1
|
Kyi CW, Garcia VB, Garcia ML, Schulz DJ. Spinal cord injury is associated with changes in synaptic properties of the mouse major pelvic ganglion. J Neurophysiol 2022; 128:892-909. [PMID: 36069457 DOI: 10.1152/jn.00477.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) has substantial impacts on autonomic function. In part, SCI results in loss of normal autonomic activity that contributes to injury-associated pathology such as neurogenic bladder, bowel, and sexual dysfunction. Yet little is known of the impacts of SCI on peripheral autonomic neurons that directly innervate these target organs. In this study, we measured changes in synaptic properties of neurons of the mouse major pelvic ganglion (MPG) associated with acute and chronic SCI. Our data show that functional and physiological properties of synapses onto MPG neurons are altered after SCI, and differ between acute and chronic injury. After acute injury, excitatory post-synaptic potentials (EPSPs) show increased rise and decay time constants leading to overall broader and longer EPSPs, while in chronic injured animals EPSPs are reduced in amplitude and show faster rise and decay leading to shorter EPSPs. Synaptic depression and low pass filtering are also altered in injured animals. Lastly, cholinergic currents are smaller in acute injured animals, but larger in chronic injured animals relative to controls. These changes in synaptic properties are associated with differences in nicotinic receptor subunit expression as well. MPG CHRNA3 mRNA levels decreased after injury, while CHRNA4 mRNAs increased. Further, changes in the correlations of alpha- and beta-subunit mRNAs suggests that nicotinic receptor subtype composition is altered after injury. Taken together, our data demonstrate that peripheral autonomic neurons are fundamentally altered after SCI, suggesting that longer-term therapeutic approaches could target these neurons directly to potentially help ameliorate neurogenic target organ dysfunction.
Collapse
Affiliation(s)
- Cindy W Kyi
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Virginia B Garcia
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Michael L Garcia
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - David J Schulz
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
Custodio L, Malone S, Bardo MT, Turner JR. Nicotine and opioid co-dependence: Findings from bench research to clinical trials. Neurosci Biobehav Rev 2022; 134:104507. [PMID: 34968525 PMCID: PMC10986295 DOI: 10.1016/j.neubiorev.2021.12.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
Abstract
Concomitant use of tobacco and opioids represents a growing public health concern. In fact, the mortality rate due to smoking-related illness approaches 50% among SUD patients. Cumulative evidence demonstrates that the vulnerability to drugs of abuse is influenced by behavioral, environmental, and genetic factors. This review explores the contribution of genetics and neural mechanisms influencing nicotine and opioid reward, respiration, and antinociception, emphasizing the interaction of cholinergic and opioid receptor systems. Despite the substantial evidence demonstrating nicotine-opioid interactions within the brain and on behavior, the currently available pharmacotherapies targeting these systems have shown limited efficacy for smoking cessation on opioid-maintained smokers. Thus, further studies designed to identify novel targets modulating both nicotinic and opioid receptor systems may lead to more efficacious approaches for co-morbid nicotine dependence and opioid use disorder.
Collapse
Affiliation(s)
- Lilian Custodio
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Samantha Malone
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
3
|
Interaction of nicotine with morphine potency in Paramecium caudatum. Heliyon 2019; 5:e02336. [PMID: 31485526 PMCID: PMC6716230 DOI: 10.1016/j.heliyon.2019.e02336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 01/28/2019] [Accepted: 08/14/2019] [Indexed: 11/25/2022] Open
Abstract
Aims Many studies have been carried out about the interaction between nicotine and morphine in higher animals. Although previous behavioral and pharmacological evidence indicated the presence of opioid system in protozoa, there is no available data about nicotine effect on the potency of morphine in eukaryotic unicellular organisms such as protozoa. Hence, this work aims to investigate the interaction of nicotine with morphine in the protozoan Paramecium caudatum. Main methods According to our innovative model, the movement behavior of P. caudatum was investigated with a numerical scale using the Sedgewick-Rafter counting chamber at the field of view of 4X light microscope objective lens, such that the difference in number of Paramecia cells at definite moments after injection of drugs/substances was considered as a criterion for the behavioral response of P. caudatum. Key findings Results indicated the variations of morphine potency at the dose of 2 μg morphine accompanied by different doses of nicotine in P. caudatum so that the highest aggregation of Paramecia cells occurred at the dose of 2 μg morphine + 4 μg nicotine. Significance This confirmed that in eukaryotic unicellular organisms such as P. caudatum, nicotine can reinforce the morphine potency in a dose-dependent manner.
Collapse
|
4
|
Ren M, Lotfipour S. Nicotine Gateway Effects on Adolescent Substance Use. West J Emerg Med 2019; 20:696-709. [PMID: 31539325 PMCID: PMC6754186 DOI: 10.5811/westjem.2019.7.41661] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 11/11/2022] Open
Abstract
Given the rise in teenage use of electronic nicotine delivery systems ("vaping") in congruence with the increasing numbers of drug-related emergencies, it is critical to expand the knowledge of the physical and behavioral risks associated with developmental nicotine exposure. A further understanding of the molecular and neurochemical underpinnings of nicotine's gateway effects allows emergency clinicians to advise patients and families and adjust treatment accordingly, which may minimize the use of tobacco, nicotine, and future substances. Currently, the growing use of tobacco products and electronic cigarettes among teenagers represents a major public health concern. Adolescent exposure to tobacco or nicotine can lead to subsequent abuse of nicotine and other substances, which is known as the gateway hypothesis. Adolescence is a developmentally sensitive time period when risk-taking behaviors, such as sensation seeking and drug experimentation, often begin. These hallmark behaviors of adolescence are largely due to maturational changes in the brain. The developing brain is particularly vulnerable to the harmful effects of drugs of abuse, including tobacco and nicotine products, which activate nicotinic acetylcholine receptors (nAChRs). Disruption of nAChR development with early nicotine use may influence the function and pharmacology of the receptor subunits and alter the release of reward-related neurotransmitters, including acetylcholine, dopamine, GABA, serotonin, and glutamate. In this review, we emphasize that the effects of nicotine are highly dependent on timing of exposure, with a dynamic interaction of nAChRs with dopaminergic, endocannabinoid, and opioidergic systems to enhance general drug reward and reinforcement. We analyzed available literature regarding adolescent substance use and nicotine's impact on the developing brain and behavior using the electronic databases of PubMed and Google Scholar for articles published in English between January 1968 and November 2018. We present a large collection of clinical and preclinical evidence that adolescent nicotine exposure influences long-term molecular, biochemical, and functional changes in the brain that encourage subsequent drug abuse.
Collapse
Affiliation(s)
- Michelle Ren
- University of California, Irvine, Department of Pharmaceutical Sciences, Irvine, California
| | - Shahrdad Lotfipour
- University of California, Irvine, Department of Emergency Medicine and Pharmaceutical Sciences, Irvine, California
| |
Collapse
|
5
|
Zarrindast MR, Khakpai F. The modulatory role of nicotine on cognitive and non-cognitive functions. Brain Res 2019; 1710:92-101. [DOI: 10.1016/j.brainres.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/12/2023]
|
6
|
Elyasi L, Eftekhar-Vaghefi SH, Asadi-Shekaari M, Esmaeili-Mahani S. Induction of cross-tolerance between protective effect of morphine and nicotine in 6-hydroxydopamine-induce neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells. Int J Neurosci 2019; 129:129-138. [PMID: 29947270 DOI: 10.1080/00207454.2018.1494169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/11/2018] [Accepted: 06/21/2018] [Indexed: 01/13/2023]
Abstract
PURPOSE Parkinson's disease is a progressive neurodegenerative disease characterized by progressive and selective death of dopaminergic neurons. It has been reported that nicotine and morphine have protective roles during neuronal damage in Parkinson's disease. In addition, the induction of cross-tolerance between their biological effects has been shown in numerous reports. METHODS Here, we investigated the effects of nicotine and morphine on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson's disease. Cell damage was induced by 150 μM 6-OHDA and the cells viability was examined by MTT assay. Intracellular reactive oxygen species, calcium level, and mitochondrial membrane potential were determined by fluorescence spectrophotometer method. Biochemical markers of apoptosis were also evaluated by immunoblotting. RESULT The data showed that morphine and nicotine prevent 6-OHDA- induced cell damage and apoptosis. However, the protective effects of nicotine were not observed in chronic morphine-pretreated cells. Morphine had no protective effects in chronic nicotine-incubated cells. CONCLUSION A cross-tolerance between protective effects of morphine and nicotine was occurred in 6-OHDA-induced SH-SY5Y cell toxicity.
Collapse
Affiliation(s)
- Leila Elyasi
- a Department of Anatomy, Faculty of Medicine , Neuroscience Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| | - Seyed Hassan Eftekhar-Vaghefi
- b Department of Anatomy, Afzalipour Faculty of Medicine , Kerman University of Medical Sciences , Kerman , Iran
- c Neurosience Research Center , Neuropharmacology Institute, Kerman University of Medical Scieces , Kerman , Iran
| | - Majid Asadi-Shekaari
- b Department of Anatomy, Afzalipour Faculty of Medicine , Kerman University of Medical Sciences , Kerman , Iran
- c Neurosience Research Center , Neuropharmacology Institute, Kerman University of Medical Scieces , Kerman , Iran
| | - Saeed Esmaeili-Mahani
- c Neurosience Research Center , Neuropharmacology Institute, Kerman University of Medical Scieces , Kerman , Iran
- d Department of Biology, Faculty of Sciences , Shahid Bahonar University of Kerman , Kerman , Iran
| |
Collapse
|
7
|
Lichenstein SD, Zakiniaeiz Y, Yip SW, Garrison KA. Mechanisms and Clinical Features of Co-occurring Opioid and Nicotine Use. CURRENT ADDICTION REPORTS 2019; 6:114-125. [PMID: 32864292 DOI: 10.1007/s40429-019-00245-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose of review To review the literature addressing shared pathophysiological and clinical features of opioid and nicotine use to inform etiology and treatment, and highlight areas for future research. Recent findings Opioid and nicotine use co-occur at an alarmingly high rate, and this may be driven in part by interactions between the opioid and cholinergic systems underlying drug reward and the transition to dependence. Pain, among other shared risk factors, is strongly implicated in both opioid and nicotine use and appears to play an important role in their co-occurrence. Additionally, there are important sex/gender considerations that require further study. Regarding treatment, smoking cessation can improve treatment outcomes in opioid use disorder, and pharmacological approaches that target the opioid and cholinergic systems may be effective for treating both classes of substance use disorders. Summary Understanding overlapping etiological and pathophysiological mechanisms of opioid and nicotine use can aid in understanding their co-occurrence and guiding their treatment.
Collapse
Affiliation(s)
| | - Yasmin Zakiniaeiz
- Department of Radiology & Biomedical Imaging, Yale School of Medicine
| | - Sarah W Yip
- Department of Psychiatry, Yale School of Medicine
| | | |
Collapse
|
8
|
Abstract
Along with the well-known rewarding effects, activation of nicotinic acetylcholine receptors (nAChRs) can also relieve pain, and some nicotinic agonists have analgesic efficacy similar to opioids. A major target of analgesic drugs is the descending pain modulatory pathway, including the ventrolateral periaqueductal gray (vlPAG) and the rostral ventromedial medulla (RVM). Although activating nAChRs within this circuitry can be analgesic, little is known about the subunit composition and cellular effects of these receptors, particularly within the vlPAG. Using electrophysiology in brain slices from adult male rats, we examined nAChR effects on vlPAG neurons that project to the RVM. We found that 63% of PAG-RVM projection neurons expressed functional nAChRs, which were exclusively of the α7-subtype. Interestingly, the neurons that express α7 nAChRs were largely nonoverlapping with those expressing μ-opioid receptors (MOR). As nAChRs are excitatory and MORs are inhibitory, these data suggest distinct roles for these neuronal classes in pain modulation. Along with direct excitation, we also found that presynaptic nAChRs enhanced GABAergic release preferentially onto neurons that lacked α7 nAChRs. In addition, presynaptic nAChRs enhanced glutamatergic inputs onto all PAG-RVM projection neuron classes to a similar extent. In behavioral testing, both systemic and intra-vlPAG administration of the α7 nAChR-selective agonist, PHA-543,613, was antinociceptive in the formalin assay. Furthermore, intra-vlPAG α7 antagonist pretreatment blocked PHA-543,613-induced antinociception via either administration method. Systemic administration of submaximal doses of the α7 agonist and morphine produced additive antinociceptive effects. Together, our findings indicate that the vlPAG is a key site of action for α7 nAChR-mediated antinociception.
Collapse
|
9
|
Tirgar F, Rezayof A, Alijanpour S, Yazdanbakhsh N. Interactive effects of morphine and nicotine on memory function depend on the central amygdala cannabinoid CB1 receptor function in rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:62-68. [PMID: 29203303 DOI: 10.1016/j.pnpbp.2017.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/23/2017] [Accepted: 11/30/2017] [Indexed: 11/25/2022]
Abstract
The present study investigated the possible involvement of the central amygdala (CeA) cannabinoid receptors type-1 (CB1Rs) in the interactive effects of morphine and nicotine on memory formation in a passive avoidance learning task. Our results showed that systemic administration of morphine (3 and 6mg/kg, s.c.) immediately after training phase impaired memory consolidation and induced amnesia. Administration of nicotine (0.3 and 0.6mg/kg, s.c.) before testing phase significantly restored morphine-induced amnesia, suggesting a cross state-dependent learning between morphine and nicotine. The results showed that while the administration of the lower dose of nicotine (0.1mg/kg, s.c.) per se did not induce a significant effect on morphine-induced amnesia, intra-CeA injection of arachidonylcyclopropylamide (ACPA), a cannabinoid CB1 receptor agonist (3 and 4ng/rat), significantly potentiated the nicotine response. Furthermore, the blockade of the CeA cannabinoid CB1 receptors by the injection of AM251 (0.75 and 1ng/rat) reversed the potentiative effect of nicotine (0.6mg/kg, s.c.) on morphine-induced amnesia. It should be considered that bilateral injection of the same doses of ACPA or AM251 (0.5-1ng/rat) into the CeA by itself had no effect on morphine response in a passive avoidance learning task. Confirmed by the cubic interpolation planes, the dose-response data revealed a cross-state-dependent learning between morphine and nicotine which may be mediated by the CeA endocannabinoid system via CB1 receptors.
Collapse
Affiliation(s)
- Fatemeh Tirgar
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Nima Yazdanbakhsh
- School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Reyes-Parada M, Iturriaga-Vasquez P. The development of novel polypharmacological agents targeting the multiple binding sites of nicotinic acetylcholine receptors. Expert Opin Drug Discov 2016; 11:969-81. [DOI: 10.1080/17460441.2016.1227317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Levran O, Randesi M, Peles E, Correa da Rosa J, Ott J, Rotrosen J, Adelson M, Kreek MJ. African-specific variability in the acetylcholine muscarinic receptor M4: association with cocaine and heroin addiction. Pharmacogenomics 2016; 17:995-1003. [PMID: 27269905 DOI: 10.2217/pgs-2016-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AIM This study was designed to determine whether polymorphisms in acetylcholine receptors contribute to opioid dependence and/or cocaine dependence. PATIENTS & METHODS The sample (n = 1860) was divided by drug and ancestry, and 55 polymorphisms (nine genes) were analyzed. RESULTS Of the 20 SNPs that showed nominally significant associations, the association of the African-specific CHRM4 SNP rs2229163 (Asn417=) with cocaine dependence survived correction for multiple testing (Pcorrected = 0.047). CHRM4 is located in a region of strong linkage disequilibrium on chromosome 11 that includes genes associated with schizophrenia. CHRM4 SNP rs2229163 is in strong linkage disequilibrium with several African-specific SNPs in DGKZ and AMBRA1. CONCLUSION Cholinergic receptors' variants may contribute to drug addiction and have a potential role as pharmacogenetic markers.
Collapse
Affiliation(s)
- Orna Levran
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Matthew Randesi
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Einat Peles
- Dr Miriam & Sheldon G Adelson Clinic for Drug Abuse Treatment & Research, Tel Aviv Elias Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joel Correa da Rosa
- Center for Clinical & Translational Science, The Rockefeller University, New York, NY 10065, USA
| | - Jurg Ott
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,The Laboratory of Statistical Genetics, The Rockefeller University, New York, NY 10065, USA
| | - John Rotrosen
- VA New York Harbor Healthcare System & NYU School of Medicine, New York, NY 10016, USA
| | - Miriam Adelson
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA.,Dr Miriam & Sheldon G Adelson Clinic for Drug Abuse Treatment & Research, Tel Aviv Elias Sourasky Medical Center, Tel Aviv, Israel.,Dr Miriam & Sheldon G Adelson Clinic for Drug Abuse Treatment & Research, Las Vegas, NV 89169, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
12
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
13
|
Methadone’s effect on nAChRs—a link between methadone use and smoking? Biochem Pharmacol 2015; 97:542-549. [DOI: 10.1016/j.bcp.2015.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022]
|
14
|
Abstract
Practitioners are highly likely to encounter patients with concurrent use of nicotine products and opioid analgesics. Smokers present with more severe and extended chronic pain outcomes and have a higher frequency of prescription opioid use. Current tobacco smoking is a strong predictor of risk for nonmedical use of prescription opioids. Opioid and nicotinic-cholinergic neurotransmitter systems interact in important ways to modulate opioid and nicotine effects: dopamine release induced by nicotine is dependent on facilitation by the opioid system, and the nicotinic-acetylcholine system modulates self-administration of several classes of abused drugs-including opioids. Nicotine can serve as a prime for the use of other drugs, which in the case of the opioid system may be bidirectional. Opioids and compounds in tobacco, including nicotine, are metabolized by the cytochrome P450 enzyme system, but the metabolism of opioids and tobacco products can be complicated. Accordingly, drug interactions are possible but not always clear. Because of these issues, asking about nicotine use in patients taking opioids for pain is recommended. When assessing patient tobacco use, practitioners should also obtain information on products other than cigarettes, such as cigars, pipes, smokeless tobacco, and electronic nicotine delivery systems (ENDS, or e-cigarettes). There are multiple forms of behavioral therapy and pharmacotherapy available to assist patients with smoking cessation, and opioid agonist maintenance and pain clinics represent underutilized opportunities for nicotine intervention programs.
Collapse
|
15
|
Wang K, Qu X, Wang Y, Shen H, Liu Q, Du J. Effect of mu Agonists on Long-Term Survival and Recurrence in Nonsmall Cell Lung Cancer Patients. Medicine (Baltimore) 2015; 94:e1333. [PMID: 26287418 PMCID: PMC4616430 DOI: 10.1097/md.0000000000001333] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Opioids are widely used for postoperative analgesia. Morphine may have an effect on cell replication, migration, and cancer recurrence. However, the association of postoperative mu agonists with outcome of nonsmall cell lung cancer (NSCLC) patients has not been fully investigated.We retrospectively evaluated the impact of postoperative mu agonists on overall survival (OS) and disease-free survival (DFS) in early stage NSCLC patients. Patients and relevant medical information were selected from the Bio-Bank of Shandong Provincial Hospital. Difference of clinicopathologic information in postoperative mu agonists group and no mu agonists group was analyzed by χ test. Univariate and multivariate Cox regression analysis were conducted and represented as hazards ratio and 95% confidence interval form. The primary endpoint was OS and secondary endpoint was DFS.This retrospective study included 984 consecutive NSCLC patients who underwent surgery between January 2006 and December 2011. No significant difference existed between postoperative mu agonists usage group and no mu agonists usage group in clinicopathologic information except operation type (P = 0.041). Postoperative mu agonists usage was related to shorter OS (HR 1.514, 95% CI 1.197-1.916, P = 0.001) and shorter DFS (HR 1.415, 95% CI 1.123-1.781, P = 0.003) in the multivariate Cox regression model. For the patients who received postoperative chemotherapy or radiotherapy postoperative mu agonists also predict shorter survival (HR 1.437, 95% CI 1.041-1.982, P = 0.027). Subgroup analysis showed that administration of postoperative mu agonists was related to shorter OS, especially in males, more smoking, poor differential degree, bilobectomy or pneumonectomy, and stage III subgroup, respectively.Administration of postoperative mu agonists was related to shorter OS and DFS for the NSCLC patients who underwent surgery.
Collapse
Affiliation(s)
- Kai Wang
- From the Institute of Oncology (KW, XQ, YW, QL, JD); Department of Thoracic Surgery (JD); Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China (HS)
| | | | | | | | | | | |
Collapse
|
16
|
The role of nicotinic acetylcholine and opioid systems of the ventral orbital cortex in modulation of formalin-induced orofacial pain in rats. Eur J Pharmacol 2015; 758:147-52. [DOI: 10.1016/j.ejphar.2015.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 12/16/2022]
|
17
|
Xue M, Zhu L, Zhang J, Qiu J, Du G, Qiao Z, Jin G, Gao F, Zhang Q. Low dose nicotine attenuates Aβ neurotoxicity through activation early growth response gene 1 pathway. PLoS One 2015; 10:e0120267. [PMID: 25815723 PMCID: PMC4376385 DOI: 10.1371/journal.pone.0120267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/21/2015] [Indexed: 02/06/2023] Open
Abstract
Epidemiological studies indicate that smoking is negatively correlated with the incidence and development of Alzheimer's disease (AD). Nicotine was reported to be the active factor. However, the detailed mechanisms still remain to be fully elucidated. Early growth response gene 1 (EGR-1) plays important roles in several important biological processes such as promoting cell growth, differentiation, anti oxidative stress, and apoptosis, but few in the pathogenesis of AD. In the present study, we show that nicotine can activate the MAPK/ERK/EGR-1 signaling pathway partially through α7 nAChR. In addition, the up-regulation of EGR-1 by nicotine can also increase the phosphorylation of CyclinD1 which contributes to the attenuation of amyloid-β (Aβ(25-35)) -induced neurotoxicity. Although nicotine and Aβ(25-35) can activate EGR-1, the expression of EGR-1 is down-regulated following treatment with nicotine and Aβ(25-35). This study demonstrates that low dose nicotine attenuates Aβ(25-35)-induced neurotoxicity in vitro and in vivo through activating EGR-1 pathway.
Collapse
Affiliation(s)
- Maoqiang Xue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P.R.China
- Institute of Biomedical Engineering, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, 361005, P.R.China
- Department of Basic Medical Science, Medical College, Xiamen University, Xiamen, Fujian, 361005, P.R.China
| | - Liuwei Zhu
- Department of Basic Medical Science, Medical College, Xiamen University, Xiamen, Fujian, 361005, P.R.China
| | - Jie Zhang
- Department of Basic Medical Science, Medical College, Xiamen University, Xiamen, Fujian, 361005, P.R.China
| | - Jinhua Qiu
- Department of Basic Medical Science, Medical College, Xiamen University, Xiamen, Fujian, 361005, P.R.China
| | - Guicheng Du
- Department of Basic Medical Science, Medical College, Xiamen University, Xiamen, Fujian, 361005, P.R.China
| | - Zhiliang Qiao
- Department of Basic Medical Science, Medical College, Xiamen University, Xiamen, Fujian, 361005, P.R.China
| | - Guanghui Jin
- Department of Basic Medical Science, Medical College, Xiamen University, Xiamen, Fujian, 361005, P.R.China
| | - Fengguang Gao
- Department of Basic Medical Science, Medical College, Xiamen University, Xiamen, Fujian, 361005, P.R.China
| | - Qiqing Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P.R.China
- Institute of Biomedical Engineering, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, 361005, P.R.China
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, The Key Laboratory of Biomedical Material of Tianjin, Tianjin, 300192, P.R.China
- * E-mail:
| |
Collapse
|
18
|
Talka R, Salminen O, Tuominen RK. Methadone is a non-competitive antagonist at the α4β2 and α3* nicotinic acetylcholine receptors and an agonist at the α7 nicotinic acetylcholine receptor. Basic Clin Pharmacol Toxicol 2014; 116:321-8. [PMID: 25196810 DOI: 10.1111/bcpt.12317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/26/2014] [Indexed: 11/30/2022]
Abstract
Nicotine-methadone interactions have been studied in human beings and in various experimental settings regarding addiction, reward and pain. Most methadone maintenance treatment patients are smokers, and methadone administration has been shown to increase cigarette smoking. Previous in vitro studies have shown that methadone is a non-competitive antagonist at rat α3β4 nicotinic acetylcholine receptors (nAChR) and an agonist at human α7 nAChRs. In this study, we used cell lines expressing human α4β2, α7 and α3* nAChRs to compare the interactions of methadone at the various human nAChRs under the same experimental conditions. A [(3) H]epibatidine displacement assay was used to determine whether methadone binds to the nicotinic receptors, and (86) Rb(+) efflux and changes in intracellular calcium [Ca(2+) ]i were used to assess changes in the functional activity of the receptors. Methadone displaced [(3) H]epibatidine from nicotinic agonist-binding sites in SH-EP1-hα7 and SH-SY5Y cells, but not in SH-EP1-hα4β2 cells. The Ki values for methadone were 6.3 μM in SH-EP1-hα7 cells and 19.4 μM and 1008 μM in SH-SY5Y cells. Methadone increased [Ca(2+) ]i in all cell lines in a concentration-dependent manner, and in SH-EP1-hα7 cells, the effect was more pronounced than the effect of nicotine treatment. In SH-EP1-hα4β2 cells, the effect of methadone was negligible compared to that of nicotine. Methadone pre-treatment abolished the nicotine-induced response in [Ca(2+) ]i in all cell lines expressing nAChRs. In SH-EP1-hα4β2 and SH-SY5Y cells, methadone had no effect on the (86) Rb(+) efflux, but it antagonized the nicotine-induced (86) Rb(+) ion efflux in a non-competitive manner. These results suggest that methadone is an agonist at human α7 nAChRs and a non-competitive antagonist at human α4β2 and α3* nAChRs. This study adds further support to the previous findings that opioids interact with nAChRs, which may underlie their frequent co-administration in human beings and might be of interest to the field of drug discovery.
Collapse
Affiliation(s)
- Reeta Talka
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
19
|
Neugebauer NM, Einstein EB, Lopez MB, McClure-Begley TD, Mineur YS, Picciotto MR. Morphine dependence and withdrawal induced changes in cholinergic signaling. Pharmacol Biochem Behav 2013; 109:77-83. [PMID: 23651795 DOI: 10.1016/j.pbb.2013.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/22/2013] [Accepted: 04/26/2013] [Indexed: 02/01/2023]
Abstract
Cholinergic signaling is thought to be involved in morphine dependence and withdrawal, but the specific mechanisms involved remain unclear. The current study aimed to identify alterations in the cholinergic system that may contribute to the development of morphine dependence and withdrawal. Acetylcholinesterase (AChE) activity and [³H]-epibatidine binding were evaluated in order to determine if morphine dependence and withdrawal induces alterations in cholinergic signaling or expression of high affinity nicotinic acetylcholine receptors (nAChRs) in the midbrain (MB), medial habenula (MHb) and interpeduncular nucleus (IPN). The effect of cholinergic signaling through nAChRs on morphine-withdrawal induced jumping behavior was then determined. Lastly, the contribution of β4-containing nAChRs receptors in the MHb to morphine-withdrawal induced jumping behavior and neuronal activity as indicated by c-fos expression was assessed. Chronic morphine administration decreased AChE activity in MB and MHb, an effect that was no longer present following precipitated withdrawal. Morphine dependent mice showed increased nicotinic acetylcholine receptor (nAChR) levels in MB. Further, nicotine (0.4 mg/kg) and lobeline (3 mg/kg) decreased jumping behavior while mecamylamine (1 mg/kg) had no effect. Knock-down of β4 subunit-containing nAChRs in the MHb attenuated c-fos activation, but did not decrease morphine withdrawal-induced jumping. Thus, morphine withdrawal induces cholinergic signaling in the MHb, but this does not appear to be responsible for the effects of cholinergic drugs on somatic signs of opiate withdrawal, as measured by jumping behavior.
Collapse
Affiliation(s)
- Nichole M Neugebauer
- Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|