1
|
Khakpai F, Golshani SP, Alijanpour S, Ebrahimi-Ghiri M, Zarrindast MR. Anxiolytic- and antidepressive-like effects of harmaline in mice are mediated via histamine H3 receptor blockade. Biochem Biophys Res Commun 2024; 736:150879. [PMID: 39467356 DOI: 10.1016/j.bbrc.2024.150879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Many neuropsychiatric disorders can be caused by neurotransmitter dysfunction. Experimental studies have demonstrated that histamine and the harmaline affect physiological processes through interaction with other neurotransmitter systems. The objective of these experiments was to investigate the involvement of the histaminergic system in the effects of harmaline on anxiety- and depressive-related effects in male NMRI mice. Behavioral tests were employed to evaluate anxiety-related symptoms (elevated plus maze; EPM), depressive-like symptoms (forced swim test; FST), and cognitive decline (step-down test). The histamine H3 receptor (H3R) agonist α-methylhistamine dihydrobromide (α-MH; 5 mg/kg, i.p.) had anxiolytic- and depressive-like effects, while the H3R antagonist thioperamide (10 mg/kg, i.p.) showed an antidepressive-like property. The subthreshold dose of α-MH resulted in an increase in the tendency of mice treated with the harmaline (2.5 mg/kg) to remain in the EPM open-arms. A subthreshold dose of thioperamide (5 mg/kg) increased the time spent in the open-arms in mice treated with harmaline (2.5 and 5 mg/kg) while a high dose of harmaline decreased the immobility time. Furthermore, two higher doses of harmaline resulted in a reduction in the number of open-arm entries. Similarly, mice administered with thioperamide and a low dose of harmaline decreased locomotor activity in the EPM. Ultimately, the combined thioperamide and harmaline did not impair memory retrieval of mice. These experiments demonstrate that the histaminergic system is implicated in the anxiety- and depressive-related effects of harmaline. The combination of thioperamide and harmaline is effective in treating anxiety and depression without having an adverse effect on memory formation.
Collapse
Affiliation(s)
- Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Iran
| | - Seyed Parsa Golshani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Thangavelu L, Altamimi ASA, Ghaboura N, Babu MA, Roopashree R, Sharma P, Pal P, Choudhary C, Prasad GVS, Sinha A, Balaraman AK, Rawat S. Targeting the p53-p21 axis in liver cancer: Linking cellular senescence to tumor suppression and progression. Pathol Res Pract 2024; 263:155652. [PMID: 39437639 DOI: 10.1016/j.prp.2024.155652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Liver cancer is a major health epidemic worldwide, mainly due to its high mortality rates and limited treatment options. The association of cellular senescence to tumorigenesis and the cancer hallmarks remains a subject of interest in cancer biology. The p53-p21 signalling axis is an important regulator in restoring the cell's balance by supporting tumor suppression and tumorigenesis in liver cancer. We review the novel molecular mechanisms that p53 and its downstream effector, p21, employ to induce cellular senescence, making it last longer, and halt the proliferation of damaged hepatocytes to become tumorous cells. We also examine how dysregulation of this pathway contributes to HCC pathogenesis, proliferation, survival, acquired resistance to apoptosis, and increased invasiveness. Furthermore, we comprehensively describe the molecular cross-talk between the p53-p21 signalling axis and major cell cycle signalling pathways, including Wnt/β-catenin, PI3K/Akt, and TGF-β in liver cancer and provide an overview of promising candidates for chemoprevention and future therapeutic strategies. This review article explores the roles of the p53-p21 pathway in liver cancer, examining its function in promoting cellular senescence under normal conditions and its potential role in cancer progression. It also highlights novel therapeutic drugs and drug targets within the pathway and discusses the implications for treatment strategies and prognosis in liver cancer.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pusparghya Pal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Chhavi Choudhary
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| |
Collapse
|
3
|
Aboomeirah AA, Kabil MF, Azzazy HMES. Polyvinyl alcohol-chitosan-polyethylene glycol-glycerol incorporated with Peganum harmala loaded in lipid nanocapsules as an elastic nanocomposite surgical sealant to control bleeding. Int J Biol Macromol 2024; 280:135987. [PMID: 39326590 DOI: 10.1016/j.ijbiomac.2024.135987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Uncontrolled hemorrhage remains a critical threat in trauma and surgery. This study developed a novel hemostatic composite by encapsulating Peganum harmala L. seed extract (PH) with known hemostatic properties into lipid nanocapsules (PH-LNCs) and then embedding them within a polyvinyl alcohol-chitosan-polyethylene glycol-glycerol (PVA-CS-PEG-G) matrix. The composite was physically crosslinked via the dual processes of freezing-thawing and thermal crosslinking and exhibited robust mechanical properties reaching 0.434 ± 0.014 MPa and elasticity of 40.685 % ± 4.04. It also demonstrated excellent biocompatibility, surface morphology, physical stability, and ex-vivo skin deposition/permeation were assessed. The characterization of PH-LNCs revealed optimal PH-LNC formation and successful integration into the composite with particle size, zeta potential, and PDI were approximately 45.45 ± 24 nm, -16.3 ± 1.4 mV, and 0.374 ± 0.1, respectively. In vitro studies highlighted enhanced blood clotting and platelet adhesion, while in vivo experiments confirmed superior hemostatic efficacy in a mouse tail amputation model. The composite's soft texture, conformability, and mechanical strength make it a promising candidate for effective traumatic wound management.
Collapse
Affiliation(s)
- Amany A Aboomeirah
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Mohamed Fawzi Kabil
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt.
| |
Collapse
|
4
|
Zheng D, Zuo Y, Li L, McDowell A, Cao Y, Ye X, Zhou H, Peng C, Deng Y, Lu J, Fang Y. Natural harmaline acts as novel fluorescent probe for hypochlorous acid and promising therapeutic candidate for rheumatoid arthritis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112995. [PMID: 39096720 DOI: 10.1016/j.jphotobiol.2024.112995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Endogenous hypochlorous acid (HOCl) is one of the most important reactive oxygen species (ROS) and acts as a distinct biomarker that is involved in various inflammatory responses including rheumatoid arthritis (RA). Therefore, it's crucial to develop an efficient method for the tracking and analysis of HOCl levels in vivo. Natural products continue to be compounds of interest, because they not only offer diverse and specific molecular scaffolds but also provide invaluable sources for new drug discovery. Herein, we firstly demonstrated harmaline (HML), a natural alkaloid mainly found in Peganum harmala L, could be acted as a novel fluorescent probe for HOCl with exceptional precision and responsiveness. Remarkably, this probe not only specifically tracked HOCl levels in cells and inflammatory RA mouse models, but also exhibited effective anti-inflammatory effects on RAW264.7 cells and anti-proliferative effects on fibroblast-like synoviocytes. Furthermore, HML has the potential to alleviate LPS-induced inflammation by inhibiting the NF-κB signaling pathway. This study represents the first example of a natural product that can simultaneously act as a fluorescent probe for specific ROS and a promising therapeutic candidate for a specific disease, which will undoubtedly extend the application of fluorophore-rich natural products.
Collapse
Affiliation(s)
- Dongbin Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Yi Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Longxuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Arlene McDowell
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Yuening Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoping Ye
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, China.
| | - Houcheng Zhou
- Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu 611930, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu 611930, China.
| |
Collapse
|
5
|
Sarkar P, Gopi P, Pandya P, Paria S, Hossain M, Siddiqui MH, Alamri S, Bhadra K. Insights on the comparative affinity of ribonucleic acids with plant-based beta carboline alkaloid, harmine: Spectroscopic, calorimetric and computational evaluation. Heliyon 2024; 10:e34183. [PMID: 39100473 PMCID: PMC11295990 DOI: 10.1016/j.heliyon.2024.e34183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Small molecules as ligands target multifunctional ribonucleic acids (RNA) for therapeutic engagement. This study explores how the anticancer DNA intercalator harmine interacts various motifs of RNAs, including the single-stranded A-form poly (rA), the clover leaf tRNAphe, and the double-stranded A-form poly (rC)-poly (rG). Harmine showed the affinity to the polynucleotides in the order, poly (rA) > tRNAphe > poly (rC)·poly (rG). While no induced circular dichroism change was detected with poly (rC)poly (rG), significant structural alterations of poly (rA) followed by tRNAphe and occurrence of concurrent initiation of optical activity in the attached achiral molecule of alkaloid was reported. At 25 °C, the affinity further showed exothermic and entropy-driven binding. The interaction also highlighted heat capacity (ΔC o p ) and Gibbs energy contribution from the hydrophobic transfer (ΔG hyd) of binding with harmine. Molecular docking calculations indicated that harmine exhibits higher affinity for poly (rA) compared to tRNAphe and poly (rC)·poly (rG). Subsequent molecular dynamics simulations were conducted to investigate the binding mode and stability of harmine with poly(A), tRNAphe, and poly (rC)·poly (rG). The results revealed that harmine adopts a partial intercalative binding with poly (rA) and tRNAphe, characterized by pronounced stacking forces and stronger binding free energy observed with poly (rA), while a comparatively weaker binding free energy was observed with tRNAphe. In contrast, the stacking forces with poly (rC)·poly (rG) were comparatively less pronounced and adopts a groove binding mode. It was also supported by ferrocyanide quenching analysis. All these findings univocally provide detailed insight into the binding specificity of harmine, to single stranded poly (rA) over other RNA motifs, probably suggesting a self-structure formation in poly (rA) with harmine and its potential as a lead compound for RNA based drug targeting.
Collapse
Affiliation(s)
- Paromita Sarkar
- University of Kalyani, Department of Zoology, Nadia, W. Bengal, 741235, India
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Samaresh Paria
- Vidyasagar University, Department of Chemistry, Midnapore 721 102, West Bengal, India
| | - Maidul Hossain
- Vidyasagar University, Department of Chemistry, Midnapore 721 102, West Bengal, India
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kakali Bhadra
- University of Kalyani, Department of Zoology, Nadia, W. Bengal, 741235, India
| |
Collapse
|
6
|
Ruffell SGD, Crosland‐Wood M, Palmer R, Netzband N, Tsang W, Weiss B, Gandy S, Cowley‐Court T, Halman A, McHerron D, Jong A, Kennedy T, White E, Perkins D, Terhune DB, Sarris J. Ayahuasca: A review of historical, pharmacological, and therapeutic aspects. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e146. [PMID: 38868739 PMCID: PMC11114307 DOI: 10.1002/pcn5.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 06/14/2024]
Abstract
Ayahuasca is a psychedelic plant brew originating from the Amazon rainforest. It is formed from two basic components, the Banisteriopsis caapi vine and a plant containing the potent psychedelic dimethyltryptamine (DMT), usually Psychotria viridis. Here we review the history of ayahuasca and describe recent work on its pharmacology, phenomenological responses, and clinical applications. There has been a significant increase in interest in ayahuasca since the turn of the millennium. Anecdotal evidence varies significantly, ranging from evangelical accounts to horror stories involving physical and psychological harm. The effects of the brew on personality and mental health outcomes are discussed in this review. Furthermore, phenomenological analyses of the ayahuasca experience are explored. Ayahuasca is a promising psychedelic agent that warrants greater empirical attention regarding its basic neurochemical mechanisms of action and potential therapeutic application.
Collapse
Affiliation(s)
- Simon G. D. Ruffell
- Onaya ScienceIquitosPeru
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Max Crosland‐Wood
- Onaya ScienceIquitosPeru
- Psychology and Psychotherapy departmentCentral and North West London NHS TrustLondonUK
| | - Rob Palmer
- Onaya ScienceIquitosPeru
- School of MedicineUniversity of YaleNew HavenConnecticutUSA
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | | | - WaiFung Tsang
- Onaya ScienceIquitosPeru
- Institute of Psychology, Psychiatry and NeuroscienceSouth London and The Maudsley NHS TrustLondonUK
- Department of Psychology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Brandon Weiss
- Onaya ScienceIquitosPeru
- Division of PsychiatryImperial College LondonLondonUK
| | | | - Tessa Cowley‐Court
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Andreas Halman
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | | | - Angelina Jong
- Institute of Psychology, Psychiatry and NeuroscienceSouth London and The Maudsley NHS TrustLondonUK
- Department of Psychology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | | | | | - Daniel Perkins
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
- Centre for Mental HealthSwinburne UniversityMelbourneAustralia
| | - Devin B. Terhune
- Psychology and Psychotherapy departmentCentral and North West London NHS TrustLondonUK
| | - Jerome Sarris
- Psychae InstituteMelbourneVictoriaAustralia
- NICM Health Research InstituteWestern Sydney UniversitySydneyAustralia
- Florey Institute for Neuroscience and Mental HealthUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
7
|
Keihanian F, Moohebati M, Saeidinia A, Mohajeri SA. Iranian traditional medicinal plants for management of chronic heart failure: A review. Medicine (Baltimore) 2023; 102:e33636. [PMID: 37171363 PMCID: PMC10174410 DOI: 10.1097/md.0000000000033636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Chronic heart failure is a public health problem with a high prevalence worldwide and an important topic in clinical cardiology. Despite of advances in the drug treatment strategy for heart failure, the number of deaths from this condition continues to rise. It will be a renewed focus on preventing heart failure using proven and perhaps novel drugs. Management will also focus on comorbid conditions that may influence the progression of the disease. Traditional medicine has a potential to introduce different approaches for treatment of some disorders. We here reviewed top medicinal plants, according to traditional medicine to experimental studies, and their potency for the treatment of chronic heart failure based on the evidence of their functions.
Collapse
Affiliation(s)
- Faeze Keihanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cardiovascular Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Moohebati
- Cardiovascular Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Saeidinia
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pediatric Department, Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Álvarez-Rodríguez S, Alvite CM, Reigosa MJ, Sánchez-Moreiras AM, Araniti F. Application of Indole-Alkaloid Harmaline Induces Physical Damage to Photosystem II Antenna Complexes in Adult Plants of Arabidopsis thaliana (L.) Heynh. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6073-6086. [PMID: 37026701 PMCID: PMC10119982 DOI: 10.1021/acs.jafc.3c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Finding herbicides with new and multiple modes of action is a solution to stop the increase in resistant weed species. Harmaline, a natural alkaloid with proven phytotoxic potential, was tested on Arabidopsis adult plants by watering and spraying; watering resulted as the more effective treatment. Harmaline altered several photosynthetic parameters, reducing the efficiency of the light- (ΦII) and dark-adapted (Fv/Fm) PSII, suggesting physical damages in photosystem II, although dissipation of the energy in excess under the form of heat was not compromised as demonstrated by the significant increase in ΦNPQ. Metabolomic alterations, such as osmoprotectant accumulation and reduction in sugars' content, also indicate a reduction of photosynthetic efficiency and suggest early senescence and water status alteration induced by harmaline. Data suggest that harmaline might be considered a new phytotoxic molecule interesting for further studies.
Collapse
Affiliation(s)
- Sara Álvarez-Rodríguez
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Carla M. Alvite
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Manuel J. Reigosa
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Adela M. Sánchez-Moreiras
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Fabrizio Araniti
- Dipartimento
di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria n° 2, 20133 Milano, Italy
| |
Collapse
|
9
|
Jiang N, Chen L, Li J, Li W, Jiang S. Lethal and Sublethal Toxicity of Beta-Carboline Alkaloids from Peganum harmala (L.) against Aedes albopictus Larvae (Diptera: Culicidae). TOXICS 2023; 11:341. [PMID: 37112568 PMCID: PMC10143510 DOI: 10.3390/toxics11040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Plant-derived agents are powerful bio-pesticides for the eco-friendly control of mosquito vectors and other blood-sucking arthropods. The larval toxicity of beta-carboline alkaloids against the Asian tiger mosquito, Aedes albopictus (Skuse) (Diptera: Culicidae), was investigated under laboratory conditions. The total alkaloid extracts (TAEs) and beta-carboline alkaloids (harmaline, harmine, harmalol, and harman) from Peganum harmala seeds were isolated and tested in this bioassay. All alkaloids were tested either individually or as binary mixtures, using the co-toxicity coefficient (CTC) and Abbott's formula analysis. The results revealed considerable toxicity of the tested alkaloids against A. albopictus larvae. When all larval instars were exposed to the TAEs at 48 h post-treatment, the mortality of all larval instars varied in a concentration-dependent manner. The second-instar larvae were the most susceptible to different concentrations of TAEs, and the fourth-instar larvae were more tolerant to TAEs than the second-instar larvae. Especially, the third-instar larvae exposed to all alkaloids also showed that all doses resulted in an increased mortality of the third-instar larvae at 48 h post-treatment, and the toxicities of the tested alkaloids in a descending order were TAEs > harmaline > harmine > harmalol, with the LC50 values of 44.54 ± 2.56, 55.51 ± 3.01, 93.67 ± 4.53, and 117.87 ± 5.61 μg/mL at 48 h post-treatment, respectively. In addition, all compounds were also tested individually or in a 1:1 ratio (dose LC25/LC25) as binary mixtures to assess the synergistic toxicity of these binary combinations against the third-instar larvae at 24 and 48 h post-treatment, respectively. The results demonstrated that when tested as a binary mixture, all compounds (especially TAEs, harmaline, and harmine) showed their synergistic effects, exceeding the toxicity of each compound alone. Interestingly, the obtained data further revealed that the TAEs at sublethal doses (LC10 and LC25) could significantly delay the larval development and decrease the pupation and emergence rates of A. albopictus. This phenomenon could be helpful in order to develop more effective control strategies for different notorious vector mosquitoes.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Li Chen
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Jinmei Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| |
Collapse
|
10
|
Vahedi MM, Shahini A, Mottahedi M, Garousi S, Shariat Razavi SA, Pouyamanesh G, Afshari AR, Ferns GA, Bahrami A. Harmaline exerts potentially anti-cancer effects on U-87 human malignant glioblastoma cells in vitro. Mol Biol Rep 2023; 50:4357-4366. [PMID: 36943605 DOI: 10.1007/s11033-023-08354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Harmaline is a β-carboline alkaloid that can be extracted from the seeds of Peganum harmala. Harmaline has been shown to exhibit a potent cytotoxic effect against tumor cells. In this study, the anti-glioblastoma activity of harmaline was investigated in vitro. METHODS AND RESULTS Cell viability, apoptosis, and cell cycle arrest were assessed in U-87 cells treated with harmaline at different doses. Reactive oxygen species (ROS) generation and the mRNA expression of apoptosis-associated genes were assessed. The anti-metastatic effect of harmaline on U-87 cells was evaluated by gelatin zymography assay where matrix metalloproteinase [MMP]-2/-9 enzymatic activity was measured, and the scratch assay was used to assess migratory responses. Flow cytometry demonstrated that harmaline could suppress the proliferation and induce sub-G1 cell cycle arrest and apoptotic cell death in glioblastoma cells. Harmaline treatment was also associated with an upregulation of the cell cycle-related genes, p21 and p53, and pro-apoptotic Bax, as well as the induction of ROS. The zymography assay indicated that the essential steps of metastasis were potently suppressed by harmaline through inhibiting the expression of MMP-2 and - 9. In addition, the migration of U-87 cells was significantly reduced after harmaline treatment. CONCLUSION Our data suggest a basis for further research of harmaline which has potential cytotoxic activities in glioblastoma cells; inducing cell cycle arrest and apoptosis, repression of migration, possibly invasion, and metastasis.
Collapse
Affiliation(s)
- Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ghazaleh Pouyamanesh
- Department of medical laboratory science, Mashhad branch, Islamic Azad University, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Afsane Bahrami
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Segers A, de Vos WM. Mode of action of Akkermansia muciniphila in the intestinal dialogue: role of extracellular proteins, metabolites and cell envelope components. MICROBIOME RESEARCH REPORTS 2023; 2:6. [PMID: 38045608 PMCID: PMC10688800 DOI: 10.20517/mrr.2023.05] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 12/05/2023]
Abstract
Akkermansia muciniphila is a promising next-generation beneficial microbe due to its natural presence in the mucus layer of the gut, its symbiotic ability to degrade mucus, and its capacity to improve the intestinal barrier function. A. muciniphila is able to counteract weight gain and immuno-metabolic disturbances in several animal models. Many of these disorders, including obesity and auto-immune diseases, have been associated with decreased gut barrier function and consequent increased inflammation. Since A. muciniphila was found to normalize these changes and strengthen the gut barrier function, it is hypothesized that other beneficial effects of A. muciniphila might be caused by this restoration. In search for A. muciniphila's mode of action in enhancing the gut barrier function and promoting health, we reasoned that secreted components or cell envelope components of A. muciniphila are interesting candidates as they can potentially reach and interact with the epithelial barrier. In this review, we focus on the potential mechanisms through which A. muciniphila can exert its beneficial effects on the host by the production of extracellular and secreted proteins, metabolites and cell envelope components. These products have been studied in isolation for their structure, signaling capacity, and in some cases, also for their effects in preclinical models. This includes the protein known as Amuc_1100, which we here rename as pilus-associated signaling (PAS) protein , the P9 protein encoded by Amuc_1631, the short-chain fatty acids acetate and propionate, and cell envelope components, such as phosphatidylethanolamine and peptidoglycan.
Collapse
Affiliation(s)
- Anneleen Segers
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
12
|
Xie J, Li H, Zhang X, Yang T, Yue M, Zhang Y, Chen S, Cui N, Yuan C, Li J, Zhu SJ, Liu W. Akkermansia muciniphila protects mice against an emerging tick-borne viral pathogen. Nat Microbiol 2023; 8:91-106. [PMID: 36604506 DOI: 10.1038/s41564-022-01279-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/26/2022] [Indexed: 01/07/2023]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease caused by a phlebovirus in the Bunyaviridae family. Infection can result in systemic inflammatory response syndrome with a high fatality rate, and there are currently no treatments or vaccines available. The microbiota has been implicated in host susceptibility to systemic viral infection and disease outcomes, but whether the gut microbiota is implicated in severe fever with thrombocytopenia syndrome virus (SFTSV) infection is unknown. Here, we analysed faecal and serum samples from patients with SFTS using 16S ribosomal RNA-sequencing and untargeted metabolomics, respectively. We found that the gut commensal Akkermansia muciniphila increased in relative abundance over the course of infection and was reduced in samples from deceased patients. Using germ-free or oral antibiotic-treated mice, we found that A. muciniphila produces the β-carboline alkaloid harmaline, which protects against SFTSV infection by suppressing NF-κB-mediated systemic inflammation. Harmaline indirectly modulated the virus-induced inflammatory response by specifically enhancing bile acid-CoA: amino acid N-acyltransferase expression in hepatic cells to increase conjugated primary bile acids, glycochenodeoxycholic acid and taurochenodeoxycholic acid. These bile acids induced transmembrane G-protein coupled receptor-5-dependent anti-inflammatory responses. These results indicate the probiotic potential of A. muciniphila in mitigating SFTSV infection.
Collapse
Affiliation(s)
- Jinyan Xie
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Tong Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Mengjia Yue
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Yunfa Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Shuxian Chen
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Ning Cui
- The 990 Hospital, People's Liberation Army, Xinyang, P. R. China
| | - Chun Yuan
- The 990 Hospital, People's Liberation Army, Xinyang, P. R. China
| | - Jingyun Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Shu Jeffrey Zhu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, P. R. China.
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.
- School of Public Health, Peking University, Beijing, P. R. China.
| |
Collapse
|
13
|
Denofrio MP, Paredes JM, Yañuk JG, Giron MD, Salto R, Talavera EM, Crovetto L, Cabrerizo FM. Photosensitizing properties and subcellular localisation of 3,4-dihydro-β-carbolines harmaline and harmalol. Photochem Photobiol Sci 2022; 22:487-501. [PMID: 36402936 DOI: 10.1007/s43630-022-00328-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
Abstract
AbstractHarmaline (1) and harmalol (2) represent two 3,4-dihydro-β-carboline (DHβCs) most frequently reported in a vast number of living systems. Fundamental aspects including the photosensitizing properties, cellular uptake, as well as the cyto- and phototoxicity of 1 and 2 were investigated herein. The molecular basis underlying the investigated processes are elucidated. Data reveal that both alkaloids show a distinctive pattern of extracellular DNA photodamage. Compound 1 induces a DNA photodamage profile dominated by oxidised purines and sites of base loss (AP sites), whereas 2 mostly induces single-strand breaks (SSBs) in addition to a small extent of purine oxidative damage. In both cases, DNA oxidative damage would occur through type I mechanism. In addition, a concerted hydrolytic attack is suggested as an extra mechanism accounting for the SSBs formation photoinduced by 2. Subcellular internalisation, cyto- and phototoxicity of 1 and 2 and the corresponding full-aromatic derivatives harmine (3) and harmol (4) also showed quite distinctive patterns in a structure-dependent manner. These results are discussed in the framework of the potential biological, biomedical and/or pharmacological roles reported for these alkaloids.
Graphical abstract
The subtle structural difference (i.e., the exchange of a methoxy group for a hydroxyl substituent at C(7)) between harmaline and harmalol, gives rise to distinctive photosensitizing and subcellular localisation patterns.
Collapse
Affiliation(s)
- M Paula Denofrio
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina.
- Escuela de Bio Y Nanotecnologías (UNSAM), Chascomús, Argentina.
| | - Jose M Paredes
- Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Química Aplicada a Biomedicina Y Medioambiente (UEQ), University of Granada, Cartuja Campus, 18071, Granada, Spain
| | - Juan G Yañuk
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina
- Escuela de Bio Y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Maria D Giron
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Unidad de Excelencia en Química Aplicada a Biomedicina Y Medioambiente (UEQ), University of Granada, Cartuja Campus, 18071, Granada, Spain
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Unidad de Excelencia en Química Aplicada a Biomedicina Y Medioambiente (UEQ), University of Granada, Cartuja Campus, 18071, Granada, Spain
| | - Eva M Talavera
- Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Química Aplicada a Biomedicina Y Medioambiente (UEQ), University of Granada, Cartuja Campus, 18071, Granada, Spain
| | - Luis Crovetto
- Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Química Aplicada a Biomedicina Y Medioambiente (UEQ), University of Granada, Cartuja Campus, 18071, Granada, Spain.
| | - Franco M Cabrerizo
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina.
- Escuela de Bio Y Nanotecnologías (UNSAM), Chascomús, Argentina.
| |
Collapse
|
14
|
Targeting inhibition of microtubule affinity regulating kinase 4 by Harmaline: Strategy to combat Alzheimer's disease. Int J Biol Macromol 2022; 224:188-195. [DOI: 10.1016/j.ijbiomac.2022.10.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
15
|
Qin R, You FM, Zhao Q, Xie X, Peng C, Zhan G, Han B. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J Hematol Oncol 2022; 15:133. [PMID: 36104717 PMCID: PMC9471064 DOI: 10.1186/s13045-022-01350-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/03/2022] [Indexed: 12/11/2022] Open
Abstract
Regulated cell death (RCD) is a critical and active process that is controlled by specific signal transduction pathways and can be regulated by genetic signals or drug interventions. Meanwhile, RCD is closely related to the occurrence and therapy of multiple human cancers. Generally, RCD subroutines are the key signals of tumorigenesis, which are contributed to our better understanding of cancer pathogenesis and therapeutics. Indole alkaloids derived from natural sources are well defined for their outstanding biological and pharmacological properties, like vincristine, vinblastine, staurosporine, indirubin, and 3,3′-diindolylmethane, which are currently used in the clinic or under clinical assessment. Moreover, such compounds play a significant role in discovering novel anticancer agents. Thus, here we systemically summarized recent advances in indole alkaloids as anticancer agents by targeting different RCD subroutines, including the classical apoptosis and autophagic cell death signaling pathways as well as the crucial signaling pathways of other RCD subroutines, such as ferroptosis, mitotic catastrophe, necroptosis, and anoikis, in cancer. Moreover, we further discussed the cross talk between different RCD subroutines mediated by indole alkaloids and the combined strategies of multiple agents (e.g., 3,10-dibromofascaplysin combined with olaparib) to exhibit therapeutic potential against various cancers by regulating RCD subroutines. In short, the information provided in this review on the regulation of cell death by indole alkaloids against different targets is expected to be beneficial for the design of novel molecules with greater targeting and biological properties, thereby facilitating the development of new strategies for cancer therapy.
Collapse
|
16
|
Zorrilla JG, Evidente A. Structures and Biological Activities of Alkaloids Produced by Mushrooms, a Fungal Subgroup. Biomolecules 2022; 12:biom12081025. [PMID: 35892335 PMCID: PMC9332295 DOI: 10.3390/biom12081025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Alkaloids are a wide family of basic N-containing natural products, whose research has revealed bioactive compounds of pharmacological interest. Studies on these compounds have focused more attention on those produced by plants, although other types of organisms have also been proven to synthesize bioactive alkaloids, such as animals, marine organisms, bacteria, and fungi. This review covers the findings of the last 20 years (2002–2022) related to the isolation, structures, and biological activities of the alkaloids produced by mushrooms, a fungal subgroup, and their potential to develop drugs and agrochemicals. In some cases, the synthesis of the reviewed compounds and structure−activity relationship studies have been described.
Collapse
Affiliation(s)
- Jesús G. Zorrilla
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cadiz, C/Republica Saharaui, s/n, 11510 Puerto Real, Spain
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy;
- Correspondence:
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy;
| |
Collapse
|
17
|
Alijanpour S, Ghasemzadeh Z, Ebrahimi-Ghiri M, Zarrindast MR. Basolateral amygdala cannabinoid CB1 receptors mediate the antinociceptive activity of harmaline in adolescent male mice. Physiol Behav 2022; 254:113886. [PMID: 35718215 DOI: 10.1016/j.physbeh.2022.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Evidence suggests a clear role for the amygdala endocannabinoid system in pain processing. Harmaline has been also known as the main nociceptive agent extracted from the Peganum harmala plant. In this study, the role of basolateral amygdala (BLA) cannabinoid CB1 receptors in pain sensitivity of harmaline-treated mice were assessed using tail-flick and hot plate methods in adolescent male NMRI mice. Intraperitoneal administration of two higher doses of harmaline (6 and 8 mg/kg) increased tail-flick latency, suggesting an antinociceptive activity. The same result was observed for the higher dose of harmaline in the hot plate test. Intra-BLA microinjection of CB1 receptor agonist ACPA (1 and 1.5 ng/mouse) or (1.5 ng/mouse) enhanced the ineffective dose-response of harmaline on pain threshold in the tail-flick or hot plate tests, respectively. Microinjection of two higher doses of CB1 receptor antagonist AM251 (0.5 and 1 ng/mouse) attenuated the antinociceptive activity of harmaline (8 ng/mouse) in both tail-flick and hot plate tests. Meanwhile, ACPA and AM251 did not alter latency to withdraw from the noxious stimulus in both tests, by themselves. It should be noted that the analgesic dose of the drugs alone or in combination did not affect locomotor activity. The obtained results highlight that BLA CB1 receptors mediate the antinociceptive activity of harmaline.
Collapse
Affiliation(s)
- Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, P. O. Box 163, Gonbad Kavous, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Tian C, Huang S, Xu Z, Liu W, Li D, Liu M, Zhu C, Wu L, Jiang X, Ding H, Zhao Q. Design, synthesis, and biological evaluation of β-carboline 1,3,4-oxadiazole based hybrids as HDAC inhibitors with potential antitumor effects. Bioorg Med Chem Lett 2022; 64:128663. [PMID: 35272009 DOI: 10.1016/j.bmcl.2022.128663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
A series of novel β-carboline 1,3,4-oxadiazole based hybrids were designed, synthesized, and tested for cytotoxicity and HDAC inhibition. Among the target compounds, compound ZDLT-1 displayed high inhibitory activity for class I HDACs 1, 2, and 3, and potent anti-proliferative activity against HCT116 cells with an IC50 value of 0.173 ± 0.018 μM, it also exhibited better inhibitory activity with an IC50 value of 6 nM for HDAC6 than SAHA (IC50 = 15 nM). Furthermore, the pharmacological experiment of Hoechst staining, colony formation, cell apoptosis assay, and wound healing scratch assay indicated that compound ZDLT-1 was a potent cytotoxic agent against HCT116 cells with cell apoptosis induction. Further, in silico prediction of physicochemical properties, drug-likeness, and ADME parameters suggested that compound ZDLT-1 is a promising anticancer agent. Taken together, the high potency cytotoxicity and class I HDACs inhibitory activity of compound ZDLT-1, which with the β-carboline 1,3,4-oxadiazole based hybrids as potent anticancer agents could be nominated for further modification and optimization.
Collapse
Affiliation(s)
- Caizhi Tian
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shuoqi Huang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zihua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China
| | - Wenwu Liu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Deping Li
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Mingyue Liu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Chengze Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Limeng Wu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiaowen Jiang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Huaiwei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
19
|
Szilágyi A, Takács B, Szekeres R, Tarjányi V, Bombicz M, Priksz D, Kovács A, Juhász B, Frecska E, Szilvássy Z, Varga B. Therapeutic Properties of Ayahuasca Components in Ischemia/Reperfusion Injury of the Eye. Biomedicines 2022; 10:997. [PMID: 35625734 PMCID: PMC9138933 DOI: 10.3390/biomedicines10050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic eye diseases are major causes of vision impairment. Thus, potential retinoprotective effects of N'N-dimethyltryptamine (DMT) were investigated. To inhibit its rapid breakdown by monoamine-oxidase A (MAO-A) enzyme, DMT was co-administered with harmaline, a β-carboline in the Amazonian Ayahuasca brew. Using ligation, 60 min of ischemia was provoked in eyes of rats, followed by 7 days of reperfusion whilst animals received harmaline alone, DMT + harmaline, or vehicle treatment. After 1 week of reperfusion, electroretinographical (ERG) measurements, histological analysis, and Western blot were performed. Harmaline alone exhibited retinoprotection in ischemia-reperfusion (I/R) which was, surprisingly, counterbalanced by DMT in case of co-administration. As both MAO-A inhibition and DMT increase serotoninergic tone synergistically, communicated to be anti-ischemic, thus, involvement of other pathways was investigated. Based on our experiments, DMT and harmaline exert opposite effects on important ocular proteins such as PARP1, NFκB, MMP9, or HSP70, each having a critical role in a different mechanism of eye-ischemia-related pathologies, e.g., cell death, inflammation, tissue destruction, and oxidative stress. Since DMT is proclaimed to be a promising drug candidate, its potentially undesirable effect on eye-ischemia should be further investigated. Meanwhile, this experiment revealed the potential therapeutic effect of MAO-A inhibitor harmaline in I/R-related eye diseases.
Collapse
Affiliation(s)
- Anna Szilágyi
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| | - Barbara Takács
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| | - Réka Szekeres
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| | - Vera Tarjányi
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| | - Dániel Priksz
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| | - Attila Kovács
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.K.); (E.F.)
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| | - Ede Frecska
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.K.); (E.F.)
| | - Zoltán Szilvássy
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| | - Balázs Varga
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| |
Collapse
|
20
|
Sun CP, Yi J, Wei F, Lv X, Deng S, Zhang BJ, Zhao WY, Ma XC. UV-light-driven photooxidation of harmaline catalyzed by riboflavin: Product characterization and mechanisms. Fitoterapia 2021; 155:105054. [PMID: 34626737 DOI: 10.1016/j.fitote.2021.105054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
β-Carboline alkaloid harmaline (HA) is a candidate drug molecule that has been proven to have broad and significant biological activity. Herein, the effects of HA on the riboflavin (RF)-sensitized photooxidation under aerobic conditions were studied for the first time. The photooxidation reaction of HA catalyzed by RF is triggered by UV light at 365 nm and shows a time-dependent stepwise reaction process. Seven transformed products, including five undescribed compounds, oxoharmalines A-E (1-4 and 7), and two known compounds, N-(2-(6-Methoxy-2-oxoindolin-3-yl)ethyl)acetamide (5) and harmine (6), were isolated and identified from the reaction system, following as the gradual oxidation mechanisms. The rare polymerization and dehydrogenation processes in radical-mediated photocatalytic reactions were involved in the process. The transformed products 2-7 exhibited significant neuroprotective activity in a model of H2O2-introduced injury in SH-SY5Y cells, which suggested that the products of the interaction between HA and vitamins may be beneficial to health.
Collapse
Affiliation(s)
- Cheng-Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jing Yi
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Fan Wei
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xia Lv
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Sa Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Bao-Jing Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Wen-Yu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Xiao-Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
21
|
Xu GB, Zhu QF, Wang Z, Zhang CL, Yang X, Zhang JJ, Wang FR, Liu J, Zhou M, Wang YL, He X, Gan LS, Liao SG. Pseudosterins A-C, Three 1-Ethyl-3-formyl-β-carbolines from Pseudostellaria heterophylla and Their Cardioprotective Effects. Molecules 2021; 26:molecules26165045. [PMID: 34443633 PMCID: PMC8398031 DOI: 10.3390/molecules26165045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/03/2022] Open
Abstract
Pseudostellaria heterophylla is used in China not only as a functional food but also as an herb to tonify the spleen, enhance immunity, and treat palpitation. Our previous investigation showed that a fraction enriched in glycosides obtained from the roots of P. heterophylla possessed pronounced protective effects on H9c2 cells against CoCl2-induced hypoxic injury. However, the active compounds responsible for the observed effects were still unknown. In the current investigation, pseudosterins A–C (1–3), three new alkaloids with a 1-ethyl-3-formyl-β-carboline skeleton, together with polydatin, have been isolated from the active fraction. Their structures were elucidated on the basis of spectroscopic analysis and quantum chemical calculations. The four compounds showed cardioprotective effects against sodium hydrosulfite-induced hypoxia-reoxygenation injury in H9c2 cells, with the three alkaloids being more potent. This is also the first report of alkaloids with a β-carboline skeleton isolated from P. heterophylla as cardioprotective agents.
Collapse
Affiliation(s)
- Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; (G.-B.X.); (Q.-F.Z.); (C.-L.Z.); (X.Y.); (J.-J.Z.); (F.-R.W.); (J.L.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (M.Z.); (Y.-L.W.)
| | - Qin-Feng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; (G.-B.X.); (Q.-F.Z.); (C.-L.Z.); (X.Y.); (J.-J.Z.); (F.-R.W.); (J.L.)
| | - Zhen Wang
- College of Pharmacy, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China;
| | - Chun-Li Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; (G.-B.X.); (Q.-F.Z.); (C.-L.Z.); (X.Y.); (J.-J.Z.); (F.-R.W.); (J.L.)
| | - Xin Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; (G.-B.X.); (Q.-F.Z.); (C.-L.Z.); (X.Y.); (J.-J.Z.); (F.-R.W.); (J.L.)
| | - Jin-Juan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; (G.-B.X.); (Q.-F.Z.); (C.-L.Z.); (X.Y.); (J.-J.Z.); (F.-R.W.); (J.L.)
| | - Fu-Rui Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; (G.-B.X.); (Q.-F.Z.); (C.-L.Z.); (X.Y.); (J.-J.Z.); (F.-R.W.); (J.L.)
| | - Jun Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; (G.-B.X.); (Q.-F.Z.); (C.-L.Z.); (X.Y.); (J.-J.Z.); (F.-R.W.); (J.L.)
| | - Meng Zhou
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (M.Z.); (Y.-L.W.)
| | - Yong-Lin Wang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (M.Z.); (Y.-L.W.)
| | - Xun He
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; (G.-B.X.); (Q.-F.Z.); (C.-L.Z.); (X.Y.); (J.-J.Z.); (F.-R.W.); (J.L.)
- Correspondence: (X.H.); (L.-S.G.); (S.-G.L.)
| | - Li-She Gan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, China
- Correspondence: (X.H.); (L.-S.G.); (S.-G.L.)
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; (G.-B.X.); (Q.-F.Z.); (C.-L.Z.); (X.Y.); (J.-J.Z.); (F.-R.W.); (J.L.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (M.Z.); (Y.-L.W.)
- Correspondence: (X.H.); (L.-S.G.); (S.-G.L.)
| |
Collapse
|
22
|
Sun J, Wang J, Wang X, Hu X, Cao H, Bai J, Li D, Hua H. Design and synthesis of β-carboline derivatives with nitrogen mustard moieties against breast cancer. Bioorg Med Chem 2021; 45:116341. [PMID: 34365102 DOI: 10.1016/j.bmc.2021.116341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
To discover the promising antitumor agents, a series of β-carboline derivatives with nitrogen mustard moieties were designed and synthesized. Most target derivatives showed antiproliferative activity against MCF-7 and MDA-MB-231 cells. Among them, (1-methyl-9H-pyrido[3,4-b]indol-3-yl)methyl (S)-3-(4-(bis(2-chloroethyl)amino)phenyl)-2-formamidopropanoate possessed the most potent antiproliferative activity with IC50 values of 1.79 μM and 4.96 μM, respectively, which were significantly higher than that of the parent compounds, and the efficacy was comparable to that of the positive control doxorubicin. More importantly, it showed weak cytotoxicity against human normal breast cell line MCF-10A (IC50 > 20 μM), exhibiting certain selectivity. Subsequently, further mechanism exploration indicated that it induced G2/M phase cell cycle arrest and apoptosis in MDA-MB-231 cells. The DCFH-DA fluorescent probe assay and comet assay showed that this compound could cause intracellular ROS accumulation and DNA damage. In addition, it exerted potent inhibitory effect on the migration, invasion and adhesion of MDA-MB-231 cells in vitro. In short, (1-methyl-9H-pyrido[3,4-b]indol-3-yl)methyl (S)-3-(4-(bis(2-chloroethyl)amino)phenyl)-2-formamidopropanoate was considered as a promising compound for anti-breast cancer.
Collapse
Affiliation(s)
- Jianan Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jiesen Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Xinyan Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jiao Bai
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
23
|
Design and Synthesis of Aza-β-Carboline Analogs and their Antibacterial Evaluation. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Peganum spp.: A Comprehensive Review on Bioactivities and Health-Enhancing Effects and Their Potential for the Formulation of Functional Foods and Pharmaceutical Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5900422. [PMID: 34257813 PMCID: PMC8260309 DOI: 10.1155/2021/5900422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022]
Abstract
The genus Peganum includes four species widely distributed in warm temperate to subtropical regions from the Mediterranean to Mongolia as well as certain regions in America. Among these species, Peganum harmala L., distributed from the Mediterranean region to Central Asia, has been studied and its phytochemical profile, traditional folk use, and application in pharmacological and clinical trials are well known. The review is aimed at presenting an insight into the botanical features and geographical distribution of Peganum spp. along with traditional folk uses. This manuscript also reviews the phytochemical profile of Peganum spp. and its correlation with biological activities evidenced by the in vitro and in vivo investigations. Moreover, this review gives us an understanding of the bioactive compounds from Peganum as health promoters followed by the safety and adverse effects on human health. In relation to their multipurpose therapeutic properties, various parts of this plant such as seeds, bark, and roots present bioactive compounds promoting health benefits. An updated search (until December 2020) was carried out in databases such as PubMed and ScienceDirect. Chemical studies have presented beta-carboline alkaloids as the most active constituents, with harmalol, harmaline, and harmine being the latest and most studied among these naturally occurring alkaloids. The Peganum spp. extracts have shown neuroprotective, anticancer, antimicrobial, and antiviral effects. The extracts are also found effective in improving respiratory disorders (asthma and cough conditions), dermatoses, and knee osteoarthritis. Bioactivities and health-enhancing effects of Peganum spp. make it a potential candidate for the formulation of functional foods and pharmaceutical drugs. Nevertheless, adverse effects of this plant have also been described, and therefore new bioproducts need to be studied in depth. In fact, the design of new formulations and nanoformulations to control the release of active compounds will be necessary to achieve successful pharmacological and therapeutic treatments.
Collapse
|
25
|
Kumar V, Sachdeva C, Waidha K, Sharma S, Ray D, Kumar Kaushik N, Saha B. In Vitro and In Silico Anti‐plasmodial Evaluation of Newly Synthesized β‐Carboline Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vipin Kumar
- Amity Institute of Click Chemistry Research and Studies Amity University Sector 125 Noida 201313, Uttar Pradesh India
| | - Cheryl Sachdeva
- Amity Institute of Virology and Immunology Institution Amity University Sector 125 Noida 201313, Uttar Pradesh India
| | - Kamran Waidha
- Amity Institute of Biotechnology Amity University Sector 125 Noida 201313, Uttar Pradesh India
| | - Sunil Sharma
- Chemical Engineering Department National Tsing Hua University Hsinchu Taiwan 30013
| | - Devalina Ray
- Amity Institute of Biotechnology Amity University Sector 125 Noida 201313, Uttar Pradesh India
| | - Naveen Kumar Kaushik
- Amity Institute of Virology and Immunology Institution Amity University Sector 125 Noida 201313, Uttar Pradesh India
| | - Biswajit Saha
- Amity Institute of Biotechnology Amity University Sector 125 Noida 201313, Uttar Pradesh India
| |
Collapse
|
26
|
Shahrajabian MH, Sun W, Cheng Q. Improving health benefits with considering traditional and modern health benefits of Peganum harmala. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00255-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Medicinal plants are potential source of natural products that play an important role in preventing different human diseases. P. harmala is used traditionally as emmenagogue and an abortifacient agent in the Middle East, North of Africa and West of China. It belongs to the family of Zygophyllaceae and it is a wild growing flowering plant. Its seeds are main medicinal part of the plant.
Methods
The current searching was done by the keywords in main indexing systems including PubMed/MEDLINE, Scopus, and Institute for Scientific Information Web of Science as well as the search engine of Google Scholar. The keywords were wild rue, traditional medicine, Harman, health benefits, and pharmaceutical science.
Results
The most important uses of P. harmala in traditional pharmaceutical sciences are in cardiovascular, gasterointestinal, nervous, endocrine, neoplasm and tumors, pain relieving, organisms, diabetes, respiratory, disinfectant, anti-pyretic, skin and hair, rheumatism, arthritis and inflammation, and ulcers. Pharmacological effects of P. harmala are in cardiovascular system, nervous system, antimicrobial effects, antineoplasm, nervous system, endocrine, gastrointestinal effects, osteocytes, endocrine and respiratory system. Phenolic compounds are the main reason of antioxidant capacity.
Conclusions
Due to its pharmacological activities, P. harmala is a high potential medicinal herb and the suggestion is to increases by doing research in efficacy and safety.
Collapse
|
27
|
Zhang H, Zhang R, Wang L, Li Y, Liao S, Zhou M. Synthesis Strategies for α‐, β‐, γ‐ and δ‐Carbolines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy Guizhou Medical University Guian New District Guizhou 550004 P. R. China
| | - Rong‐Hong Zhang
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique Guizhou Province Key Laboratory of Regenerative Medicine Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences) Center for Tissue Engineering and Stem Cell Research Guizhou Medical University Guiyang 550004 PR China
| | - Li‐Xia Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy Guizhou Medical University Guian New District Guizhou 550004 P. R. China
| | - Yong‐Jun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy Guizhou Medical University Guian New District Guizhou 550004 P. R. China
| | - Shang‐Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy Guizhou Medical University Guian New District Guizhou 550004 P. R. China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 P. R. China
- School of Pharmacy Guizhou Medical University Guian New District Guizhou 550004 P. R. China
| |
Collapse
|
28
|
Ayipo YO, Mordi MN, Mustapha M, Damodaran T. Neuropharmacological potentials of β-carboline alkaloids for neuropsychiatric disorders. Eur J Pharmacol 2020; 893:173837. [PMID: 33359647 DOI: 10.1016/j.ejphar.2020.173837] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 10/24/2022]
Abstract
Neuropsychiatric disorders are diseases of the central nervous system (CNS) which are characterised by complex pathomechanisms that including homeostatic failure, malfunction, atrophy, pathology remodelling and reactivity anomaly of the neuronal system where treatment options remain challenging. β-Carboline (βC) alkaloids are scaffolds of structurally diverse tricyclic pyrido[3,4-b]indole alkaloid with vast occurrence in nature. Their unique structural features which favour interactions with enzymes and protein receptor targets account for their potent neuropharmacological properties. However, our current understanding of their biological mechanisms for these beneficial effects, especially for neuropsychiatric disorders is sparse. Therefore, we present a comprehensive review of the scientific progress in the last two decades on the prospective pharmacology and physiology of the βC alkaloids in the treatment of some neuropsychiatric conditions such as depression, anxiety, Alzheimer's disease, Parkinson's disease, brain tumour, essential tremor, epilepsy and seizure, licking behaviour, dystonia, agnosia, spasm, positive ingestive response as demonstrated in non-clinical models. The current evidence supports that βC alkaloids offer potential therapeutic agents against most of these disorders and amenable for further drug design.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia; Department of Chemical, Geological and Physical Sciences, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Thenmoly Damodaran
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
29
|
Madah M, Haddad S, Khazem M. Evaluation of the effect of Peganum harmala extracts on the in vitro viability of Leishmania tropica promastigotes in comparison to Glucantime. J Parasit Dis 2020; 44:858-863. [PMID: 33184551 DOI: 10.1007/s12639-020-01232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/01/2020] [Indexed: 11/30/2022] Open
Abstract
Cutaneous leishmaniasis is a skin disease that pretends with skin lesions, mainly ulcers, on exposed parts of the body. It's caused mainly by parasites belonging to the genus Leishmania, such as L. tropica. Medicinal plants, which have sparked recent researches attention, consider one of the richest sources of active compounds against the Leishmania parasite including Peganum harmala. This study was conducted to investigate the antileishmanial effect of different extracts of Peganum harmala grown in Syria, particularly the methanolic extract of seeds and roots as well as its alkaloid fractions on Leishmania tropica promastigotes growth in vitro. After culturing promastigotes and incubating with extracts for 72 h, the surviving promastigotes were counted. The half maximal (50%) inhibitory concentration (IC50) was determined. The experiments were repeated at least three times. The in vitro experiment has demonstrated a concentration-dependent decrease of parasites number caused by the extracts with an IC50 value of 18.61 ± 0.87 µg/mL and 16.41 ± 0.71 µg/mL for the methanolic extract of seeds and roots respectively. While the IC50 of the alkaloid fractions of seeds and roots were 4.97 ± 0.43 μg/mL and 9.23 ± 0.86 μg/mL respectively. There was a significant difference between all extracts and Glucantime which had IC50 = 32.62 ± 0.66 µg/mL.
Collapse
Affiliation(s)
- Manar Madah
- Department of Pharmacognosy, Damascus University, Damascus, Syria
| | - Shaden Haddad
- Department of Biochemistry and Microbiology, Damascus University, Damascus, Syria
| | - Mays Khazem
- Department of Pharmacognosy, Damascus University, Damascus, Syria
| |
Collapse
|
30
|
Singh M, Vaishali, Kumar S, Jamra R, Pandey SK, Singh V. A metal-free approach towards synthesis of β-carboline C1 substituted Pyrido(2,3-c)carbazole derivatives (nitramarine analogues) through A3-coupling and estimation of their light emitting properties. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Roy S, Mohammad T, Gupta P, Dahiya R, Parveen S, Luqman S, Hasan GM, Hassan MI. Discovery of Harmaline as a Potent Inhibitor of Sphingosine Kinase-1: A Chemopreventive Role in Lung Cancer. ACS OMEGA 2020; 5:21550-21560. [PMID: 32905276 PMCID: PMC7469376 DOI: 10.1021/acsomega.0c02165] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The sphingosine kinase-1/sphingosine-1-phosphate pathway is linked with the cancer progression and survival of the chemotherapy-challenged cells. Sphingosine kinase-1 (SphK1) has emerged as an attractive drug target, but their inhibitors from natural sources are limited. In this study, we have chosen harmaline, one of the β-carboline alkaloids, and report its mechanism of binding to SphK1 and subsequent inhibition. Molecular docking combined with fluorescence binding studies revealed that harmaline binds to the substrate-binding pocket of SphK1 with an appreciable binding affinity and significantly inhibits the kinase activity of SphK1 with an IC50 value in the micromolar range. The cytotoxic effect of harmaline on non-small-cell lung cancer cells by MTT assay was found to be higher for H1299 compared to A549. Harmaline induces apoptosis in non-small-cell lung carcinoma cells (H1299 and A549), possibly via the intrinsic pathway. Our findings suggest that harmaline could be implicated as a scaffold for designing potent anticancer molecules with SphK1 inhibitory potential.
Collapse
Affiliation(s)
- Sonam Roy
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Preeti Gupta
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashmi Dahiya
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shahnaz Parveen
- Molecular
Bioprospection Department, CSIR-Central
Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular
Bioprospection Department, CSIR-Central
Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Gulam Mustafa Hasan
- Department
of Biochemistry, College of Medicine, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Kingdom of Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
32
|
Tarkowská D. A Fast and Reliable UHPLC-MS/MS-Based Method for Screening Selected Pharmacologically Significant Natural Plant Indole Alkaloids. Molecules 2020; 25:E3274. [PMID: 32708364 PMCID: PMC7397342 DOI: 10.3390/molecules25143274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 11/25/2022] Open
Abstract
Many substances of secondary plant metabolism have often attracted the attention of scientists and the public because they have certain beneficial effects on human health, although the reason for their biosynthesis in the plant remains unclear. This is also the case for alkaloids. More than 200 years have passed since the discovery of the first alkaloid (morphine), and several thousand substances of this character have been isolated since then. Most often, alkaloid-rich plants are part of folk medicine with centuries-old traditions. What is particularly important to monitor for these herbal products is the spectrum and concentrations of the present active substances, which decide whether the product has a beneficial or toxic effect on human health. In this work, we present a fast, reliable, and robust method for the extraction, preconcentration, and determination of four selected alkaloids with an indole skeleton, i.e., harmine, harmaline, yohimbine, and ajmalicine, by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. The applicability of the method was demonstrated for tobacco and Tribulus terrestris plant tissue, the seeds of Peganum harmala, and extract from the bark of the African tree Pausinystalia johimbe.
Collapse
Affiliation(s)
- Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|
33
|
Villarruel FD, Denofrio MP, Erra-Balsells R, Wolcan E, Cabrerizo FM. Photophysical and spectroscopic features of 3,4-dihydro-β-carbolines: a combined experimental and theoretical approach. Phys Chem Chem Phys 2020; 22:20901-20913. [DOI: 10.1039/d0cp03363d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The spectroscopic and photophysical properties of 3,4-dihydro-β-carboline alkaloids in aqueous were revisited. Absorbing and emitting species present in aqueous solution in the entire pH range were reassigned by DFT calculations.
Collapse
Affiliation(s)
- Fernando D. Villarruel
- Instituto Tecnológico de Chascomús (INTECH)
- Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Av. Intendente Marino Km 8.2
- CC 164 (B7130IWA)
- Chascomús
| | - M. Paula Denofrio
- Instituto Tecnológico de Chascomús (INTECH)
- Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Av. Intendente Marino Km 8.2
- CC 164 (B7130IWA)
- Chascomús
| | - Rosa Erra-Balsells
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica. Pabellón II
- 3er P
- Ciudad Universitaria
- (1428) Buenos Aires
- Argentina
| | - Ezequiel Wolcan
- INIFTA – CONICET
- Universidad Nacional de La Plata
- La Plata
- Argentina
| | - Franco M. Cabrerizo
- Instituto Tecnológico de Chascomús (INTECH)
- Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Av. Intendente Marino Km 8.2
- CC 164 (B7130IWA)
- Chascomús
| |
Collapse
|
34
|
Wattanathamsan O, Hayakawa Y, Pongrakhananon V. Molecular mechanisms of natural compounds in cell death induction and sensitization to chemotherapeutic drugs in lung cancer. Phytother Res 2019; 33:2531-2547. [PMID: 31293008 DOI: 10.1002/ptr.6422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/06/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Onsurang Wattanathamsan
- Inter‐department program of Pharmacology, Graduate SchoolChulalongkorn University Bangkok Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research ClusterChulalongkorn University Bangkok Thailand
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural MedicineUniversity of Toyama Toyama Japan
| | - Varisa Pongrakhananon
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research ClusterChulalongkorn University Bangkok Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical SciencesChulalongkorn University Bangkok Thailand
| |
Collapse
|
35
|
Zhao S, Li Z, Huang F, Wu J, Gui L, Zhang X, Wang Y, Wang X, Peng S, Zhao M. Nano-scaled MTCA-KKV: for targeting thrombus, releasing pharmacophores, inhibiting thrombosis and dissolving blood clots in vivo. Int J Nanomedicine 2019; 14:4817-4831. [PMID: 31308660 PMCID: PMC6614858 DOI: 10.2147/ijn.s206294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/23/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In vitro (1R,3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxyl-Lys(Pro-Ala-Lys)-Arg-Gly-Asp-Val (MTCA-KKV) adheres activated platelets, targets P-selectin and GPIIb/IIIa. This led to the development of MTCA-KKV as thrombus targeting nano-medicine. METHODS MTCA-KKV was characterized by nano-feature, anti-thrombotic activity, thrombolytic activity, thrombus target and targeting release. RESULTS In vivo 0.01 μmol/kg of MTCA-KKV formed nano-particles less than 100 nm in diameter, targeted thrombus, released anti-thrombotic and thrombolytic pharmacophores, prevented thrombosis and dissolved blood clots. CONCLUSION Based on the profiles of targeting thrombus, targeting release, inhibiting thrombosis and dissolving blood clots MTCA-KKV is a promising nano-medicine.
Collapse
Affiliation(s)
- Shurui Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Ze Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Fei Huang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Lin Gui
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Xiaoyi Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Yaonan Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Xiaozhen Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| |
Collapse
|
36
|
Wang Y, Wang H, Zhang L, Zhang Y, Sheng Y, Deng G, Li S, Cao N, Guan H, Cheng X, Wang C. Subchronic toxicity and concomitant toxicokinetics of long-term oral administration of total alkaloid extracts from seeds of Peganum harmala Linn: A 28-day study in rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111866. [PMID: 30970283 DOI: 10.1016/j.jep.2019.111866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Peganum harmala Linn, in which the most abundant active compounds are harmaline and harmine, have been widely used as a traditional medicine in various countries to treat a broad spectrum of diseases including asthma, cough, depression, Parkinson's and Alzheimer's diseases. However, few studies on long-term or subchronic toxicity of seeds of P. harmala were reported after overdose. AIM OF THE STUDY To investigate the subchronic toxicity and concomitant toxicokinetics of total alkaloid extracts from seeds of P. harmala (TAEP) after oral administration for four weeks in rats. MATERIALS AND METHODS The subchronic toxicity and concomitant toxicokinetics of TAEP were evaluated after 28-day oral administration in rats at daily dose levels of 15, 45, and 150 mg/kg. The signs of toxicity and mortality were monitored and recorded daily. The body weight and average food consumption were measured weekly. The analyses of hematology, biochemistry, urine, relative organ weights and histopathology were conducted at the termination of treatment and recovery phase. For concomitant toxicokinetics study, the plasma toxicokinetic parameters, tissue distribution, and excretion of predominant ingredients harmaline and harmine in TAEP and metabolites harmalol and harmol were tested. RESULTS Following initial repeated exposure to high-dose (150 mg/kg/day) of TAEP excitotoxic reaction, such as tremor, was observed, but tolerated on the fourth day after multiple dosing. The significant alterations in blood glucose and lipid metabolism in liver were observed, but recovered after four weeks of drug withdrawal. The no-observed-adverse-effect level (NOAEL) of TAEP was considered to be 45 mg/kg/day under the present study conditions. There were no significant gender differences in most indexes of subchronic toxicity throughout the experimental period with the exception of food consumption and body weight. In concomitant toxicokinetics study, the alterations of dynamic characteristic for harmaline, harmine and metabolite harmol after multiple oral administration at three doses had been observed. Harmaline, harmine and metabolites harmalol and harmol were widely distributed in organs and there was no accumulation in the tissues examined. The reduction of harmaline and metabolite harmalol in brain after multiple dosing at dose of 150 mg/kg might be closely related to the tremor tolerance. The main excretory pathway for metabolites harmalol and harmol was urinary excretion via kidney. CONCLUSIONS The results revealed that TAEP at doses of 15 and 45 mg/kg/day in rats might be safe. Excitotoxic reaction such as tremor occurred initially at dose of 150 mg/kg/day, however, the toxicity was tolerant and reversible. In addition, harmaline and harmine in TAEP had a quick absorption into blood and metabolized to harmalol and harmol, and there was no drug accumulation in the detected tissues. Further studies should be investigated to clarify the mechanisms of tremor tolerance and neurotoxicity of TAEP.
Collapse
Affiliation(s)
- Youxu Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Hanxue Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China; Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai, 200082, China
| | - Liuhong Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Yunpeng Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Yuchen Sheng
- Drug Safety Evaluation and Research Center of Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Gang Deng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Ning Cao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
37
|
Singh D, Sharma S, Kumar M, Kaur I, Shankar R, Pandey SK, Singh V. An AcOH-mediated metal free approach towards the synthesis of bis-carbolines and imidazopyridoindole derivatives and assessment of their photophysical properties. Org Biomol Chem 2019; 17:835-844. [DOI: 10.1039/c8ob02705f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A concise, atom-economical and environmentally sustainable tandem strategy has been formulated to access highly fluorescent (ΦF up to 40%) target molecules via the formation of three C–N bonds in a single operation.
Collapse
Affiliation(s)
- Dharmender Singh
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology (NIT)
- Jalandhar
- India
| | - Shubham Sharma
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology (NIT)
- Jalandhar
- India
| | - Mukesh Kumar
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology (NIT)
- Jalandhar
- India
| | - Inderpreet Kaur
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology (NIT)
- Jalandhar
- India
| | - Ravi Shankar
- Bio-Organic Chemistry Division
- CSIR – Indian Institute of Integrative Medicine (IIIM)
- Jammu
- India
| | | | - Virender Singh
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology (NIT)
- Jalandhar
- India
| |
Collapse
|
38
|
Kulkarni AS, Shingare RD, Dandela R, Reddy DS. Total Synthesis of an Anticancer Natural Product (±)-Peharmaline A and Its Analogues. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akshay S. Kulkarni
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
| | - Rahul D. Shingare
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
- Academy of Scientific and Innovative Research (AcSIR); 110 025 New Delhi India
| | - Rambabu Dandela
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
| | - D. Srinivasa Reddy
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
- Academy of Scientific and Innovative Research (AcSIR); 110 025 New Delhi India
| |
Collapse
|
39
|
|
40
|
Heptapeptide-based modification leading to enhancing the action of MTCA on activated platelets, P-selectin, GPIIb/IIIa. Future Med Chem 2018; 10:1957-1970. [PMID: 29973078 DOI: 10.4155/fmc-2018-0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIM The modification of platelet inhibitor to enhance its targeting capacity toward platelets is of clinical importance. Thus, (1R, 3S)-1-methyl-1, 2, 3, 4-tetrahydro-β-carboline-3-carboxylic acid (MTCA), a platelet inhibitor, was modified with Lys(Pro-Ala-Lys)-Arg-Gly-Asp-Val (KKV), platelet targeting peptide, to form MTCA-KKV. MATERIALS & METHODS MTCA and MTCA-KKV were synthesized to identify the effect of KKV modification on MTCA and platelets. RESULTS Atomic force microscopy imaged MTCA-KKV effectively accumulated on activated platelets. UV spectra showed that MTCA-KKV concentration dependently changed P-selectin and GPIIb/IIIa conformations. For platelet aggregation, the IC50 of MTCA-KKV was approximately 1/10 folds of MTCA. CONCLUSION KKV modification led to forming MTCA-KKV that is superior to MTCA in terms of accumulating on activated platelets, targeting P-selectin and GPIIb/IIIa and inhibiting platelet aggregation. MTCA-KKV could be a promising lead for further investigation.
Collapse
|
41
|
Chen D, Tian X, Zou X, Xu S, Wang H, Zheng N, Wu Z. Harmine, a small molecule derived from natural sources, inhibits enterovirus 71 replication by targeting NF-κB pathway. Int Immunopharmacol 2018; 60:111-120. [DOI: 10.1016/j.intimp.2018.04.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 01/24/2023]
|
42
|
Singh D, Hazra CK, Malakar CC, Pandey SK, Kaith BS, Singh V. Indium-Mediated Domino Allylation-Lactonisation Approach: Diastereoselective Synthesis of β-Carboline C-3 Tethered α-Methylene γ-Butyrolactones. ChemistrySelect 2018. [DOI: 10.1002/slct.201800006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dharmender Singh
- Department of Chemistry; Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar; 144011 Punjab India
| | - Chinmoy K. Hazra
- Department of Chemistry; Korea Advanced Institute of Science & Technology (KAIST); Daejeon 305701 South Korea
| | - Chandi C. Malakar
- Department of Chemistry; National Institute of Technology (NIT), Manipur; Imphal 795004 Manipur
| | - Satyendra K. Pandey
- Department of Chemistry; Institute of Science; Banaras Hindu University (BHU), Varanasi; 221005, Uttar Pradesh India
| | - B. S. Kaith
- Department of Chemistry; Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar; 144011 Punjab India
| | - Virender Singh
- Department of Chemistry; Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar; 144011 Punjab India
| |
Collapse
|
43
|
Singh D, Sharma P, Kumar R, Pandey SK, Malakar CC, Singh V. An Expeditious Approach for the Synthesis of β-Carboline−Pyrazole-Based Molecular Hybrids. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dharmender Singh
- Department of Chemistry; Dr. B. R. Ambedkar National Institute of Technology (NIT) Jalandhar; 144011 Punjab India
| | - Pooja Sharma
- School of Chemistry & Biochemistry; Thapar University; Patiala 147004 Punjab India
| | - Rakesh Kumar
- Department of Chemistry; Dr. B. R. Ambedkar National Institute of Technology (NIT) Jalandhar; 144011 Punjab India
| | - Satyendra K. Pandey
- School of Chemistry & Biochemistry; Thapar University; Patiala 147004 Punjab India
- Department of Chemistry; Banaras Hindu University (BHU); Varanasi 221005 Uttar Pradesh India
| | - Chandi C. Malakar
- Department of Chemistry; National Institute of Technology (NIT) Manipur; Imphal 795004 India
| | - Virender Singh
- Department of Chemistry; Dr. B. R. Ambedkar National Institute of Technology (NIT) Jalandhar; 144011 Punjab India
| |
Collapse
|
44
|
Lee JH, Kim YG, Shim SH, Lee J. Antibiofilm activities of norharmane and its derivatives against Escherichia coli O157:H7 and other bacteria. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:254-261. [PMID: 29157822 DOI: 10.1016/j.phymed.2017.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/19/2017] [Accepted: 10/17/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Bacterial biofilms exhibit reduced sensitivity to conventional antibiotics and host defence systems and contribute to the persistence of chronic bacterial infections. HYPOTHESIS The antibiofilm approach using plant alkaloids provides an alternative to antibiotic strategies. STUDY DESIGN In this study, the antibiofilm activities of various plant alkaloids were investigated against enterohemorrhagic Escherichia coli O157:H7 and Pseudomonas aeruginosa. In the subsequent investigation, the effects of five norharmane derivatives were investigated. RESULT Harmaline significantly inhibited biofilm formation by E. coli O157:H7, P. aeruginosa PAO1, P. aeruginosa PA14, and Klebsiella oxytoca, and norharmane (β-carboline) was found to have antibiofilm activity. It was also found that functional groups at the C-1 and C-7 positions of norharmane could play important roles in its antibiofilm activity. Confocal and electron microscopic observations confirmed biofilm inhibition by harmaline and norharmane, and both reduced fimbriae production and swarming and swimming motilities. Furthermore, harmaline and norharmane attenuated the virulence of E. coli O157:H7 in a Caenorhabditis elegans nematode model. CONCLUSION These findings strongly suggest that harmaline and norharmane could have potential use in antibiofilm strategy against persistent bacterial infections.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sang Hee Shim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
45
|
Li S, Zhang Y, Deng G, Wang Y, Qi S, Cheng X, Ma Y, Xie Y, Wang C. Exposure Characteristics of the Analogous β-Carboline Alkaloids Harmaline and Harmine Based on the Efflux Transporter of Multidrug Resistance Protein 2. Front Pharmacol 2017; 8:541. [PMID: 28871225 PMCID: PMC5566973 DOI: 10.3389/fphar.2017.00541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/03/2017] [Indexed: 12/17/2022] Open
Abstract
Harmaline and harmine occur naturally in plants and are distributed endogenously in human and animal tissues. The two β-carboline alkaloids possess potential for treating Alzheimer's disease, Parkinson's disease, depression and other central nervous system diseases. However, studies have showed that the two compounds have similar structures but with quite different bioavailability. The aim of this study was to elucidate the exposure difference and characterize the in vitro transport, metabolism, and pharmacokinetic properties of harmaline and harmine. The results showed that the harmaline and harmine transport across the Caco-2 and MDCK cell monolayers was varied as the time, concentration, pH and temperature changed. The absorption of harmaline and harmine was significantly decreased when ES (OATPs inhibitor), TEA (OCTs/OCTNs substrate), NaN3 (adenosine triphosphate inhibitor), or sodium vanadate (ATPase Na+/K+-dependent inhibitor) was added. However, when given MK571 and probenecid (the typical MRP2 inhibitor), the PappAB of harmine was increased (1.62- and 1.27-folds), and the efflux ratio was decreased from 1.59 to 0.98 and from 1.59 to 1.19, respectively. In addition, the uptake ratio of harmine at 1 μM was >2.65 in the membrane vesicles expressing human MRP2. Furthermore, harmine could slightly up-regulate the expression of MRP2, which implying harmine might be the substrate of MRP2. Particularly, the CLint-value for harmine was ~1.49-folds greater than that of harmaline in human liver microsomes. It was worth noting that the F-value of harmine was increased 1.96-folds after harmine co-administration with probenecid. To summarize, comprehensive analysis indicated that harmaline and harmine were absorbed by transcellular passive diffusion and a pH- and Na+-dependent mechanism might be mediated by OATPs and OCTs/OCTNs. MRP2 but MDR1 or BCRP might be involved in the transport of harmine. Furthermore, harmine was more unstable and easily metabolized than harmaline. All these findings suggested that harmine not only appears be an MRP2 substrate, but also possesses weak metabolic stability, and eventually leads to a low oral bioavailability. Taken together, the elucidated absorption, transport, metabolism as well as pharmacokinetic characteristics of harmaline and harmine provide useful information for designing delivery systems, pharmacological applications and avoiding drug-drug interactions.
Collapse
Affiliation(s)
- Shuping Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Yunpeng Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Gang Deng
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Yuwen Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Shenglan Qi
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Xuemei Cheng
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghai, China.,Shanghai R&D Centre for Standardization of Chinese MedicinesShanghai, China
| | - Yueming Ma
- Laboratory of Pharmacokinetics, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghai, China.,Shanghai R&D Centre for Standardization of Chinese MedicinesShanghai, China
| |
Collapse
|
46
|
Kumar S, Singh A, Kumar K, Kumar V. Recent insights into synthetic β-carbolines with anti-cancer activities. Eur J Med Chem 2017; 142:48-73. [PMID: 28583770 DOI: 10.1016/j.ejmech.2017.05.059] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/22/2017] [Accepted: 05/28/2017] [Indexed: 10/19/2022]
Abstract
Cancer, an uncontrolled and rapid proliferation of abnormal cells, has become one of the leading cause of death worldwide. The development of resistance among the numerous drugs in clinical use has provided strong impetus for the identification and development of novel cancer therapeutics. β-carbolines constitute an important class of pharmacologically active scaffolds known to exert their anticancer activities via diverse mechanisms. The purpose of present review article is to update the readers on the current developments in β-carbolines with an emphasis on synthetic strategies, structure-activity relationships, mechanism of action and in vivo studies wherever possible.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Amandeep Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Kewal Kumar
- Department of Applied Chemistry, Giani Zail Singh Campus College of Engineering & Technology, MRSPTU, Dabwali Road, Bathinda, 151001, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
47
|
Li S, Cheng X, Wang C. A review on traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the genus Peganum. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:127-162. [PMID: 28359849 DOI: 10.1016/j.jep.2017.03.049] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plants of the genus Peganum have a long history as a Chinese traditional medicine for the treatment of cough, hypertension, diabetes, asthma, jaundice, colic, lumbago, and many other human ailments. Additionally, the plants can be used as an amulet against evil-eye, dye and so on, which have become increasingly popular in Asia, Iran, Northwest India, and North Africa. AIM OF THE REVIEW The present paper reviewed the ethnopharmacology, phytochemistry, analytical methods, biological activities, metabolism, pharmacokinetics, toxicology, and drug interaction of the genus Peganum in order to assess the ethnopharmacological use and to explore therapeutic potentials and future opportunities for research. MATERIALS AND METHODS Information on studies of the genus Peganum was gathered via the Internet (using Google Scholar, Baidu Scholar, Elsevier, ACS, Pudmed, Web of Science, CNKI and EMBASE) and libraries. Additionally, information was also obtained from some local books, PhD and MS's dissertations. RESULTS The genus Peganum has played an important role in traditional Chinese medicine. The main bioactive metabolites of the genus include alkaloids, flavonoids, volatile oils, etc. Scientific studies on extracts and formulations revealed a wide range of pharmacological activities, such as cholinesterase and monoamine oxidase inhibitory activities, antitumor, anti-hypertension, anticoagulant, antidiabetic, antimicrobial, insecticidal, antiparasidal, anti-leishmaniasis, antioxidant, and anti-inflammatory. CONCLUSIONS Based on this review, there is some evidence for extracts' pharmacological effects on Alzheimer's and Parkinson's diseases, cancer, diabetes, hypertension. Some indications from ethnomedicine have been confirmed by pharmacological effects, such as the cholinesterase, monoamine oxidase and DNA topoisomerase inhibitory activities, hypoglycemic and vasodilation effects of this genus. The available literature showed that most of the activities of the genus Peganum can be attributed to the active alkaloids. Data regarding many aspects of the genus such as mechanisms of actions, metabolism, pharmacokinetics, toxicology, potential drug interactions with standard-of-care medications is still limited which call for additional studies particularly in humans. Further assessments and clinical trials should be performed before it can be integrated into medicinal practices.
Collapse
Affiliation(s)
- Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai 201210, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201210, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai 201210, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201210, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 199 Guoshoujing Road, Shanghai 201210, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai 201210, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201210, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 199 Guoshoujing Road, Shanghai 201210, China.
| |
Collapse
|
48
|
Tabari MA, Youssefi MR, Moghadamnia AA. Antitrichomonal activity of Peganum harmala alkaloid extract against trichomoniasis in pigeon (Columba livia domestica). Br Poult Sci 2017; 58:236-241. [DOI: 10.1080/00071668.2017.1280725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. A. Tabari
- Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - M. R. Youssefi
- Department of Veterinary Parasitology, Babol Branch, Islamic Azad University, Babol, Iran
| | - A. A. Moghadamnia
- Department of Pharmacology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
49
|
Wang KB, Li SG, Huang XY, Li DH, Li ZL, Hua HM. (±)-Peharmaline A: A Pair of Rare β-Carboline-Vasicinone Hybrid Alkaloid Enantiomers from Peganum harmala. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kai-Bo Wang
- Key Laboratory of Structure-Based Drug Design & Discovery; Ministry of Education; Shenyang Pharmaceutical University; 110016 Shenyang China
- Department of Medicinal Chemistry and Molecular Pharmacology; College of Pharmacy; Purdue University; 47907 West Lafayette Indiana USA
| | - Sheng-Ge Li
- Key Laboratory of Structure-Based Drug Design & Discovery; Ministry of Education; Shenyang Pharmaceutical University; 110016 Shenyang China
| | - Xue-Yan Huang
- Key Laboratory of Structure-Based Drug Design & Discovery; Ministry of Education; Shenyang Pharmaceutical University; 110016 Shenyang China
| | - Da-Hong Li
- Key Laboratory of Structure-Based Drug Design & Discovery; Ministry of Education; Shenyang Pharmaceutical University; 110016 Shenyang China
| | - Zhan-Lin Li
- Key Laboratory of Structure-Based Drug Design & Discovery; Ministry of Education; Shenyang Pharmaceutical University; 110016 Shenyang China
| | - Hui-Ming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery; Ministry of Education; Shenyang Pharmaceutical University; 110016 Shenyang China
| |
Collapse
|
50
|
Wang KB, Li DH, Bao Y, Cao F, Wang WJ, Lin C, Bin W, Bai J, Pei YH, Jing YK, Yang D, Li ZL, Hua HM. Structurally Diverse Alkaloids from the Seeds of Peganum harmala. JOURNAL OF NATURAL PRODUCTS 2017; 80:551-559. [PMID: 28128938 PMCID: PMC5518681 DOI: 10.1021/acs.jnatprod.6b01146] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Investigation of the alkaloids from Peganum harmala seeds yielded two pairs of unique racemic pyrroloindole alkaloids, (±)-peganines A-B (1-2); two rare thiazole derivatives, peganumals A-B (3-4); six new β-carboline alkaloids, pegaharmines F-K (5-10); and 12 known analogues. Their structures, including stereochemistry, were elucidated through spectroscopic analyses, quantum chemistry calculations, and single-crystal X-ray diffraction. Notably, the incorporation of pyrrole and indole moieties in peganines A-B, thiazole fragments in peganumals A-B, and a C-1 α,β-unsaturated ester motif in pegaharmine F (5) are all rare, and their presence in the genus Peganum were demonstrated for the first time. All isolates were tested for antiproliferative activities against the HL-60, PC-3, and SGC-7901 cancer cell lines, and compounds 9, 11, 12, and 13 exhibited moderate cytotoxicity against HL-60 cancer cell lines with IC50 values in the range of 4.36-9.25 μM.
Collapse
Affiliation(s)
- Kai-Bo Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Da-Hong Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| | - Yu Bao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, People’s Republic of China
| | - Wen-Jing Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| | - Clement Lin
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wen Bin
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| | - Jiao Bai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| | - Yue-Hu Pei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| | - Yong-Kui Jing
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhan-Lin Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| | - Hui-Ming Hua
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| |
Collapse
|