstream kinases MEK and Raf-1. In conclusion, escitalopram ameliorated D-galactose/ovariectomy-induced AD-like features through modulation of PI3K/Akt/GSK-3β, Raf-1/MEK/ERK, and JNK/c-Jun pathways.
Collapse
|
13
|
Zhang Z, Yang H, Yang J, Xie J, Xu J, Liu C, Wu C. Pseudoginsenoside-F11 attenuates cognitive impairment by ameliorating oxidative stress and neuroinflammation in d‑galactose-treated mice. Int Immunopharmacol 2019; 67:78-86. [DOI: 10.1016/j.intimp.2018.11.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/24/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
|
14
|
Nyakudya TT, Mukwevho E, Erlwanger KH. The protective effect of neonatal oral administration of oleanolic acid against the subsequent development of fructose-induced metabolic dysfunction in male and female rats. Nutr Metab (Lond) 2018; 15:82. [PMID: 30479649 PMCID: PMC6245863 DOI: 10.1186/s12986-018-0314-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Consumption of fructose-rich diets has been implicated in the increasing global prevalence of metabolic syndrome (MetS). Interventions during periods of early ontogenic developmental plasticity can cause epigenetic changes which program metabolism for positive or negative health benefits later in life. The phytochemical oleanolic acid (OA) possesses anti-diabetic and anti-obesity effects. We investigated the potential protective effects of neonatal administration of OA on the subsequent development of high fructose diet-induced metabolic dysfunction in rats. METHOD Male and female (N = 112) suckling rats were randomly assigned to four groups and administered orally: distilled water (DW), oleanolic acid (OA; 60 mg/kg), high-fructose solution (HF; 20% w/v) or OA + HF for 7 days. The rats were weaned onto normal commercial rat chow up to day 55. From day 56, half of the rats in each treatment group were continued on plain water and the rest on a high fructose solution as drinking fluid for 8 weeks. On day 110, the rats were subjected to an oral glucose tolerance test and then euthanased on day 112. Tissue and blood samples were collected to determine the effects of the treatments on visceral fat pad mass, fasting plasma levels of cholesterol, insulin, glucose, triglycerides, insulin resistance (HOMA-IR) and glucose tolerance. RESULTS Rats which consumed fructose as neonates and then later as adults (HF + F) and those which consumed fructose only in adulthood (DW + F) had significant increases in terminal body mass (females only), visceral fat mass (males and females), serum triglycerides (females only), epididymal fat (males only), fasting plasma glucose (males and females), impaired glucose metabolism (females only), β-cell dysfunction and insulin resistance (males and females) compared to the other treatment groups (P < 0.05). There were no differences in fasting serum cholesterol levels across all treatment groups in both male and female rats (P > 0.05). CONCLUSION We conclude that neonatal oral administration of OA during the critical window of developmental plasticity protected against the development of health outcomes associated with fructose-induced metabolic disorders in the rats.
Collapse
Affiliation(s)
- Trevor T. Nyakudya
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg, 2028 South Africa
| | - Emmanuel Mukwevho
- Department of Biochemistry, Faculty of Natural Sciences & Agriculture, North West University, Mafikeng, Mmabatho, 2735 South Africa
| | - Kennedy H. Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| |
Collapse
|
15
|
Majdi A, Sadigh-Eteghad S, Talebi M, Farajdokht F, Erfani M, Mahmoudi J, Gjedde A. Nicotine Modulates Cognitive Function in D-Galactose-Induced Senescence in Mice. Front Aging Neurosci 2018; 10:194. [PMID: 30061821 PMCID: PMC6055060 DOI: 10.3389/fnagi.2018.00194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/08/2018] [Indexed: 01/21/2023] Open
Abstract
Here, we tested the claim that nicotine attenuates the signs of brain dysfunction in the model of brain aging induced by D-galactose (DGal) in mice. We administered nicotine at doses of 0.1, 0.5 and 1 mg/kg by the subcutaneous (s.c.) or at 0.1 mg/kg by the intranasal (i.n.) routes in mice that had received DGal at the dose of 500 mg/kg subcutaneous (s.c.) for 6 weeks. We assessed animal withdrawal signs as the number of presented somatic signs, thermal hyperalgesia, elevated plus maze (EPM) and open field tests. We evaluated spatial memory and recognition with Barnes maze and novel object recognition (NOR) tests. We tested brain tissue for reactive oxygen species (ROS), mitochondrial membrane potential, caspase-3, Bax, Bcl-2, cytochrome C, brain-derived neurotrophic factor and nerve growth factor levels. Nicotine administration in model groups (0.5 mg/kg s.c. and 0.1 mg/kg i.n. doses) significantly attenuated impairment of spatial and episodic memories in comparison to normal saline-received model group. These doses also reduced mito-oxidative damage as well as apoptosis and raised neurotrophic factors level in model groups in comparison to normal saline-received model group. The 1 mg/kg s.c. dose nicotine revealed withdrawal signs compared with the other nicotine-received groups. Nicotine at specific doses and routes has the potential to attenuate age-related cognitive impairment, mito-oxidative damage, and apoptosis. The doses raise neurotrophic factors without producing withdrawal signs.
Collapse
Affiliation(s)
- Alireza Majdi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Erfani
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Albert Gjedde
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Departments of Clinical Research and Nuclear Medicine, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
16
|
PQQ ameliorates D-galactose induced cognitive impairments by reducing glutamate neurotoxicity via the GSK-3β/Akt signaling pathway in mouse. Sci Rep 2018; 8:8894. [PMID: 29891841 PMCID: PMC5995849 DOI: 10.1038/s41598-018-26962-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/23/2018] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is known to be associated with various age-related diseases. D-galactose (D-gal) has been considered a senescent model which induces oxidative stress response resulting in memory dysfunction. Pyrroloquinoline quinone (PQQ) is a redox cofactor which is found in various foods. In our previous study, we found that PQQ may be converted into a derivative by binding with amino acid, which is beneficial to several pathological processes. In this study, we found a beneficial glutamate mixture which may diminish neurotoxicity by oxidative stress in D-gal induced mouse. Our results showed that PQQ may influence the generation of proinflammatory mediators, including cytokines and prostaglandins during aging process. D-gal-induced mouse showed increased MDA and ROS levels, and decreased T-AOC activities in the hippocampus, these changes were reversed by PQQ supplementation. Furthermore, PQQ statistically enhanced Superoxide Dismutase SOD2 mRNA expression. PQQ could ameliorate the memory deficits and neurotoxicity induced by D-gal via binding with excess glutamate, which provide a link between glutamate-mediated neurotoxicity, inflammation and oxidative stress. In addition, PQQ reduced the up-regulated expression of p-Akt by D-gal and maintained the activity of GSK-3β, resulting in a down-regulation of p-Tau level in hippocampus. PQQ modulated memory ability partly via Akt/GSK-3β pathway.
Collapse
|
17
|
Zhou H, Qu Z, Zhang J, Jiang B, Liu C, Gao W. Shunaoxin dropping pill, a Chinese herb compound preparation, attenuates memory impairment in d-galactose-induced aging mice. RSC Adv 2018; 8:10163-10171. [PMID: 35540463 PMCID: PMC9078930 DOI: 10.1039/c7ra13726e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/19/2018] [Indexed: 11/30/2022] Open
Abstract
The Shunaoxin dropping pill (SNX) is derived from a traditional recipe. It has been used to treat cerebrovascular diseases in China since 2005 (approval number Z20050041). In this study, we used an in vitro H2O2-induced PC12 cell oxidative damage model and an in vivod-gal-induced mouse memory impairment model to investigate whether SNX had neuroprotective effects. In vitro, prior to exposure to 100 μM H2O2 for 2 h, PC12 cells were pre-treated with SNX 50 μg mL-1 for 24 h. Hoechst 33258 staining was used to confirm the effect of SNX on apoptosis in the PC12 cells. Our results demonstrate that H2O2 suppresses the proliferation of PC12 cells and induces cell death. Pretreatment with SNX attenuates H2O2-induced apoptosis in PC12 cells. In vivo, d-gal was administered (100 mg kg-1, subcutaneously (s.c.)) once daily for 8 weeks to induce memory deficit and neurotoxicity in the brain of an aging mouse. Then, SNX (320 mg kg-1) was simultaneously administered orally. The present study demonstrates that SNX can alleviate aging in the mouse brain induced by d-gal via improving behavioral performance, alleviating oxidative stress, inhibiting neuroinflammation, and reducing brain cell damage in the hippocampus. Overall, these data clearly demonstrate the neuroprotective effect of SNX from the in vitro and in vivo results. SNX may be considered a novel agent for easing aging and/or age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Hong Zhou
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Weijin Road Tianjin 300072 China pharmgao@tju,edu.cn +86-22-87401895 +86-22-87401895
- No. 6 Traditional Chinese Medicine Factory, Tianjin Zhongxin Pharmaceutical Group Corporation Ltd. Tianjin 300401 China
| | - Zhuo Qu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Weijin Road Tianjin 300072 China pharmgao@tju,edu.cn +86-22-87401895 +86-22-87401895
| | - Jingze Zhang
- Department of Pharmacy, Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Logistics University of Chinese People's Armed Police Forces Tianjin 300162 China
| | - Bingjie Jiang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Weijin Road Tianjin 300072 China pharmgao@tju,edu.cn +86-22-87401895 +86-22-87401895
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics Tianjin 300193 China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Weijin Road Tianjin 300072 China pharmgao@tju,edu.cn +86-22-87401895 +86-22-87401895
| |
Collapse
|
18
|
Ding AJ, Zheng SQ, Huang XB, Xing TK, Wu GS, Sun HY, Qi SH, Luo HR. Current Perspective in the Discovery of Anti-aging Agents from Natural Products. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:335-404. [PMID: 28567542 PMCID: PMC5655361 DOI: 10.1007/s13659-017-0135-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
Aging is a process characterized by accumulating degenerative damages, resulting in the death of an organism ultimately. The main goal of aging research is to develop therapies that delay age-related diseases in human. Since signaling pathways in aging of Caenorhabditis elegans (C. elegans), fruit flies and mice are evolutionarily conserved, compounds extending lifespan of them by intervening pathways of aging may be useful in treating age-related diseases in human. Natural products have special resource advantage and with few side effect. Recently, many compounds or extracts from natural products slowing aging and extending lifespan have been reported. Here we summarized these compounds or extracts and their mechanisms in increasing longevity of C. elegans or other species, and the prospect in developing anti-aging medicine from natural products.
Collapse
Affiliation(s)
- Ai-Jun Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shan-Qing Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiao-Bing Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ti-Kun Xing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Gui-Sheng Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hua-Ying Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Shu-Hua Qi
- Guangdong Key Laboratory of Marine Material Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, Guangdong, China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 134 Lanhei Road, Kunming, 650201, Yunnan, China.
| |
Collapse
|
19
|
Kantar-Gok D, Hidisoglu E, Er H, Acun AD, Olgar Y, Yargıcoglu P. Changes of auditory event-related potentials in ovariectomized rats injected with d-galactose: Protective role of rosmarinic acid. Neurotoxicology 2017; 62:64-74. [PMID: 28501655 DOI: 10.1016/j.neuro.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/10/2017] [Accepted: 05/08/2017] [Indexed: 11/23/2022]
Abstract
Rosmarinic acid (RA), which has multiple bioactive properties, might be a useful agent for protecting central nervous system against age related alterations. In this context, the purpose of the present study was to investigate possible protective effects of RA on mismatch negativity (MMN) component of auditory event-related potentials (AERPs) as an indicator of auditory discrimination and echoic memory in the ovariectomized (OVX) rats injected with d-galactose combined with neurochemical and histological analyses. Ninety female Wistar rats were randomly divided into six groups: sham control (S); RA-treated (R); OVX (O); OVX+RA-treated (OR); OVX+d-galactose-treated (OD); OVX+d-galactose+RA-treated (ODR). Eight weeks later, MMN responses were recorded using the oddball condition. An amplitude reduction of some components of AERPs was observed due to ovariectomy with or without d-galactose administiration and these reduction patterns were diverse for different electrode locations. MMN amplitudes were significantly lower over temporal and right frontal locations in the O and OD groups versus the S and R groups, which was accompanied by increased thiobarbituric acid reactive substances (TBARS) and hydroxy-2-nonenal (4-HNE) levels. RA treatment significantly increased AERP/MMN amplitudes and lowered the TBARS/4-HNE levels in the OR and ODR groups versus the O and OD groups, respectively. Our findings support the potential benefit of RA in the prevention of auditory distortion related to the estrogen deficiency and d-galactose administration at least partly by antioxidant actions.
Collapse
Affiliation(s)
- Deniz Kantar-Gok
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Enis Hidisoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Hakan Er
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Alev Duygu Acun
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Yusuf Olgar
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Piraye Yargıcoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey.
| |
Collapse
|
20
|
Salehpour F, Ahmadian N, Rasta SH, Farhoudi M, Karimi P, Sadigh-Eteghad S. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice. Neurobiol Aging 2017; 58:140-150. [PMID: 28735143 DOI: 10.1016/j.neurobiolaging.2017.06.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/11/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
Abstract
Mitochondrial function plays a key role in the aging-related cognitive impairment, and photoneuromodulation of mitochondria by transcranial low-level laser therapy (LLLT) may contribute to its improvement. This study focused on the transcranial LLLT effects on the D-galactose (DG)-induced mitochondrial dysfunction, apoptosis, and cognitive impairment in mice. For this purpose, red and near-infrared (NIR) laser wavelengths (660 and 810 nm) at 2 different fluencies (4 and 8 J/cm2) at 10-Hz pulsed wave mode were administrated transcranially 3 d/wk in DG-received (500 mg/kg/subcutaneous) mice model of aging for 6 weeks. Spatial and episodic-like memories were assessed by the Barnes maze and What-Where-Which (WWWhich) tasks. Brain tissues were analyzed for mitochondrial function including active mitochondria, adenosine triphosphate, and reactive oxygen species levels, as well as membrane potential and cytochrome c oxidase activity. Apoptosis-related biomarkers, namely, Bax, Bcl-2, and caspase-3 were evaluated by Western blotting method. Laser treatments at wavelengths of 660 and 810 nm at 8 J/cm2 attenuated DG-impaired spatial and episodic-like memories. Also, results showed an obvious improvement in the mitochondrial function aspects and modulatory effects on apoptotic markers in aged mice. However, same wavelengths at the fluency of 4 J/cm2 had poor effect on the behavioral and molecular indexes in aging model. This data indicates that transcranial LLLT at both of red and NIR wavelengths at the fluency of 8 J/cm2 has a potential to ameliorate aging-induced mitochondrial dysfunction, apoptosis, and cognitive impairment.
Collapse
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Ahmadian
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Rasta
- Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Bioengineering, Tabriz University of Medical Sciences, Tabriz, Iran; School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Antiaging Effect of Metformin on Brain in Naturally Aged and Accelerated Senescence Model of Rat. Rejuvenation Res 2017; 20:173-182. [DOI: 10.1089/rej.2016.1883] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
22
|
Chen S, Wen X, Zhang W, Wang C, Liu J, Liu C. Hypolipidemic effect of oleanolic acid is mediated by the miR-98-5p/PGC-1β axis in high-fat diet-induced hyperlipidemic mice. FASEB J 2017; 31:1085-1096. [PMID: 27903618 DOI: 10.1096/fj.201601022r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022]
Abstract
Oleanolic acid (OA) is an active component of the traditional Chinese herb Olea europaea L. and has been found to exhibit a significant lipid-lowering effect; however, its direct molecular target is still unknown, which limits its clinical application and the possible structure modification to improve its beneficial functions. In this regard, we carried out the present study to identify potential hepatic targets of OA to mediate its lipid-lowering effect. We found that both acute and chronic OA treatments reduced serum levels of triglycerides, total cholesterol, and LDL cholesterol, and decreased hepatic expression levels of peroxisome proliferator-activated receptor-γ coactivator-1β (PGC-1β), which is an important regulator in maintaining hepatic lipid homeostasis, and its downstream target genes. Of note, liver-specific knockdown of PGC-1β recapitulated the hypolipidemic effects of OA. At the molecular level, OA accelerated mRNA degradation of PGC-1β. Microarray analysis revealed a host of microRNAs that potentially mediate OA-induced PGC-1β mRNA degradation, among which, miR-98-5p significantly inhibited activity of Pgc-1β 3' UTR as well as PGC-1β expression and promoted its mRNA degradation. Conversely, miR-98-5p inhibitors blunted the inhibitory effects of OA on PGC-1β expression. Collectively, our data demonstrated that OA ameliorated hyperlipidemia, likely via regulation of the miR-98-5p/PGC-1β axis.-Chen, S., Wen, X., Zhang, W., Wang, C., Liu, J., Liu, C. Hypolipidemic effect of oleanolic acid is mediated by the miR-98-5p/PGC-1β axis in high-fat diet-induced hyperlipidemic mice.
Collapse
Affiliation(s)
- Siyu Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; and
- Jiangsu Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; and
| | - Wenxiang Zhang
- School of Life Sciences, China Pharmaceutical University, Nanjing, China; and
| | - Chen Wang
- School of Life Sciences, China Pharmaceutical University, Nanjing, China; and
| | - Jun Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; and
| | - Chang Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; and
- School of Life Sciences, China Pharmaceutical University, Nanjing, China; and
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
23
|
Chen C, Huang L, Nong Z, Li Y, Chen W, Huang J, Pan X, Wu G, Lin Y. Hyperbaric Oxygen Prevents Cognitive Impairments in Mice Induced by d-Galactose by Improving Cholinergic and Anti-apoptotic Functions. Neurochem Res 2017; 42:1240-1253. [DOI: 10.1007/s11064-016-2166-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022]
|
24
|
Wang Y, Diao Z, Li J, Ren B, Zhu D, Liu Q, Liu Z, Liu X. Chicoric acid supplementation ameliorates cognitive impairment induced by oxidative stress via promotion of antioxidant defense system. RSC Adv 2017. [DOI: 10.1039/c7ra06325c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Illustration of effects of chicoric acid on neuroprotection againstd-gal-induced memory impairmentviainflammation and oxidative stress.
Collapse
Affiliation(s)
- Yutang Wang
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Zhijun Diao
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Jing Li
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Di Zhu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Qian Liu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| |
Collapse
|
25
|
Zhao H, Liu J, Song L, Liu Z, Han G, Yuan D, Wang T, Dun Y, Zhou Z, Liu Z, Wang Y, Zhang C. Oleanolic acid rejuvenates testicular function through attenuating germ cell DNA damage and apoptosis via deactivation of NF-κB, p53 and p38 signalling pathways. J Pharm Pharmacol 2016; 69:295-304. [PMID: 27935635 DOI: 10.1111/jphp.12668] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/16/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Inflammation can cause degenerative changes of reproductive function. Oleanolic acid (OA), the effective component from Ligustrum lucidum Ait., exhibits significantly anti-inflammation and antiageing activity. However, whether OA restores testicular dysfunction via inhibition of inflammation with ageing is unclear. Here, in a natural ageing rat model, we investigated the protection effects of OA and its mechanism of action. METHODS Eighteen-month-old Sprague Dawley (SD) rats were randomly divided into ageing control group and two OA-treated groups (5 and 25 mg/kg). Nine-month-old SD rats were used as adult controls. All rats were received either vehicle or OA for 6 months. Then, histomorphology, weight and index of testis, protein expression and immunohistochemistry were examined. KEY FINDINGS Oleanolic acid significantly restored testicular morphology and improved testicular weight and index. Moreover, OA significantly inhibited phospho-NF-κB p65 and its downstream proinflammatory cytokines' expressions, including IL-1β, COX-2 and TNF-α in testis tissues. Similarly, OA remarkably inhibited IL-1β and TNF-α production. OA significantly attenuated germ cells' DNA damage and apoptosis. Such changes were accompanied by downregulation of γH2AX, p-P53 and Bax expressions, and upregulation of Bcl-2 and Bcl-2/Bax ratio. In addition, OA remarkably inhibited p38 signalling. CONCLUSIONS Oleanolic acid effectively rejuvenates testicular function via attenuating germ cell DNA damage and apoptosis through deactivation of NF-κB, p53 and p38 signalling pathways.
Collapse
Affiliation(s)
- Haixia Zhao
- Medical College of China Three Gorges University, Yichang, China
| | - Jing Liu
- Medical College of China Three Gorges University, Yichang, China
| | - Laixin Song
- Medical College of China Three Gorges University, Yichang, China
| | - Zhencai Liu
- Medical College of China Three Gorges University, Yichang, China
| | - Guifang Han
- Medical College of China Three Gorges University, Yichang, China
| | - Ding Yuan
- RENHE Hospital of China Three Gorges University, Yichang, China
| | - Ting Wang
- Medical College of China Three Gorges University, Yichang, China
| | - Yaoyan Dun
- Medical College of China Three Gorges University, Yichang, China
| | - Zhiyong Zhou
- Medical College of China Three Gorges University, Yichang, China
| | - Zhaoqi Liu
- Medical College of China Three Gorges University, Yichang, China
| | - Yongjun Wang
- LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changcheng Zhang
- Medical College of China Three Gorges University, Yichang, China.,LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Intranasal Cerebrolysin Attenuates Learning and Memory Impairments in D-galactose-Induced Senescence in Mice. Exp Gerontol 2016; 87:16-22. [PMID: 27894939 DOI: 10.1016/j.exger.2016.11.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/11/2016] [Accepted: 11/21/2016] [Indexed: 11/20/2022]
Abstract
Neurotrophic factors are currently being considered as pro-cognitive therapeutic approaches for management of cognitive deficits. This study aims to evaluate the effects of intranasal (i.n.) or intraperitoneal (i.p.) administration of Cerebrolysin (CBL) (as a mixture of neurotrophic factors) on the d-galactose-induced oxidative stress, apoptosis and memory as well as learning impairment in mice. For this purpose, CBL (1, 2.5, 5 ml/kg/i.p.) or (1 ml/kg/i.n.), were administrated daily in d-galactose-received (100 mg/kg/subcutaneous (s.c.)) mice model of aging for eight weeks. Spatial and recognition memories were assessed by the Morris water maze and novel object recognition tasks. Brain and blood of animals were analysed for oxidative stress biomarkers including malondialdehyde, total antioxidant capacity, glutathione peroxidase and superoxide dismutase. Apoptosis rate in the hippocampus was evaluated by TUNEL staining of brain tissue. 5 ml/kg/i.p. dose of CBL increased the locomotor activity but, 1 ml/kg/i.p. dose didn't show detectable behavioural or molecular effects on aged mice. Treatment with 2.5 ml/kg/i.p. and 1 ml/kg/i.n. doses attenuated d-galactose-impaired spatial and recognition memories. Results showed an obvious increase in the antioxidant biomarkers and decrease in the malondialdehyde levels both in the blood and brain of aged mice in 2.5 ml/kg/i.p. dose, and only in the brain in 1 ml/kg/i.n. dose of CBL. Anti-apoptotic effects also were seen in the same dose/rout of CBL administration in aged animals. This study proves the usefulness of i.n. CBL administration as a non-invasive and efficient method of drug delivery to the brain to improve aging-induced oxidative stress, apoptosis and learning as well as memory impairment.
Collapse
|
27
|
Hsu YM, Yin MC. EPA or DHA enhanced oxidative stress and aging protein expression in brain of d-galactose treated mice. Biomedicine (Taipei) 2016; 6:17. [PMID: 27514534 PMCID: PMC4980825 DOI: 10.7603/s40681-016-0017-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/20/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Effects of eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) upon fatty acid composition, oxidative and inflammatory factors and aging proteins in brain of d-galactose (DG) treated aging mice were examined. METHODS Each fatty acid at 7 mg/kg BW/week was supplied for 8 weeks. Brain aging was induced by DG treatment (100 mg/kg body weight) via daily subcutaneous injection for 8 weeks. RESULTS DG, EPA and DHA treatments changed brain fatty acid composition. DG down-regulated brain Bcl-2 expression and up-regulated Bax expression. Compared with DG groups, EPA and DHA further enhanced Bax expression. DG decreased glutathione content, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production, the intake of EPA or DHA caused greater ROS and GSSG formation. DG treatments up-regulated the protein expression of p47(phox) and gp91(phox), and the intake of EPA or DHA led to greater p47(phox) and gp91(phox) expression. DG increased brain prostaglandin E2 (PGE2) levels, and cyclooxygenase (COX)-2 expression and activity, the intake of EPA or DHA reduced brain COX-2 activity and PGE2 formation. DG enhanced brain p53, p16 and p21 expression. EPA and DHA intake led to greater p21 expression, and EPA only caused greater p53 and p16 expression. CONCLUSION These findings suggest that these two PUFAs have toxic effects toward aging brain.
Collapse
Affiliation(s)
- Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, 404, Taichung, Taiwan
| | - Mei-Chin Yin
- Department of Nutrition, China Medical University, 91, Hsueh-shih Rd., 404, Taichung, Taiwan.
| |
Collapse
|
28
|
Jeon SJ, Lee HJ, Lee HE, Park SJ, Gwon Y, Kim H, Zhang J, Shin CY, Kim DH, Ryu JH. Oleanolic acid ameliorates cognitive dysfunction caused by cholinergic blockade via TrkB-dependent BDNF signaling. Neuropharmacology 2016; 113:100-109. [PMID: 27470063 DOI: 10.1016/j.neuropharm.2016.07.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/22/2016] [Accepted: 07/24/2016] [Indexed: 12/13/2022]
Abstract
Oleanolic acid is a naturally occurring triterpenoid and is widely present in food and medicinal plants. To examine the effect of oleanolic acid on memory deficits, we employed a cholinergic blockade-induced cognitive deficit mouse model. A single administration of oleanolic acid significantly increased the latency on the passive avoidance task and affected the alternation behavior on the Y-maze task and the exploration time on the novel object recognition task, indicating that oleanolic acid reverses the cognitive impairment induced by scopolamine. In accordance with previous reports, oleanolic acid enhanced extracellular-signal-regulated kinase 1/2 (ERK1/2) and cAMP response element-binding protein (CREB) phosphorylation and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Interestingly, ameliorating effect of oleanolic acid on scopolamine-induced memory impairment was abolished by N2-(2-{[(2-oxoazepan-3-yl)amino]carbonyl}phenyl)benzo[b]thiophene-2-carboxamide (ANA-12), a potent and specific inhibitor of tropomyosin receptor kinase B (TrkB), in the passive avoidance task. Similarly, oleanolic acid significantly evoked long-term potentiation in a dose-dependent manner, which was diminished by ANA-12 treatment as shown in the electrophysiology study. Together, these results imply that oleanolic acid ameliorates scopolamine-induced memory impairment by modulating the BDNF-ERK1/2-CREB pathway through TrkB activation in mice, suggesting that oleanolic acid would be a potential therapeutic agent for the treatment of cognitive deficits.
Collapse
Affiliation(s)
- Se Jin Jeon
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hong Ju Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 604-714, Republic of Korea
| | - Hyung Eun Lee
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Se Jin Park
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Yubeen Gwon
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Haneul Kim
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jiabao Zhang
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Chan Young Shin
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, 143-701, Republic of Korea
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 604-714, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan 604-714, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea.
| |
Collapse
|
29
|
Chongcao-Shencha Attenuates Liver and Kidney Injury through Attenuating Oxidative Stress and Inflammatory Response in D-Galactose-Treated Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3878740. [PMID: 27340415 PMCID: PMC4909911 DOI: 10.1155/2016/3878740] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/30/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022]
Abstract
The Chongcao-Shencha (CCSC), a Chinese herbal compound formula, has been widely used as food material and medicine for enhancing physical strength. The present study investigated the possible effect of CCSC in alleviating the liver and kidney injury in D-galactose- (D-gal-) treated mice and the underlying mechanism. Mice were given a subcutaneous injection of D-gal (200 mg/kg) and orally administered CCSC (200, 400, and 800 mg/kg) daily for 8 weeks. Results indicated that CCSC increased the depressed body weight and organ index induced by D-gal, ameliorated the histological deterioration, and decreased the levels of ALT, AST, BUN, and CRE as compared with D-gal group. Furthermore, CCSC not only elevated the activities of antioxidant enzymes SOD, CAT, and GPx but also upregulated the mRNA expression of SOD1, CAT, and GPx1, while decreasing the MDA level in D-gal-treated mice. Results of western blotting analysis showed that CCSC significantly inhibited the upregulation of expression of nuclear factor kappa B (NF-κB) p65, p-p65, p-IκBα, COX2, and iNOS and inhibited the downregulation of IκBα protein expression caused by D-gal. This study demonstrated that CCSC could attenuate the liver and kidney injury in D-gal-treated mice, and the mechanism might be associated with attenuating oxidative stress and inflammatory response.
Collapse
|
30
|
Aydın AF, Çoban J, Doğan-Ekici I, Betül-Kalaz E, Doğru-Abbasoğlu S, Uysal M. Carnosine and taurine treatments diminished brain oxidative stress and apoptosis in D-galactose aging model. Metab Brain Dis 2016; 31:337-45. [PMID: 26518192 DOI: 10.1007/s11011-015-9755-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/25/2015] [Indexed: 01/11/2023]
Abstract
D-galactose (GAL) has been used as an animal model for brain aging and antiaging studies. GAL stimulates oxidative stress in several tissues including brain. Carnosine (CAR; β-alanil-L-histidine) and taurine (TAU; 2-aminoethanesulfonic acid) exhibit antioxidant properties. CAR and TAU have anti-aging and neuroprotective effects. We investigated the effect of CAR and TAU supplementations on oxidative stress and brain damage in GAL-treated rats. Rats received GAL (300 mg/kg; s.c.; 5 days per week) alone or together with CAR (250 mg/kg/daily; i.p.; 5 days per week) or TAU (2.5% w/w; in rat chow) for 2 months. Brain malondialdehyde (MDA), protein carbonyl (PC) and glutathione (GSH) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione transferase (GST) and acetylcholinesterase (AChE) activities were determined. Expressions of B cell lymphoma-2 (Bcl-2), Bax and caspase-3 were also evaluated in the brains by immunohistochemistry. GAL treatment increased brain MDA and PC levels and AChE activities. It decreased significantly brain GSH levels, SOD and GSH-Px but not GST activities. GAL treatment caused histopathological changes and increased apoptosis. CAR and TAU significantly reduced brain AChE activities, MDA and PC levels and elevated GSH levels in GAL-treated rats. CAR, but not TAU, significantly increased low activities of SOD and GSH-Px. Both CAR and TAU diminished apoptosis and ameliorated histopathological findings in the brain of GAL-treated rats. Our results indicate that CAR and TAU may be effective to prevent the development of oxidative stress, apoptosis and histopathological deterioration in the brain of GAL-treated rats.
Collapse
Affiliation(s)
- A Fatih Aydın
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Jale Çoban
- Department of Biochemistry, Yeditepe University Medical Faculty, Istanbul, Turkey
| | - Işın Doğan-Ekici
- Department of Pathology, Yeditepe University Medical Faculty, Istanbul, Turkey
| | - Esra Betül-Kalaz
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Semra Doğru-Abbasoğlu
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Müjdat Uysal
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
31
|
Optimizing a Male Reproductive Aging Mouse Model by D-Galactose Injection. Int J Mol Sci 2016; 17:ijms17010098. [PMID: 26771610 PMCID: PMC4730340 DOI: 10.3390/ijms17010098] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/16/2015] [Accepted: 12/28/2015] [Indexed: 11/16/2022] Open
Abstract
The d-galactose (d-gal)-injected animal model, which is typically established by administering consecutive subcutaneous d-gal injections to animals for approximately six or eight weeks, has been frequently used for aging research. In addition, this animal model has been demonstrated to accelerate aging in the brain, kidneys, liver and blood cells. However, studies on aging in male reproductive organs that have used this animal model remain few. Therefore, the current study aimed to optimize a model of male reproductive aging by administering d-gal injections to male mice and to determine the possible mechanism expediting senescence processes during spermatogenesis. In this study, C57Bl/6 mice were randomized into five groups (each containing 8–10 mice according to the daily intraperitoneal injection of vehicle control or 100 or 200 mg/kg dosages of d-gal for a period of six or eight weeks). First, mice subjected to d-gal injections for six or eight weeks demonstrated considerably decreased superoxide dismutase activity in the serum and testis lysates compared to those in the control group. The lipid peroxidation in testis also increased in the d-gal-injected groups. Furthermore, the d-gal-injected groups exhibited a decreased ratio of testis weight/body weight and sperm count compared to the control group. The percentages of both immotile sperm and abnormal sperm increased considerably in the d-gal-injected groups compared to those of the control group. To determine the genes influenced by the d-gal injection during murine spermatogenesis, a c-DNA microarray was conducted to compare testicular RNA samples between the treated groups and the control group. The d-gal-injected groups exhibited RNA transcripts of nine spermatogenesis-related genes (Cycl2, Hk1, Pltp, Utp3, Cabyr, Zpbp2, Speer2, Csnka2ip and Katnb1) that were up- or down-regulated by at least two-fold compared to the control group. Several of these genes are critical for forming sperm-head morphologies or maintaining nuclear integration (e.g., cylicin, basic protein of sperm head cytoskeleton 2 (Cylc2), casein kinase 2, alpha prime interacting protein (Csnka2ip) and katanin p80 (WD40-containing) subunit B1 (Katnb1)). These results indicate that d-gal-injected mice are suitable for investigating male reproductive aging.
Collapse
|
32
|
Dong D, Qi Y, Xu L, Yin L, Xu Y, Han X, Zhao Y, Peng J. Total saponins from Rosa laevigata Michx fruit attenuates hepatic steatosis induced by high-fat diet in rats. Food Funct 2015; 5:3065-3075. [PMID: 25310017 DOI: 10.1039/c4fo00491d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protective effects of total saponins from Rosa laevigata Michx fruit (RLTS) in high-fat diet (HFD)-induced rats were investigated. The results showed that oral administration of RLTS attenuated hepatic steatosis, significantly reduced the levels of body weight, alanine transaminase, aspartate transaminase, total cholesterol, total triglyceride, free fatty acids, low density lipoprotein, blood glucose, insulin and malondialdehyde, and increased high density lipoprotein and glutathione levels compared with the model group. Further investigations showed that RLTS affected fatty acid synthesis, fatty acid β-oxidation, fatty acid ω-oxidation, total cholesterol and triglyceride metabolism and synthesis. Moreover, the extract obviously suppressed HFD-induced oxidative stress and inflammation. These results suggest that RLTS should be developed to be one functional food or health product against non-alcoholic fatty liver disease (NAFLD) in the future.
Collapse
Affiliation(s)
- Deshi Dong
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China and Research Institute of Integrated Traditional and Western Medicine of Dalian Medical University, Dalian 116011, China. and The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China
| | - Yanyan Zhao
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian 116044, China and Research Institute of Integrated Traditional and Western Medicine of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
33
|
Çoban J, Doğan-Ekici I, Aydın AF, Betül-Kalaz E, Doğru-Abbasoğlu S, Uysal M. Blueberry treatment decreased D-galactose-induced oxidative stress and brain damage in rats. Metab Brain Dis 2015; 30:793-802. [PMID: 25511550 DOI: 10.1007/s11011-014-9643-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/05/2014] [Indexed: 12/29/2022]
Abstract
D-galactose (GAL) causes aging-related changes and oxidative stress in the organism. We investigated the effect of whole fresh blueberry (BB) (Vaccinium corymbosum L.) treatment on oxidative stress in age-related brain damage model. Rats received GAL (300 mg/kg; s.c.; 5 days per week) alone or together with 5 % (BB1) and 10 % (BB2) BB containing chow for two months. Malondialdehyde (MDA),protein carbonyl (PC) and glutathione (GSH) levels, and Cu Zn-superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione transferase (GST) activities as well as acetylcholinesterase (AChE) activities were determined. Expressions of B cell lymphoma-2 (Bcl-2), Bax and caspase-3 were also evaluated in the brain by immunohistochemistry. MDA and PC levels and AChE activity increased, but GSH levels, SOD and GSH-Px activities decreased together with histopathological structural damage in the brain of GAL-treated rats. BB treatments, especially BB2 reduced MDA and PC levels and AChE activity and elevated GSH levels and GSH-Px activity. BB1 and BB2 treatments diminished apoptosis and ameliorated histopathological findings in the brain of GAL-treated rats. These results indicate that BB partially prevented the shift towards an imbalanced prooxidative status and apoptosis together with histopathological amelioration by acting as an antioxidant (radical scavenger) itself in GAL-treated rats.
Collapse
Affiliation(s)
- Jale Çoban
- Department of Biochemistry, Yeditepe University Medical Faculty, Kayışdağı, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
34
|
Insights into drug discovery from natural products through structural modification. Fitoterapia 2015; 103:231-41. [PMID: 25917513 DOI: 10.1016/j.fitote.2015.04.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 01/01/2023]
Abstract
Natural products (NPs) have played a key role in drug discovery and are still a prolific source of novel lead compounds or pharmacophores for medicinal chemistry. Pharmacological activity and druggability are two indispensable components advancing NPs from leads to drugs. Although naturally active substances are usually good lead compounds, most of them can hardly satisfy the demands for druggability. Hence, these structural phenotypes have to be modified and optimized to overcome existing deficiencies and shortcomings. This review illustrates druggability optimization of NPs through structural modification with some successful examples.
Collapse
|
35
|
Doan VM, Chen C, Lin X, Nguyen VP, Nong Z, Li W, Chen Q, Ming J, Xie Q, Huang R. Yulangsan polysaccharide improves redox homeostasis and immune impairment in d-galactose-induced mimetic aging. Food Funct 2015; 6:1712-8. [DOI: 10.1039/c5fo00238a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Yulangsan polysaccharide (YLSP) is a traditional Chinese medicine used in long-term treatment as a modulator of brain dysfunction and immunity.
Collapse
Affiliation(s)
- Van Minh Doan
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Chunxia Chen
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
- Department of Hyperbaric Oxygen
| | - Xing Lin
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Van Phuc Nguyen
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Zhihuan Nong
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Weisi Li
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Qingquan Chen
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Jianjun Ming
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Qiuqiao Xie
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Renbin Huang
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| |
Collapse
|
36
|
Li JJ, Zhu Q, Lu YP, Zhao P, Feng ZB, Qian ZM, Zhu L. Ligustilide prevents cognitive impairment and attenuates neurotoxicity in d-galactose induced aging mice brain. Brain Res 2015; 1595:19-28. [DOI: 10.1016/j.brainres.2014.10.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 01/03/2023]
|
37
|
Caltana L, Rutolo D, Nieto ML, Brusco A. Further evidence for the neuroprotective role of oleanolic acid in a model of focal brain hypoxia in rats. Neurochem Int 2014; 79:79-87. [PMID: 25280833 DOI: 10.1016/j.neuint.2014.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/15/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022]
Abstract
Ischemic brain injury is a dynamic process involving oxidative stress, inflammation, cell death and the activation of endogenous adaptive and regenerative mechanisms depending on the activation of transcription factors such as hypoxia-inducible factor 1-alpha. Accordingly, we have previously described a new focal hypoxia model by direct intracerebral cobalt chloride injection. In turn, oleanolic acid, a plant-derived triterpenoid, has been extensively used in Asian countries for its anti-inflammatory and anti-tumor properties. A variety of novel pharmacological effects have been attributed to this triterpenoid, including beneficial effects on neurodegenerative disorders--including experimental autoimmune encephalomyelitis--due to its immunomodulatory activities at systemic level, as well as within the central nervous system. In this context, we hypothesize that this triterpenoid may be capable of exerting neuroprotective effects in ischemic brain, suppressing glial activities that contribute to neurotoxicity while promoting those that support neuronal survival. In order to test this hypothesis, we used the intraperitoneal administration of oleanoic acid in adult rats for seven days previous to focal cortical hypoxia induced by cobalt chloride brain injection. We analyzed the neuroprotective effect of oleanoic acid from a morphological point of view, focusing on neuronal survival and glial reaction.
Collapse
Affiliation(s)
- Laura Caltana
- Instituto de Biología Celular y Neurociencia, IBCN (UBA-CONICET), Buenos Aires, Argentina.
| | - Damián Rutolo
- Instituto de Biología Celular y Neurociencia, IBCN (UBA-CONICET), Buenos Aires, Argentina
| | - María Luisa Nieto
- Instituto de Biología y Genética Molecular, CSIC-UVA, Valladolid, Spain
| | - Alicia Brusco
- Instituto de Biología Celular y Neurociencia, IBCN (UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
38
|
Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: Experimental and biochemical studies. Food Chem Toxicol 2014; 66:224-36. [PMID: 24468673 DOI: 10.1016/j.fct.2014.01.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/23/2013] [Accepted: 01/11/2014] [Indexed: 12/13/2022]
Abstract
Beneficial effects of oleanolic acid on fluoride-induced oxidative stress and certain metabolic dysfunctions were studied in four regions of rat brain. Male Wistar rats were treated with sodium fluoride at a dose of 20 mg/kg b.w./day (orally) for 30 days. Results indicate marked reduction in acidic, basic and neutral protein contents due to fluoride toxicity in cerebrum, cerebellum, pons and medulla. DNA, RNA contents significantly decreased in those regions after fluoride exposure. Activities of proteolytic enzymes (such as cathepsin, trypsin and pronase) were inhibited by fluoride, whereas transaminase enzyme (GOT and GPT) activities increased significantly in brain tissue. Fluoride appreciably elevated brain malondialdehyde level, free amino acid nitrogen, NO content and free OH radical generation. Additionally, fluoride perturbed GSH content and markedly reduced SOD, GPx, GR and CAT activities in brain tissues. Oral supplementation of oleanolic acid (a plant triterpenoid), at a dose of 5mg/kgb.w./day for last 14 days of fluoride treatment appreciably ameliorated fluoride-induced alteration of brain metabolic functions. Appreciable counteractive effects of oleanolic acid against fluoride-induced changes in protein and nucleic acid contents, proteolytic enzyme activities and other oxidative stress parameters indicate that oleanolic acid has potential antioxidative effects against fluoride-induced oxidative brain damage.
Collapse
|
39
|
Chan CY, Mong MC, Liu WH, Huang CY, Yin MC. Three pentacyclic triterpenes protect H9c2 cardiomyoblast cells against high-glucose-induced injury. Free Radic Res 2014; 48:402-11. [DOI: 10.3109/10715762.2014.880113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Natural Compounds (Small Molecules) as Potential and Real Drugs of Alzheimer's Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63281-4.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
41
|
Sánchez-Quesada C, López-Biedma A, Warleta F, Campos M, Beltrán G, Gaforio JJ. Bioactive properties of the main triterpenes found in olives, virgin olive oil, and leaves of Olea europaea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:12173-82. [PMID: 24279741 DOI: 10.1021/jf403154e] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Oleanolic acid, maslinic acid, uvaol, and erythrodiol are the main triterpenes present in olives, olive tree leaves, and virgin olive oil. Their concentration in virgin olive oil depends on the quality of the olive oil and the variety of the olive tree. These triterpenes are described to present different properties, such as antitumoral activity, cardioprotective activity, anti-inflammatory activity, and antioxidant protection. Olive oil triterpenes are a natural source of antioxidants that could be useful compounds for the prevention of multiple diseases related to cell oxidative damage. However, special attention has to be paid to the concentrations used, because higher concentration may lead to cytotoxic or biphasic effects. This work explores all of the bioactive properties so far described for the main triterpenes present in virgin olive oil.
Collapse
Affiliation(s)
- Cristina Sánchez-Quesada
- Immunology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén , Campus las Lagunillas s/n, 23071 Jaén, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Santos RS, Silva PL, de Oliveira GP, Santos CL, Cruz FF, de Assis EF, de Castro-Faria-Neto HC, Capelozzi VL, Morales MM, Pelosi P, Gattass CR, Rocco PRM. Oleanolic acid improves pulmonary morphofunctional parameters in experimental sepsis by modulating oxidative and apoptotic processes. Respir Physiol Neurobiol 2013; 189:484-90. [PMID: 24012992 DOI: 10.1016/j.resp.2013.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/24/2013] [Accepted: 08/29/2013] [Indexed: 02/07/2023]
Abstract
We compared the effects of oleanolic acid (OA) vs. dexamethasone on lung mechanics and histology, inflammation, and apoptosis in lung and distal organs in experimental sepsis. Seventy-eight BALB/c mice were randomly divided into two groups. Sepsis was induced by cecal ligation and puncture, while the control group underwent sham surgery. 1h after surgery, all animals were further randomized to receive saline (SAL), OA and dexamethasone (DEXA) intraperitoneally. Both OA and DEXA improved lung mechanics and histology, which were associated with fewer lung neutrophils and less cell apoptosis in lung, liver, and kidney than SAL. However, only animals in the DEXA group had lower levels of interleukin (IL)-6 and KC (murine analog of IL-8) in bronchoalveolar lavage fluid than SAL animals. Conversely, OA was associated with lower inducible nitric oxide synthase expression and higher superoxide dismutase than DEXA. In the experimental sepsis model employed herein, OA and DEXA reduced lung damage and distal organ apoptosis through distinct anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Raquel Souza Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics (IBCCF), Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Huang Qi Jian Zhong Pellet Attenuates TNBS-Induced Colitis in Rats via Mechanisms Involving Improvement of Energy Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:574629. [PMID: 23840258 PMCID: PMC3690262 DOI: 10.1155/2013/574629] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 12/20/2022]
Abstract
Huang Qi Jian Zhong Pellet (HQJZ) is a famous Chinese medicine formula for treatment of various gastrointestinal tract diseases. This study investigated the role of HQJZ in 2,4,6-trinitrobenzene sulfonic acid- (TNBS-) induced colitis and its underlying mechanism. Colonic mucosal injury was induced by TNBS in the Sprague-Dawley rats. In the HQJZ treatment group, HQJZ was administered (2 g/kg) for 14 days starting from day 1 after TNBS infusion. Colonic mucosal injury occurred obviously 1 day after TNBS challenge and did not recover distinctively until day 15, including an increase in macro- and microscopic scores, a colonic weight index, a decrease in colonic length, a number of functional capillaries, and blood flow. Inverted intravital microscopy and ELISA showed colonic microcirculatory disturbances and inflammatory responses after TNBS stimulation, respectively. TNBS decreased occludin, RhoA, and ROCK-I, while increasing Rac-1, PAK-1, and phosphorylated myosin light chain. In addition, ATP content and ATP5D expression in colonic mucosa decreased after TNBS challenge. Impressively, treatment with HQJZ significantly attenuated all of the alterations evoked by TNBS, promoting the recovery of colonic injury. The present study demonstrated HQJZ as a multitargeting management for colonic mucosal injury, which set in motion mechanisms involving improvement of energy metabolism.
Collapse
|
44
|
Wang J, Yu M, Xiao L, Xu S, Yi Q, Jin W. Radiosensitizing effect of oleanolic acid on tumor cells through the inhibition of GSH synthesis in vitro. Oncol Rep 2013; 30:917-24. [PMID: 23727952 DOI: 10.3892/or.2013.2510] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/08/2013] [Indexed: 11/06/2022] Open
Abstract
Oleanolic acid (OA) is a natural pentacyclic triterpenoid that has been used in traditional medicine as an anticancer and anti-inflammatory agent. The aim of our study was to investigate whether or not OA increases the radiosensivity of tumor cells, and the relative mechanism was also investigated. Clonogenic assay was used to observe the radiosensitivity of C6 and A549 cells following different treatments. The alteration of intracellular DNA damage was determined using a micronucleus (MN) assay. In order to identify the mechanism of OA-mediated radiosensitization of tumor cells, the levels of glutathione (GSH) in irradiated cells following various pretreatments were determined using glutathione reductase/5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) recycling assay. Under the same condition, the activities of γ-glutamylcysteine synthetase (γ-GCS) and GSH synthase (GSS), both key enzymes for GSH synthesis, were detected using appropriate methods. In order to confirm the radiosensitizing effect of OA on cancer cells by attenuating GSH, N-acetylcysteine (NAC) was added to cells in culture for 12 h before irradiation. The results showed that the combined treatment of radiation with OA significantly decreased the clonogenic growth of tumor cells and enhanced the numbers of intracellular MN compared to irradiation alone. Furthermore, it was found that the synthesis of cellular GSH was inhibited concomitantly with the downregulation of γ-GCS activity. Therefore, the utilization of OA as a radiosensitizing agent for irradiation-inducing cell death offers a potential therapeutic approach to treat cancer.
Collapse
Affiliation(s)
- Juan Wang
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | | | | | | | | | | |
Collapse
|
45
|
Cao F, Gao Y, Wang M, Fang L, Ping Q. Propylene glycol-linked amino acid/dipeptide diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability, and pharmacokinetics. Mol Pharm 2013; 10:1378-87. [PMID: 23339520 DOI: 10.1021/mp300647m] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In our previous studies, ethylene glycol-linked amino acid diester prodrugs of oleanolic acid (OA), a Biopharmaceutics Classification System (BCS) class IV drug, designed to target peptide transporter 1 (PepT1) have been synthesized and evaluated. Unlike ethylene glycol, propylene glycol is of very low toxicity in vivo. In this study, propylene glycol was used as a linker to further compare the effect of the type of linker on the stability, permeability, affinity, and bioavailability of the prodrugs of OA. Seven diester prodrugs with amino acid/dipeptide promoieties containing L-Val ester (7a), L-Phe ester (7b), L-Ile ester (7c), D-Val-L-Val ester (9a), L-Val-L-Val ester (9b), L-Ala-L-Val ester (9c), and L-Ala-L-Ile ester (9d) were designed and successfully synthesized. In situ rat single-pass intestinal perfusion (SPIP) model was performed to screen the effective permeability (P(eff)) of the prodrugs. P(eff) of 7a, 7b, 7c, 9a, 9b, 9c, and 9d (6.7-fold, 2.4-fold, 1.24-fold, 1.22-fold, 4.15-fold, 2.2-fold, and 1.4-fold, respectively) in 2-(N-morpholino)ethanesulfonic acid buffer (MES) with pH 6.0 showed significant increase compared to that of OA (p < 0.01). In hydroxyethyl piperazine ethanesulfonic acid buffer (HEPES) of pH 7.4, except for 7c, 9a, and 9d, P(eff) of the other prodrugs containing 7a (5.2-fold), 7b (2.0-fold), 9b (3.1-fold), and 9c (1.7-fold) exhibited significantly higher values than that of OA (p < 0.01). In inhibition studies with glycyl-sarcosine (Gly-Sar, a typical substrate of PepT1), P(eff) of 7a (5.2-fold), 7b (2.0-fold), 9b (3.1-fold), and 9c (2.3-fold) had significantly reduced values (p < 0.01). Compared to the apparent permeability coefficient (P(app)) of OA with Caco-2 cell monolayer, significant enhancement of the P(app) of 7a (5.27-fold), 9b (3.31-fold), 9a (2.26-fold), 7b (2.10-fold), 7c (2.03-fold), 9c (1.87-fold), and 9d (1.39-fold) was also observed (p < 0.01). Inhibition studies with Gly-Sar (1 mM) showed that P(app) of 7a, 9b, and 9c significantly reduced by 1.3-fold, 1.6-fold, and 1.4-fold (p < 0.01), respectively. These results may be attributed to PepT1-mediated transport and their differential affinity toward PepT1. According to the permeability and affinity, 7a and 9b were selected in the pharmacokinetic studies in rats. Compared with group OA, C(max) for group 7a and 9b was enhanced to 3.04-fold (p < 0.01) and 2.62-fold (p < 0.01), respectively. AUC(0→24) was improved to 3.55-fold (p < 0.01) and 3.39-fold (p < 0.01), respectively. Compared to the ethylene glycol-linked amino acid diester prodrugs of OA in our previous work, results from this study revealed that part of the propylene glycol-linked amino acid/dipeptide diester prodrugs showed better stability, permeability, affinity, and bioavailability. In conclusion, propylene glycol-linked amino acid/dipeptide diester prodrugs of OA may be suitable for PepT1-targeted prodrugs of OA to improve the oral bioavailability of OA.
Collapse
Affiliation(s)
- Feng Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | | | | | | | | |
Collapse
|
46
|
Dong L, Luo Y, Cheng B, Zhang Y, Zhang N, Hou Y, Jiang M, Luo G, Bai G. Bioactivity-integrated ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry for the identification of nuclear factor-κB inhibitors and β2 adrenergic receptor agonists in Chinese medicinal preparation Chuanbeipipa dropping pills. Biomed Chromatogr 2013; 27:960-7. [PMID: 23483566 DOI: 10.1002/bmc.2886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/27/2013] [Accepted: 01/27/2013] [Indexed: 11/08/2022]
Abstract
A simple and dual-target method based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry combined with dual-bioactive [nuclear factor-κB (NF-κB) and β2 -adrenergic receptor] luciferase reporter assay systems was developed to rapidly characterize the chemical structure of various bioactive compounds of TCM preparations. Chuanbeipipa dropping pills, a traditional Chinese medicine preparation used for the clinical therapy of chronic obstructive lung disease and cough caused by bronchial catarrh, was analyzed with this method. Potential anti-inflammatory and spasmolytic constituents were screened using NF-κB and β2 -adrenergic receptor activity luciferase reporter assay systems and simultaneously identified according to the time-of-flight mass spectrometry data. One β2-adrenergic receptor agonist (ephedrine) and two structural types of NF-κB inhibitors (platycosides derivatives and ursolic acid derivatives) were characterized. Platycodin D3 and E were considered new NF-κB inhibitors. Further cytokine and chemokine detection confirmed the anti-inflammatory effects of the potential NF-κB inhibitors. Compared with conventional fingerprints, activity-integrated fingerprints that contain both chemical and bioactive details offer a more comprehensive understanding of the chemical makeup of plant materials. This strategy clearly demonstrated that multiple bioactivity-integrated fingerprinting is a powerful tool for the improved screening and identification of potential multi-target lead compounds in complex herbal medicines.
Collapse
Affiliation(s)
- Linyi Dong
- Tianjin Key Laboratory on Technologies Enabling Development Clinical Therapeutics and Diagnostics (Theranostics), College of Pharmacy, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|