1
|
Song H, Jiang L, Yang W, Dai Y, Wang Y, Li Z, Liu P, Chen J. Cryptotanshinone alleviates lipopolysaccharide and cigarette smoke-induced chronic obstructive pulmonary disease in mice via the Keap1/Nrf2 axis. Biomed Pharmacother 2023; 165:115105. [PMID: 37399718 DOI: 10.1016/j.biopha.2023.115105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity worldwide. Cigarette smoking, which leads to abnormalities in the airways or alveoli and persistent obstruction of the airway's flow, is a significant risk factor of COPD. Cryptotanshinone (CTS) is the active ingredient in Salvia miltiorrhiza (Danshen) and has many pharmacological properties including anti-inflammatory, antitumor, and antioxidant properties, but its impact on COPD is uncertain. In the present study, the potential effect of CTS on COPD was investigated in a modified COPD mice model induced with cigarette smoke (CS) and lipopolysaccharide (LPS) exposure. CTS significantly reversed the decline in lung function, emphysema, inflammatory cell infiltration, small airway remodeling, pulmonary pathological damage, and airway epithelial cell proliferation in CS- and LPS-exposed mice. Additionally, CTS decreased inflammatory cytokines such as tumor necrosis factor α (TNF α), interleukins IL-6 and IL-1β, and keratinocyte chemoattractant (KC), increased the activities of superoxide dismutase (SOD), Catalase (CAT) and L-Glutathione (GSH), and repressed the expression of protein hydrolases matrix metalloprotein (MMP)- 9 and - 12 in pulmonary tissue and bronchoalveolar lavage fluid (BALF). The protective effects of CTS were also observed in human bronchial epithelial cell line BEAS-2B simulated with cigarette smoke condensate (CSC) and LPS. Mechanistically, CTS can repress the protein level of Keap1, resulting to activation of erythroid 2-related factor (Nrf2), finally alleviating COPD. In summary, the present findings demonstrated that CTS dramatically ameliorates COPD induced by CS and LPS via activating Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Hongjia Song
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Lujing Jiang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Wanchun Yang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Yuxing Dai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Yao Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jianwen Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Qin S, Tan P, Xie J, Zhou Y, Zhao J. A systematic review of the research progress of traditional Chinese medicine against pulmonary fibrosis: from a pharmacological perspective. Chin Med 2023; 18:96. [PMID: 37537605 PMCID: PMC10398979 DOI: 10.1186/s13020-023-00797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Pulmonary fibrosis is a chronic progressive interstitial lung disease caused by a variety of etiologies. The disease can eventually lead to irreversible damage to the lung tissue structure, severely affecting respiratory function and posing a serious threat to human health. Currently, glucocorticoids and immunosuppressants are the main drugs used in the clinical treatment of pulmonary fibrosis, but their efficacy is limited and they can cause serious adverse effects. Traditional Chinese medicines have important research value and potential for clinical application in anti-pulmonary fibrosis. In recent years, more and more scientific researches have been conducted on the use of traditional Chinese medicine to improve or reduce pulmonary fibrosis, and some important breakthroughs have been made. This review paper systematically summarized the research progress of pharmacological mechanism of traditional Chinese medicines and their active compounds in improving or reducing pulmonary fibrosis. We conducted a systematic search in several main scientific databases, including PubMed, Web of Science, and Google Scholar, using keywords such as idiopathic pulmonary fibrosis, pulmonary fibrosis, interstitial pneumonia, natural products, herbal medicine, and therapeutic methods. Ultimately, 252 articles were included and systematically evaluated in this analysis. The anti-fibrotic mechanisms of these traditional Chinese medicine studies can be roughly categorized into 5 main aspects, including inhibition of epithelial-mesenchymal transition, anti-inflammatory and antioxidant effects, improvement of extracellular matrix deposition, mediation of apoptosis and autophagy, and inhibition of endoplasmic reticulum stress. The purpose of this article is to provide pharmaceutical researchers with information on the progress of scientific research on improving or reducing Pulmonary fibrosis with traditional Chinese medicine, and to provide reference for further pharmacological research.
Collapse
Affiliation(s)
- Shanbo Qin
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Peng Tan
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| | - Junjie Xie
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yongfeng Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junning Zhao
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| |
Collapse
|
3
|
Ma M, Bao T, Li J, Cao L, Yu B, Hu J, Cheng H, Tian Z. Cryptotanshinone affects HFL-1 cells proliferation by inhibiting cytokines secretion in RAW264.7 cells and ameliorates inflammation and fibrosis in newborn rats with hyperoxia induced lung injury. Front Pharmacol 2023; 14:1192370. [PMID: 37560477 PMCID: PMC10407416 DOI: 10.3389/fphar.2023.1192370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
Objective: Bronchopulmonary dysplasia (BPD) is a common complication of prematurity and has no specific treatment option. Moreover, inflammation and fibrosis play a vital role in the development of BPD. Thus, this study aimed to explore the role of the anti-inflammatory and anti-fibrotic drug cryptotanshinone (CTS) in the treatment of inflammation and fibrosis in BPD. Methods: In vivo, Sprague-Dawley rats (male) were divided into air, hyperoxia and CTS groups with different dose interventions (7.5, 15, and 30 mg/kg). A BPD rat model was induced by continuous inhalation of hyperoxia (95%) for 7 days, during which different doses of CTS were injected intraperitoneally. Furthermore, histological examination, hydroxyproline content measurement, Western blot and real-time quantitative polymerase chain reaction were used to detect the levels of inflammation and fibrosis in the tissues. RAW264.7 cells exposed to 95% oxygen were collected and co-cultured with fibroblasts to determine the expression levels of α-SMA, collagen-Ⅰ and MMPs. The levels of pro-inflammatory cytokines such as TNF-α, IL-6 and pro-fibrotic factor TGF-β1 in the supernatants were measured using enzyme-linked immunosorbent assay. Results: Haematoxylin and eosin staining revealed that CTS reduced the inflammatory response in rat lungs. Masson staining revealed that CTS alleviated the level of pulmonary fibrosis. CTS also reduced the levels of TNF-α, IL-6 and TGF-β1 along with the expression of the fibrosis marker α-SMA in lung tissue. Similarly, in vitro analysis revealed that CTS decreased the levels of TNF-α, IL-6 and TGF-β1 expressed in RAW 264.7 cells, and reduced α-SMA, collagen-Ⅰ, MMPs concentrations in HFL-1 cells co-cultured with the supernatant of RAW264.7 cells after hyperoxia. Conclusion: CTS can attenuate the hyperoxia-induced inflammatory response and the level of fibrosis by regulating the levels of inflammatory factors and fibrotic factor TGF-β1 expressed by macrophages, thereby highlighting the therapeutic potential of CTS in the treatment of BPD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huaiping Cheng
- Department of Neonatology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| |
Collapse
|
4
|
Ye Z, Wang P, Feng G, Wang Q, Liu C, Lu J, Chen J, Liu P. Cryptotanshinone attenuates LPS-induced acute lung injury by regulating metabolic reprogramming of macrophage. Front Med (Lausanne) 2023; 9:1075465. [PMID: 36714100 PMCID: PMC9880059 DOI: 10.3389/fmed.2022.1075465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Background Acute lung injury (ALI) is a life-threatening inflammatory disease without effective therapeutic regimen. Macrophage polarization plays a key role in the initiation and resolution of pulmonary inflammation. Therefore, modulating macrophage phenotype is a potentially effective way for acute lung injury. Cryptotanshinone (CTS) is a lipophilic bioactive compound extracted from the root of Salvia miltiorrhiza with a variety of pharmacological effects, especially the anti-inflammatory role. In this study, we investigated the therapeutic and immunomodulatory effects of CTS on ALI. Materials and methods The rat model of ALI was established by intratracheal instillation of LPS (5 mg/kg) to evaluate the lung protective effect of CTS in vivo and to explore the regulation of CTS on the phenotype of lung macrophage polarization. LPS (1 μg/mL) was used to stimulate RAW264.7 macrophages in vitro to further explore the effect of CTS on the polarization and metabolic reprogramming of RAW264.7 macrophages and to clarify the potential mechanism of CTS anti-ALI. Results CTS significantly improved lung function, reduced pulmonary edema, effectively inhibited pulmonary inflammatory infiltration, and alleviated ALI. Both in vivo and in vitro results revealed that CTS inhibited the differentiation of macrophage into the M1 phenotype and promoted polarization into M2 phenotype during ALI. Further in vitro studies indicated that CTS significantly suppressed LPS-induced metabolic transition from aerobic oxidation to glycolysis in macrophages. Mechanistically, CTS blocked LPS-induced metabolic transformation of macrophages by activating AMPK. Conclusion These findings demonstrated that CTS regulates macrophage metabolism by activating AMPK, and then induced M1-type macrophages to transform into M2-type macrophages, thereby alleviating the inflammatory response of ALI, suggesting that CTS might be a potential anti-ALI agent.
Collapse
Affiliation(s)
- Zesen Ye
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Panxia Wang
- School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, China
| | - Guodong Feng
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Quan Wang
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cui Liu
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Lu
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China,Jing Lu,
| | - Jianwen Chen
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China,Jianwen Chen,
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China,*Correspondence: Peiqing Liu,
| |
Collapse
|
5
|
Zhou BW, Liu HM, Jia XH. The Role and Mechanisms of Traditional Chinese Medicine for Airway Inflammation and Remodeling in Asthma: Overview and Progress. Front Pharmacol 2022; 13:917256. [PMID: 35910345 PMCID: PMC9335520 DOI: 10.3389/fphar.2022.917256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 11/27/2022] Open
Abstract
Asthma as an individual disease has blighted human health for thousands of years and is still a vital global health challenge at present. Though getting much progress in the utilization of antibiotics, mucolytics, and especially the combination of inhaled corticosteroids (ICS) and long-acting β-agonists (LABA), we are confused about the management of asthmatic airway inflammation and remodeling, which directly threatens the quality of life for chronic patients. The blind addition of ICS will not benefit the remission of cough, wheeze, or sputum, but to increase the risk of side effects. Thus, it is necessary to explore an effective therapy to modulate asthmatic inflammation and airway remodeling. Traditional Chinese Medicine (TCM) has justified its anti-asthma effect in clinical practice but its underlying mechanism and specific role in asthma are still unknown. Some animal studies demonstrated that the classic formula, direct exacts, and natural compounds isolated from TCM could significantly alleviate airway structural alterations and exhibit the anti-inflammatory effects. By investigating these findings and data, we will discuss the possible pathomechanism underlined airway inflammation and remodeling in asthma and the unique role of TCM in the treatment of asthma through regulating different signaling pathways.
Collapse
Affiliation(s)
- Bo-wen Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hua-man Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin-hua Jia
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Xin-hua Jia,
| |
Collapse
|
6
|
Xu J, Xu D, Yu Z, Fu Z, Lv Z, Meng L, Zhao X. Exosomal miR-150 partially attenuated acute lung injury by mediating microvascular endothelial cells and MAPK pathway. Biosci Rep 2022; 42:BSR20203363. [PMID: 34750610 PMCID: PMC8703023 DOI: 10.1042/bsr20203363] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 10/12/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a respiratory disease with high morbidity and mortality rates. Currently, there is no effective treatment to complement mechanical ventilation. Exosomes and microRNAs (miRNAs) are promising agents for the management of this disease. METHODS Exosomes were isolated from mouse bone marrow stromal stem cells (BMSCs). The levels of two miRNAs, miR-542-3P and miR-150, in exosomes were determined using RT-PCR, and miR-150 was selected for further study. ALI model was established in mice using lipopolysaccharides, and then, they were treated with saline, exosomes, miRNA agomirs, or miRNA antagomirs. The concentrations of TNF-α, IL-6, and IL-1β and the number of neutrophils and macrophages in the bronchoalveolar lavage fluid were measured. The wet/dry weight ratio of the lung tissue was calculated, and tissue pathology and apoptosis were observed using hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. CD34 and VE-cadherin expression was detected using immunofluorescence. Proteins associated with apoptosis and MAPK signaling were detected using Western blotting, and miR-150 expression in lung tissue was evaluated using RT-PCR. RESULTS We successfully isolated BMSCs and exosomes and showed that the level of miR-150 was significantly higher than that of miR-542-3p. Exosomes and miR-150 reduced inflammation and lung edema while maintaining the integrity of the alveolar structure. They also mitigated microvascular endothelial cell injury by regulating the caspase-3, Bax/Bcl-2, and MAPK signaling. CONCLUSIONS Exosomal miR-150 attenuates lipopolysaccharide-induced ALI through the MAPK pathway.
Collapse
Affiliation(s)
- Jiaxin Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhizhong Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhaohui Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Lv
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Meng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Zhao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Timalsina D, Pokhrel KP, Bhusal D. Pharmacologic Activities of Plant-Derived Natural Products on Respiratory Diseases and Inflammations. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1636816. [PMID: 34646882 PMCID: PMC8505070 DOI: 10.1155/2021/1636816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Respiratory inflammation is caused by an air-mediated disease induced by polluted air, smoke, bacteria, and viruses. The COVID-19 pandemic is also a kind of respiratory disease, induced by a virus causing a serious effect on the lungs, bronchioles, and pharynges that results in oxygen deficiency. Extensive research has been conducted to find out the potent natural products that help to prevent, treat, and manage respiratory diseases. Traditionally, wider floras were reported to be used, such as Morus alba, Artemisia indica, Azadirachta indica, Calotropis gigantea, but only some of the potent compounds from some of the plants have been scientifically validated. Plant-derived natural products such as colchicine, zingerone, forsythiaside A, mangiferin, glycyrrhizin, curcumin, and many other compounds are found to have a promising effect on treating and managing respiratory inflammation. In this review, current clinically approved drugs along with the efficacy and side effects have been studied. The study also focuses on the traditional uses of medicinal plants on reducing respiratory complications and their bioactive phytoconstituents. The pharmacological evidence of lowering respiratory complications by plant-derived natural products has been critically studied with detailed mechanism and action. However, the scientific validation of such compounds requires clinical study and evidence on animal and human models to replace modern commercial medicine.
Collapse
Affiliation(s)
- Deepak Timalsina
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | | | - Deepti Bhusal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
8
|
Herbal Active Ingredients: Potential for the Prevention and Treatment of Acute Lung Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5543185. [PMID: 34258266 PMCID: PMC8245226 DOI: 10.1155/2021/5543185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a life-threatening clinical syndrome with high morbidity and mortality. The main pathological features of ALI are increased alveolar-capillary membrane permeability, edema, uncontrolled migration of neutrophils to the lungs, and diffuse alveolar damage, resulting in acute hypoxemic respiratory failure. Glucocorticoids, aspirin, and other anti-inflammatory drugs are commonly used to treat ALI. Respiratory supports, such as a ventilator, are used to alleviate hypoxemia. Many treatment methods are available, but they cannot significantly ameliorate the quality of life of patients with ALI and reduce mortality rates. Herbal active ingredients, such as flavonoids, terpenoids, saponins, alkaloids, and quinonoids, exhibit advantages for ALI prevention and treatment, but the underlying mechanism needs further study. This paper summarizes the role of herbal active ingredients in anti-ALI therapy and progresses in the understanding of their mechanisms. The work also provides some references and insights for the discovery and development of novel drugs for ALI prevention and treatment.
Collapse
|
9
|
Lu R, Wu Y, Guo H, Zhang Z, He Y. Salidroside Protects Against Influenza A Virus-Induced Acute Lung Injury in Mice. Dose Response 2021; 19:15593258211011335. [PMID: 34017230 PMCID: PMC8114266 DOI: 10.1177/15593258211011335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus infections can cause acute lung injury (ALI) in humans; thus, the identification of potent antiviral agents is urgently required. Herein, the effects of salidroside on influenza A virus-induced ALI were investigated in a murine model. BALB/c mice were intranasally inoculated with H1N1 virus and treated with salidroside. The results of this study show that salidroside treatment (30 and 60 mg/kg) significantly attenuated the H1N1 virus-induced histological alterations in the lung and inhibited inflammatory cytokine production. Salidroside also decreased the wet/dry ratio, viral titers, and Toll-like receptor 4 expression in the lungs. Therefore, salidroside may represent a potential therapeutic reagent for the treatment of influenza A virus-induced ALI.
Collapse
Affiliation(s)
- Rufeng Lu
- Department of Emergency, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueguo Wu
- Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Honggang Guo
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, China
| | - Zhuoyi Zhang
- Department of Emergency, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuzhou He
- Department of Emergency, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Gender Differences in Low-Molecular-Mass-Induced Acute Lung Inflammation in Mice. Int J Mol Sci 2021; 22:ijms22010419. [PMID: 33401552 PMCID: PMC7796370 DOI: 10.3390/ijms22010419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022] Open
Abstract
Gender differences in pulmonary inflammation have been well documented. Although low molecular mass hyaluronan (LMMHA) is known to trigger pulmonary lung inflammation, sex differences in susceptibility to LMMHA are still unknown. In this study, we test the hypothesis that mice may display sex-specific differences after LMMHA administration. After LMMHA administration, male mice have higher neutrophil, cytokine, and chemokine counts compared to that of their female counterparts. Additionally, Ovariectomized (OVX) mice show greater LMMHA-induced inflammation compared to that of mice with intact ovaries. Injections of OVX mice with 17β-estradiol can decrease inflammatory responses in the OVX mice. These results show that ovarian hormones regulate LMMHA induced lung inflammation.
Collapse
|
11
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
12
|
Huang C, Zhu J, Wang L, Chu A, Yin Y, Vali K, Garmendia A, Tang Y. Cryptotanshinone protects porcine alveolar macrophages from infection with porcine reproductive and respiratory syndrome virus. Antiviral Res 2020; 183:104937. [PMID: 32961199 DOI: 10.1016/j.antiviral.2020.104937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/31/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV) infection, imposes enormous economic impact to the world pork industry. Currently there is no effective treatment to prevent PRRSV infection in swine. We report that the natural compound cryptotanshinone (Cpt) effectively inhibits the infection of various strains of PRRSV to porcine alveolar macrophages (PAMs), the primary cell target of PRRSV in vivo. Mechanistically, Cpt inhibits the activation of signal transducer and activator of transcription 3 (STAT3), and blocks the interleukin 10 (IL-10) stimulated as well as the basal level CD163 expression in PAMs. Cpt-treatment of PAMs is effective when applied either before or after PRRSV infection, with the combined pre- and post-PRRSV infection treatment resulting in the most significant, dose-dependent inhibition of PRRSV infection. Cpt inhibited both type I/II PRRSV infection in PAMs. Our study identified a new approach to prevent/treat PRRSV infection of pigs with natural compounds.
Collapse
Affiliation(s)
- Chang Huang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Jiaqi Zhu
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Ling Wang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Alexander Chu
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Yexuan Yin
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Kaneha Vali
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA
| | - Antonio Garmendia
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, 61 North Eagleville Road, Storrs, CT, 06269, USA.
| | - Young Tang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, 1390 Storrs Rd, Storrs, CT, 06269, USA.
| |
Collapse
|
13
|
Wu YH, Wu YR, Li B, Yan ZY. Cryptotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia 2020; 145:104633. [DOI: 10.1016/j.fitote.2020.104633] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
|
14
|
Zhou J, Jiang YY, Wang HP, Chen H, Wu YC, Wang L, Pu X, Yue G, Zhang L. Natural compound Tan-I enhances the efficacy of Paclitaxel chemotherapy in ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:752. [PMID: 32647677 PMCID: PMC7333144 DOI: 10.21037/atm-20-4072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Paclitaxel is a widely used clinical first line chemotherapy drug for ovarian carcinoma. Tanshinone I (Tan-I) is one of the vital fat-soluble components, which derived from Chinese herbal medicine, Salvia miltiorrhiza Bunge. Herein, we evaluated whether Tan-I could enhance the efficacy of ovarian cancer to chemotherapy of Paclitaxel. Methods Ovarian cancer cells A2780 and ID-8 were exposed with Tan-I (4.8 µg/mL), Paclitaxel (0.1 µg/mL), or Tan-I combination with Paclitaxel for 24 hours. The cell proliferation was analyzed by CCK8 and EdU staining. Cell apoptosis was analyzed by the TUNEL assay and flow cytometry. The protein levels were determined by western blot. Cell migration was analyzed by Transwell and wound healing. Cell senescence was analyzed by senescence-associated b-galactosidase staining. Antitumor activity was analyzed by a subcutaneous tumor xenograft model of human ovarian cancer in nude mice. The protein expression and apoptosis level of tumor tissues were analyzed by immunohistochemistry and TUNEL staining. Results Tan-I treatment significantly elevated the Paclitaxel-cause reduction of A2780 and ID-8 cell proliferation and cell migration. Tan-I combination with Paclitaxel promotes apoptosis of cancer cells by promoting Bax expression and Bcl-2 expression. Besides, Tan-I treatment can notably increase Paclitaxel-inducing cell senescence by promoting DNA damage and senescence-associated proteins such as p21 and p16. Furthermore, the result of the transplanted tumor model indicated that Tan-I combination with Paclitaxel could inhibit tumor growth in vivo by inhibiting cell proliferation and inducing cell apoptosis. Conclusions Natural compound Tan-I enhances the efficacy of ovarian cancer to Paclitaxel chemotherapy. The results will help to supply the potential clinical use of ovarian carcinoma cells.
Collapse
Affiliation(s)
- Jin Zhou
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Yuan-Yuan Jiang
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Hai-Ping Wang
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Huan Chen
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Yi-Chao Wu
- College of Life Science, China West Normal University, Nanchong, China
| | - Long Wang
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Xiang Pu
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Guizhou Yue
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
15
|
Zhang Q, Gan C, Liu H, Wang L, Li Y, Tan Z, You J, Yao Y, Xie Y, Yin W, Ye T. Cryptotanshinone reverses the epithelial-mesenchymal transformation process and attenuates bleomycin-induced pulmonary fibrosis. Phytother Res 2020; 34:2685-2696. [PMID: 32281701 DOI: 10.1002/ptr.6699] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 02/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic interstitial pneumonia that causes pulmonary tissue damage and functional impairment. To investigate the effects of cryptotanshinone on pulmonary fibrosis, the expression of NIH/3T3, HPF, and rat primary pulmonary fibroblasts was measured and found to be inhibited by CPT in a time- and concentration-dependent manner, and the upregulation of α-SMA expression in NIH/3T3 and HPF cells, which had been stimulated by TGFβ-1, was decreased after CPT administration. We observed that CPT could reverse the increase in α-SMA expression and vimentin and the decrease in E-cad expression in A549 cells, which had been induced by 5 ng/mL TGFβ-1, indicating that CPT has inhibitory effects in the EMT process. A BLM-induced pulmonary fibrosis model was established in C57BL/6 mice. The lung coefficient and hydroxyproline content increased significantly in the BLM-induced group and were decreased in the CPT-treated group. The expression levels of collagen-I and α-SMA and the phosphorylation level of Stat3 were significantly increased, and CPT treatment decreased these levels. Furthermore, the results from the flow cytometry analysis indicated that, in lung tissues, the frequencies of MDSCs, macrophages, DCs and T cells were considerably increased in the BLM-induced group, while CPT treatment reduced these immunocyte populations.
Collapse
Affiliation(s)
- Qianyu Zhang
- Department of Liver Surgery & Liver Transplantation, State Key of Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China.,West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Cailing Gan
- Department of Liver Surgery & Liver Transplantation, State Key of Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Hongyao Liu
- Department of Liver Surgery & Liver Transplantation, State Key of Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Liqun Wang
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yali Li
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zui Tan
- Department of Liver Surgery & Liver Transplantation, State Key of Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Jia You
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yuqin Yao
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yongmei Xie
- Department of Liver Surgery & Liver Transplantation, State Key of Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Wenya Yin
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tinghong Ye
- Department of Liver Surgery & Liver Transplantation, State Key of Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
16
|
Zhou J, Jiang Y, Chen H, Wu Y, Zhang L. Tanshinone I attenuates the malignant biological properties of ovarian cancer by inducing apoptosis and autophagy via the inactivation of PI3K/AKT/mTOR pathway. Cell Prolif 2020; 53:e12739. [PMID: 31820522 PMCID: PMC7046305 DOI: 10.1111/cpr.12739] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Tanshinone I (Tan-I) is one of the vital fatsoluble monomer components, which extracted from Chinese medicinal herb Salvia miltiorrhiza Bunge. It has been shown that Tan-I exhibited anti-tumour activities on different types of cancers. However, the underlying mechanisms by which Tan-Ⅰ regulates apoptosis and autophagy in ovarian cancer remain unclear. Thus, this study aimed to access the therapy effect of Tan-Ⅰ and the underlying mechanisms. METHODS Ovarian cancer cells A2780 and ID-8 were treated with different concentrations of Tan-Ⅰ (0, 1.2, 2.4, 4.8 and 9.6 μg/mL) for 24 hours. The cell proliferation was analysed by CCK8 assay, EdU staining and clone formation assay. Apoptosis was assessed by the TUNEL assay and flow cytometry. The protein levels of apoptosis protein (Caspase-3), autophagy protein (Beclin1, ATG7, p62 and LC3II/LC3I) and PI3K/AKT/mTOR pathway were determined by Western blot. Autophagic vacuoles in cells were observed with LC3 dyeing using confocal fluorescent microscopy. Anti-tumour activity of Tan-Ⅰ was accessed by subcutaneous xeno-transplanted tumour model of human ovarian cancer in nude mice. The Ki67, Caspase-3 level and apoptosis level were analysed by immunohistochemistry and TUNEL staining. RESULTS Tan-Ⅰ inhibited the proliferation of ovarian cancer cells A2780 and ID-8 in a dose-dependent manner, based on CCK8 assay, EdU staining and clone formation assay. In additional, Tan-Ⅰ induced cancer cell apoptosis and autophagy in a dose-dependent manner in ovarian cancer cells by TUNEL assay, flow cytometry and Western blot. Tan-Ⅰ significantly inhibited tumour growth by inducing cell apoptosis and autophagy. Mechanistically, Tan-Ⅰ activated apoptosis-associated protein Caspase-3 cleavage to promote cell apoptosis and inhibited PI3K/AKT/mTOR pathway to induce autophagy. CONCLUSIONS This is the first evidence that Tan-Ⅰ induced apoptosis and promoted autophagy via the inactivation of PI3K/AKT/mTOR pathway on ovarian cancer and further inhibited tumour growth, which might be considered as effective strategy.
Collapse
Affiliation(s)
- Jin Zhou
- College of ScienceSichuan Agricultural UniversityYa'anChina
| | | | - Huan Chen
- College of ScienceSichuan Agricultural UniversityYa'anChina
| | - Yi‐chao Wu
- College of Life ScienceChina West Normal UniversityNanchongChina
| | - Li Zhang
- College of ScienceSichuan Agricultural UniversityYa'anChina
| |
Collapse
|
17
|
Fei YX, Zhao B, Yin QY, Qiu YY, Ren GH, Wang BW, Wang YF, Fang WR, Li YM. Ma Xing Shi Gan Decoction Attenuates PM2.5 Induced Lung Injury via Inhibiting HMGB1/TLR4/NFκB Signal Pathway in Rat. Front Pharmacol 2019; 10:1361. [PMID: 31798456 PMCID: PMC6868102 DOI: 10.3389/fphar.2019.01361] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
Ma Xing Shi Gan Decoction (MXD), a classical traditional Chinese medicine prescription, is widely used for the treatment of upper respiratory tract infection. However, the effect of MXD against particulate matters with diameter of less than 2.5 μm (PM2.5) induced lung injury remains to be elucidated. In this study, rats were stimulated with PM2.5 to induce lung injury. MXD was given orally once daily for five days. Lung tissues were harvested to assess pathological changes and edema. Myeloperoxidase (MPO) activity and malonaldehyde (MDA) content in lung were determined to evaluate the degree of injury. To assess the barrier disruption, the bronchoalveolar lavage fluid (BALF) was collected to determine the total protein content and count the number of neutrophils and macrophages. For evaluating the activation of macrophage in lung tissue, CD68 was detected using immunohistochemistry (IHC). The levels of inflammatory factors including tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and interleukin-6 (IL-6) in BALF and serum were measured. In vitro, a PM2.5-activated RAW 264.7 macrophages inflammatory model was introduced. To evaluate the protective effect of MXD-medicated serum, the cell viability and the release of inflammatory factors were measured. The effects of MXD on the High mobility group box-1/Toll-like receptor 4/Nuclear factor-kappa B (HMGB1/TLR4/NFκB) pathway in lung tissue and RAW 264.7 cells were assessed by Western blot. For further confirming the protective effect of MXD was mediated by inhibiting the HMGB1/TLR4/NFκB pathway, RAW 264.7 cells were incubated with MXD-medicated serum alone or MXD-medicated serum plus recombinant HMGB1 (rHMGB1). MXD significantly ameliorated the lung injury in rats, as evidenced by decreases in the pathological score, lung edema, MPO activity, MDA content, CD68 positive macrophages number, disruption of alveolar capillary barrier and the levels of inflammatory factors. In vitro, MXD-medicated serum increased cell viability and inhibited the release of inflammatory cytokines. Furthermore, MXD treatment was found to inhibit HMGB1/TLR4/NFκB signal pathway both in vivo and in vitro. Moreover, the protection of MXD could be reversed by rHMGB1 in RAW 264.7. Taken together, these results suggest MXD protects rats from PM2.5 induced acute lung injury, possibly through the modulation of HMGB1/TLR4/NFκB pathway and inflammatory responses.
Collapse
Affiliation(s)
- Yu-xiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi-yang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan-ying Qiu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guang-hui Ren
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bo-wen Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ye-fang Wang
- Department of Pediatrics, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, China
| | - Wei-rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yun-man Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Li J, Zheng M, Wang C, Jiang J, Xu C, Li L, Li L, Yan G, Jin Y. Cryptotanshinone attenuates allergic airway inflammation through negative regulation of NF-κB and p38 MAPK. Biosci Biotechnol Biochem 2019; 84:268-278. [PMID: 31690224 DOI: 10.1080/09168451.2019.1687280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study is to determine the role and mechanism of cryptotanshinone (CTS) in allergic airway inflammation. Asthma induced by OVA was established in BALB/c mice. We found increased airway hyperresponsiveness (AHR), increased inflammatory cell infiltration, elevated levels of TNF-α, interleukin-1β (IL-1β), IL-4, IL-5, IL-6 and IL-13, decreased interferon gamma (IFN-γ) in lung tissue, increased content of total immunoglobulin E (IgE), OVA specific IgE, Eotaxin, ICAM-1, VCAM-1, nuclear factor-kappaB (NF-κB) and phosphorylation of p38 MAPK in lung tissue. However, the administration of CTS significantly decreased AHR in asthmatic mice, reduced inflammation around the bronchioles and inflammatory cells around airway, regulated cytokine production, reduced the total IgE and OVA-specific IgE levels, and inhibited NF-κB activation and p38 MAPK phosphorylation. In vitro experiments in 16 HBE cells revealed that CTS attenuated CAM-1 and IL-6 expression. These results indicate that CTS alleviates allergic airway inflammation by modulating p38 MAPK phosphorylation and NF-κB activation.
Collapse
Affiliation(s)
- Junfeng Li
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Mingyu Zheng
- College of Pharmacy, Yanbian University, Yanji, P.R. China
| | - Chongyang Wang
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Jingzhi Jiang
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Chang Xu
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Li Li
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Liangchang Li
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Guanghai Yan
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Yongde Jin
- Department of Otolaryngology-Head and Neck Surgery, Yanbian University Hospital, Yanji, P.R. China
| |
Collapse
|
19
|
Li Y, Ma P, Fu J, Wu J, Wu X. Combining an in silico approach with an animal experiment to investigate the protective effect of troxerutin for treating acute lung injury. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:124. [PMID: 31182097 PMCID: PMC6558719 DOI: 10.1186/s12906-019-2515-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/26/2019] [Indexed: 12/17/2022]
Abstract
Background Troxerutin (TRX), a naturally occurring flavonoid in various fruits, has been reported to exhibit numerous pharmacological and biological activities in vitro and in vivo. However, the molecular mechanisms underlying TRX as a treatment for disease are poorly understood. Methods Using pharmacophore mapping and inverse docking, a set of potential TRX target proteins that have been associated with multiple forms of diseases was obtained. Bioinformatic analyses were performed using the Enrichr and STRING servers to analyse the related biological processes and protein-protein networks. Furthermore, we investigated the potential protective effect of TRX against lipopolysaccharide-induced acute lung injury (ALI) using a mouse model. Morphological changes in the lungs were assessed using haematoxylin and eosin staining. Inflammatory cytokines, tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6 and IL-10 were investigated using ELISA. Activation of MAPK and NF-κB was detected using western blotting. Results Our network pharmacology analysis revealed the existence of multiple TRX-related chemical-target interactions and the related biological processes. We found that pretreatment with TRX protected against histological changes and obviously regulated the inflammatory cell counts and inflammatory cytokine levels in bronchoalveolar lavage fluid. Based on bioinformatic and western blot analyses, TRX may exert a protective effect against ALI by inhibiting MAPK and NF-κB signalling. Conclusions TRX can ameliorate pulmonary injury by inhibiting the MAPK and NF-κB signalling pathways and has a potential protective effect against ALI. This study may be helpful for understanding the mechanisms underlying TRX action and for discovering new drugs from plants for the treatment of ALI. Electronic supplementary material The online version of this article (10.1186/s12906-019-2515-7) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Cryptotanshinone protects against pulmonary fibrosis through inhibiting Smad and STAT3 signaling pathways. Pharmacol Res 2019; 147:104307. [PMID: 31181334 DOI: 10.1016/j.phrs.2019.104307] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/26/2019] [Accepted: 06/06/2019] [Indexed: 01/11/2023]
Abstract
Cryptotanshinone (CTS), a lipophilic compound extracted from root of Salvia miltiorrhiza (Danshen), has demonstrated multiple pharmacological activities, including anti-inflammation, anti-proliferation and anti-infection. However, the effect of CTS on pulmonary fibrosis is unknown. This study aims to investigate the effects of CTS treatment on pulmonary fibrosis and its underlying mechanism. The pulmonary fibrosis model was established by intratracheal instillation of bleomycin (5 mg/kg) in Sprague-Dawley rats (in vivo) and stimulating human fetal lung fibroblasts (HLFs) with transforming growth factor-beta 1 (TGF-β1) (in vitro). CTS (7.5, 15, 30, 60 mg/kg/day) and pirfenidone (150 mg/kg/day, positive control) were administered by oral gavage for 28 days. In this study, we found CTS treatment improved pulmonary function, relieved pathological changes and attenuated the accumulation of extracellular matrix in pulmonary fibrosis rat model induced by bleomycin. Mechanistically, CTS suppressed phosphorylation of Smad2/3 and STAT3 induced by TGF-β1 in HLFs. Stattic, a 1-benzothiophene based small-molecule STAT3 inhibitor, resulted in a significant down-regulation of fibrosis biomarkers including fibronectin, collagen type I and alpha smooth muscle actin (α-SMA). Overexpression of STAT3 promoted expression of fibrosis biomarkers in HLFs cell model induced by TGF-β1 and partially blocked the inhibitory effect of CTS on TGF-β1-induced fibrosis response. Taken together, these results suggested that CTS protects against pulmonary fibrosis via inhibition of Smad and STAT3 signaling pathways. Thus, CTS may represent a promising drug candidate for treating pulmonary fibrosis.
Collapse
|
21
|
Wang M, Zhong D, Dong P, Song Y. Blocking CXCR1/2 contributes to amelioration of lipopolysaccharide-induced sepsis by downregulating substance P. J Cell Biochem 2019; 120:2007-2014. [PMID: 30160797 DOI: 10.1002/jcb.27507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/25/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVES C-X-C chemokine receptor types 1/2 (CXCR1/2) is known to be activated in liver damage in acute-on-chronic liver failure; however, the role in lipopolysaccharide (LPS)-induced sepsis is unknown. The current study was designed to determine whether or not CXCR1/2 blockade with reparixin ameliorates acute lung injury (ALI) by affecting neuropeptides in a LPS-induced sepsis mouse model. MATERIALS AND METHODS Male C57BL/6 mice (10 to 14-week old) were divided into sham, LPS, sham-R, and LPS-R groups. Bronchoalveolar lavage fluid (BALF) was collected and evaluated. The lung histopathology was assessed by immunocytochemistry staining. Western blot analysis was used to measure myeloperoxidase, substance P (SP), and vasoactive intestinal peptide. RESULTS LPS-induced animal models were ameliorated by cotreatment with a CXCR1/2 antagonist. Moreover, the protective effects of CXCR1/2 antagonists were attributed to the increased secretion of pro-opiomelanocortin and decreased the secretion of SP. Reparixin decreased the expression of necroptosis cell death markers induced by LPS. CONCLUSION The results of this study indicate that blockade of CXCR1/2 may represent a promising therapeutic strategy for the treatment of sepsis-associated ALI through regulation of neuropeptides and necroptosis.
Collapse
Affiliation(s)
- Miaoshu Wang
- Department of Medical Intensive Care Unit, The First People's Hospital of Wenling, Taizhou, China
| | - Danfeng Zhong
- Department of Medical Intensive Care Unit, The First People's Hospital of Wenling, Taizhou, China
| | - Ping Dong
- Department of Medical Intensive Care Unit, The First People's Hospital of Wenling, Taizhou, China
| | - Yukang Song
- Department of Medical Intensive Care Unit, The First People's Hospital of Wenling, Taizhou, China
| |
Collapse
|
22
|
Cao SG, Chen R, Wang H, Lin LM, Xia XP. Cryptotanshinone inhibits prostaglandin E2 production and COX-2 expression via suppression of TLR4/NF-κB signaling pathway in LPS-stimulated Caco-2 cells. Microb Pathog 2018; 116:313-317. [PMID: 29353005 DOI: 10.1016/j.micpath.2017.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Crytotanshinone (CTN), one of the main constituents of Salvia miltiorrhiza, has been known to exhibit antioxdative, anti-inflammatory and other important therapeutic activities. The aim of this study was to evaluate the effect of CTN on prostaglandin E2 and COX-2 production in LPS-stimulated human intestinal cells (Caco-2 cells). Caco-2 cells were stimulated with LPS in the presence or absence of CTN. The production of prostaglandin E2 (PGE2) was detected by ELISA. The expression of COX-2 was detected by qRT-PCR and Western blot. The extent of phosphorylation of IκB-α, NF-κB p65 and the expression of TLR4 were detected by western blot. The results showed that CTN dose-dependently inhibited the expression of COX-2 both in mRNA and protein levels, resulting in a decreased production of PGE2. We also found that CTN suppressed LPS-induced NF-κB activation and IκBα degradation. Furthermore, CTN inhibited the expression of TLR4 up-regulated by LPS. These results suggest that CTN exerts an anti-inflammatory property by inhibiting TLR4/NF-κB signaling pathway and the release of pro-inflammatory mediators. These findings suggest that CTN may be a therapeutic agent against intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Shu-Guang Cao
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Rujie Chen
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Hui Wang
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Li-Miao Lin
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xuan-Ping Xia
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| |
Collapse
|
23
|
Cryptotanshinone protects against IL-1β-induced inflammation in human osteoarthritis chondrocytes and ameliorates the progression of osteoarthritis in mice. Int Immunopharmacol 2017; 50:161-167. [DOI: 10.1016/j.intimp.2017.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/30/2017] [Accepted: 06/17/2017] [Indexed: 11/23/2022]
|
24
|
Chao W, Deng JS, Huang SS, Li PY, Liang YC, Huang GJ. 3, 4-dihydroxybenzalacetone attenuates lipopolysaccharide-induced inflammation in acute lung injury via down-regulation of MMP-2 and MMP-9 activities through suppressing ROS-mediated MAPK and PI3K/AKT signaling pathways. Int Immunopharmacol 2017. [PMID: 28644965 DOI: 10.1016/j.intimp.2017.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
3, 4-Dihydroxybenzalacetone (DBL) is a constituent of Phellinus linteus. This study demonstrated the protective effect of DBL on lipopolysaccharide (LPS)-induced acute lung injuries in mice. Pretreatment with DBL significantly improved LPS-induced histological alterations in lung tissues. In addition, DBL markedly reduced the total cell number, the leukocytes, the protein concentrations, and decreased the release of nitrite, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and the activities of matrix metalloproteinase (MMP)-2 and -9 in the bronchoalveolar lavage fluid. DBL also inhibited the W/D ratio and myeloperoxidase activity in the lung tissues. Western blot analysis indicated DBL efficiently blocked the protein expressions of inducible nitric oxide synthase, cyclooxygenase-2, MMP-2, MMP-9, and the phosphorylation of mitogen-activated protein kinase (MAPK), phosphoinositide-3-kinase (PI3K), AKT, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Moreover, DBL enhanced the expression of anti-oxidant proteins, such as superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx). Based on our results, DBL might be a potential target for attenuating tissue oxidative injuries and nonspecific pulmonary inflammation.
Collapse
Affiliation(s)
- Wei Chao
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Jeng-Shyan Deng
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Shyh-Shyun Huang
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Pei-Ying Li
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Yu-Chia Liang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
25
|
Lu R, Wu Y, Guo H, Huang X. Salidroside Protects Lipopolysaccharide-Induced Acute Lung Injury in Mice. Dose Response 2016; 14:1559325816678492. [PMID: 27928219 PMCID: PMC5134295 DOI: 10.1177/1559325816678492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Salidroside (SDS) has been reported to have anti-inflammatory properties. The objective of this study was to investigate the protective effect of SDS on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. BALB/c mice were pretreated with SDS 1 hour before intranasal instillation of LPS. Seven hours after LPS administration, the myeloperoxidase in histology of lungs, lung wet/dry ratio, and inflammatory cells in the bronchoalveolar lavage fluid (BALF) were determined. The levels of pro-inflammatory cytokines, tumor necrosis factor α (TNF-α), interleukin-1β (IL 1β), and IL-6 in the BALF were measured by enzyme-linked immunosorbent assay. The expression of Toll-like receptor 4 (TLR4), inhibitor of nuclear factor-kappa B (IκB-α), and nuclear factor-kappa B (NF-κB) p65 was detected by Western blot. The SDS reduced the inflammatory cells in BALF, decreased the wet/dry ratio of lungs, attenuated the LPS-induced histological alterations in the lung, and inhibited the production of TNF-α, IL-1β, and IL-6. Western blot showed that SDS efficiently inhibited the phosphorylation of IκB-α, p65 NF-κB, and the expression of TLR4. These data show that the anti-inflammatory effects of SDS (at least 20 mg/kg) against LPS-induced ALI due to its ability to inhibit TLR4 mediated the NF-κB signaling pathways. The SDS may represent a novel strategy for treating LPS-induced ALI.
Collapse
Affiliation(s)
- Rufeng Lu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueguo Wu
- Institute of Materia Medicines, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Honggang Guo
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Xiaomin Huang
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Man Y, Yang L, Zhang D, Bi Y. Cryptotanshinone inhibits lung tumor growth by increasing CD4 + T cell cytotoxicity through activation of the JAK2/STAT4 pathway. Oncol Lett 2016; 12:4094-4098. [PMID: 27895777 DOI: 10.3892/ol.2016.5123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/16/2016] [Indexed: 01/02/2023] Open
Abstract
Cryptotanshinone is one of the fat-soluble phenanthrene quinone components. In vitro studies have shown that tanshinone compounds can inhibit the proliferation of various tumor cells and affect cell cycle distribution. The aim of the present study was to better understand the effect of cryptotanshinone on the inhibition of small cell lung cancer by cytotoxic cluster of differentiation (CD)4+ T cells through activation of the Janus kinase 2/signal transducer and activator of transcription 4 (JAK2/STAT4) pathway. The Cell Counting kit-8 assay and the lactate dehydrogenase assay were used to analyze the cell proliferation of H446 and CD4+ T cells, and the cell cytotoxicity of CD4+ and CD8+ T cells, respectively. JAK2 and STAT4 protein expression was measured by western blot analysis. Cryptotanshinone effectively inhibited the tumor growth of the H446 cells and the cell proliferation of the CD4+ T cells. Treatment with cryptotanshinone increased the cytotoxicity of the CD4+ T cells, but could not affect the cytotoxicity of the CD8+ T cells. Meanwhile, cryptotanshinone induced phosphorylated (p)-JAK2 and p-STAT4 protein expression in the CD4+ T cells. These results suggest that cryptotanshinone inhibits the cell growth of lung tumors by increasing CD4+ T cell toxicity through activation of the JAK2/STAT4 pathway.
Collapse
Affiliation(s)
- Yonghong Man
- School of Public Health, Wuhan University, Wuhan, Hubei 430071, P.R. China; Scientific Research Center, Nanyang Medical College, Nanyang, Henan 473061, P.R. China
| | - Le Yang
- Department of Basic Medicine, Nanyang Medical College, Nanyang, Henan 473061, P.R. China
| | - Dongxian Zhang
- Department of Basic Medicine, Nanyang Medical College, Nanyang, Henan 473061, P.R. China
| | - Yongyi Bi
- School of Public Health, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
27
|
Anticancer activity of cryptotanshinone on acute lymphoblastic leukemia cells. Arch Toxicol 2015; 90:2275-2286. [DOI: 10.1007/s00204-015-1616-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022]
|
28
|
Oche B, Chen L, Ma YK, Yang Y, Li CX, Geng X, Qiu LZ, Gao XM, Wang H. Cryptotanshinone and wogonin up-regulate eNOS in vascular endothelial cells via ERα and down-regulate iNOS in LPS stimulated vascular smooth muscle cells via ERβ. Arch Pharm Res 2015; 39:249-258. [PMID: 26481132 DOI: 10.1007/s12272-015-0671-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/03/2015] [Indexed: 11/28/2022]
Abstract
Phytoestrogens were widely used as natural alternatives to estrogen for treating cardiovascular diseases. They have been reported to have cardioprotective and anti-inflammatory response, but the mechanisms remain unclear. In this study, we found cryptotanshinone and wogonin exhibited phytoestrogenic property in an estrogen-responsive reporter assay. In EA.hy926 cells, treatment of cryptotanshinone and wogonin led to significant increase in NO production levels, which were inhibited by co-incubation of estrogen receptor (ER)α antagonist methyl-piperidino-pyrazole (MPP). The expression of endothelial NO synthase (eNOS) and ERα were up-regulated with the same treatment, indicating they stimulate NO and eNOS expression via ERα-dependent pathway in endothelial cells. While in lipopolysaccharide activated vascular smooth muscle cell line A7r5, cryptotanshinone and wogonin exerted anti-inflammatory effects by inhibiting NO and inducible NO synthase expression via ERβ-dependent pathway. The reduction of NO synthesis was not affected by MPP, and was abrogated by ERβ antagonist R,R-tetrahydrochrysene. Our findings provide the potential molecular mechanism of cryptotanshinone and wogonin as phytoestrogens for their cardioprotective effects, which exerted regulatory effects on NO synthesis through differential regulation of estrogen receptors. It can be employed as a basis for evaluating the beneficial effects of phytoestrogens in the treatment of patients at risk of cardiovascular disease.
Collapse
Affiliation(s)
- Barnabas Oche
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, # 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Lu Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, # 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Ya-Ke Ma
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, # 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Yue Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, # 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Chun-Xiao Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, # 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Xiao Geng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, # 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Li-Zhen Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, # 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Xiu-Mei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China
| | - Hong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China. .,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China. .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, # 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.
| |
Collapse
|
29
|
Cryptotanshinone, a Stat3 inhibitor, suppresses colorectal cancer proliferation and growth in vitro. Mol Cell Biochem 2015; 406:63-73. [PMID: 25912550 DOI: 10.1007/s11010-015-2424-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/22/2015] [Indexed: 01/10/2023]
Abstract
Cryptotanshinone (CPT) is a natural compound extracted from herbal medicine that has been previously shown to possess antitumor properties in various types of human cancer cells. In the present study, we examined the potential role of CPT in the treatment of colorectal cancer. Using SW480, HCT116, and LOVO colorectal cancer cell lines, the effects of CPT on cell viability, apoptosis, and tumorigenicity were evaluated. The results showed that CPT significantly inhibited the growth and viability of SW480, HCT116, and LOVO cell lines by inducing apoptosis and prevented anchorage dependent growth on agar. In addition, CPT inhibited the activation of Signal transducer and activator of transcription 3 (Stat3) pathways in colorectal cancer cells. Stat3 is a transcription factor that mediates the expression of various genes associated with many cellular processes, such as inflammation and cell growth, and has been shown to promote several cancer types, including colorectal cancer. These findings indicate that CPT may be a potential candidate for the treatment and prevention of colorectal cancer in part by inhibiting the activation of Stat3.
Collapse
|
30
|
Yang H, Li Y, Huo P, Li XO, Kong D, Mu W, Fang W, Li L, Liu N, Fang L, Li H, He C. Protective effect of Jolkinolide B on LPS-induced mouse acute lung injury. Int Immunopharmacol 2015; 26:119-24. [PMID: 25819665 DOI: 10.1016/j.intimp.2015.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 12/27/2022]
Abstract
Jolkinolide B (JB), an ent-abietane diterpenoid, isolated from the dried root of Euphorbia fischeriana, has been reported to have potent anti-tumor and anti-inflammatory activities. However, the effects of JB on acute lung injury (ALI) and underlying molecular mechanisms have not been investigated. The present study aimed to investigate the effect of JB on lipopolysaccharide (LPS)-induced ALI. Male C57BL/6 mice were pretreated with dexamethasone or JB 1h before intranasal instillation of LPS. The results showed that JB markedly attenuated LPS-induced histological alterations, lung edema, inflammatory cell infiltration, myeloperoxidase (MPO) activity as well as the production of TNF-α, IL-6 and IL-1β. Furthermore, JB also significantly inhibited LPS-induced the degradation of IκBα and phosphorylation of NF-κB p65 and MAPK. Therefore, our study provides the first line of evidence that pretreatment of JB has a protective effect on LPS-induced ALI in mice. The anti-inflammatory mechanism of JB may be attributed to its suppression of NF-κB and MAPK activation.
Collapse
Affiliation(s)
- Hailing Yang
- Emergency Department, Jilin University, Changchun 130041, China
| | - Yan Li
- Emergency Department, Jilin University, Changchun 130041, China
| | - Pengfei Huo
- Intensive Care Unit, Jilin University, Changchun 130041, China
| | - Xiao-Ou Li
- Tumor Hospital of Jilin Province, Changchun 130022, China
| | - Daliang Kong
- Department of Orthopedics, Jilin University, Changchun 130041, China
| | - Wei Mu
- Emergency Department, Jilin University, Changchun 130041, China
| | - Wei Fang
- Emergency Department, Jilin University, Changchun 130041, China
| | - Lingxia Li
- Emergency Department, Jilin University, Changchun 130041, China
| | - Ning Liu
- Central Laboratory, The Second Clinical Hospital, Jilin University, Changchun 130041, China
| | - Ling Fang
- Clinical Laboratory, Jilin University, Changchun 130041, China
| | - Hongjun Li
- Medical Examination Center, China-Japan Union Hospital, Jilin University, Changchun 130033, China.
| | - Chengyan He
- Clinical Laboratory, Jilin University, Changchun 130041, China.
| |
Collapse
|
31
|
Liu Z, Xu S, Huang X, Wang J, Gao S, Li H, Zhou C, Ye J, Chen S, Jin ZG, Liu P. Cryptotanshinone, an orally bioactive herbal compound from Danshen, attenuates atherosclerosis in apolipoprotein E-deficient mice: role of lectin-like oxidized LDL receptor-1 (LOX-1). Br J Pharmacol 2015; 172:5661-75. [PMID: 25572313 DOI: 10.1111/bph.13068] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Cryptotanshinone (CTS) is a major bioactive diterpenoid isolated from Danshen, an eminent medicinal herb that is used to treat cardiovascular disorders in Asian medicine. However, it is not known whether CTS can prevent experimental atherosclerosis. The present study was designed to investigate the protective effects of CTS on atherosclerosis and its molecular mechanisms of action. EXPERIMENTAL APPROACH Apolipoprotein E-deficient (ApoE(-/-)) mice, fed an atherogenic diet, were dosed daily with CTS (15, 45 mg kg(-1) day(-1)) by oral gavage. In vitro studies were carried out in oxidized LDL (oxLDL)-stimulated HUVECs treated with or without CTS. KEY RESULTS CTS significantly attenuated atherosclerotic plaque formation and enhanced plaque stability in ApoE(-/-) mice by inhibiting the expression of lectin-like oxLDL receptor-1 (LOX-1) and MMP-9, as well as inhibiting reactive oxygen species (ROS) generation and NF-κB activation. CTS treatment significantly decreased the levels of serum pro-inflammatory mediators without altering the serum lipid profile. In vitro, CTS decreased oxLDL-induced LOX-1 mRNA and protein expression and, thereby, inhibited LOX-1-mediated adhesion of monocytes to HUVECs, by reducing the expression of adhesion molecules (intracellular adhesion molecule 1 and vascular cellular adhesion molecule 1). Furthermore, CTS inhibited NADPH oxidase subunit 4 (NOX4)-mediated ROS generation and consequent activation of NF-κB in HUVECs. CONCLUSIONS AND IMPLICATIONS CTS was shown to have anti-atherosclerotic activity, which was mediated through inhibition of the LOX-1-mediated signalling pathway. This suggests that CTS is a vasculoprotective drug that has potential therapeutic value for the clinical treatment of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Zhiping Liu
- Department of Pharmacology and Toxicology, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Drug Discovery Center, School of Chemical Biology and Biotechnology (SCBB), Shenzhen Graduate School of Peking University, Shenzhen, China
| | - Suowen Xu
- Department of Pharmacology and Toxicology, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Xiaoyang Huang
- Department of Pharmacology and Toxicology, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiaojiao Wang
- Department of Pharmacology and Toxicology, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Si Gao
- Department of Pharmacology and Toxicology, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong Li
- Department of Pharmacology and Toxicology, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Changhua Zhou
- Department of Pharmacology and Toxicology, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaorui Chen
- Department of Pharmacology and Toxicology, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zheng-Gen Jin
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Ren X, Du H, Li Y, Yao X, Huang J, Li Z, Wang W, Li J, Han S, Wang C, Huang K. Age-related activation of MKK/p38/NF-κB signaling pathway in lung: from mouse to human. Exp Gerontol 2014; 57:29-40. [PMID: 24802989 DOI: 10.1016/j.exger.2014.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/27/2014] [Accepted: 04/29/2014] [Indexed: 12/20/2022]
Abstract
We and others previously reported that the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 significantly accumulate with age in mouse lung. This is accompanied by elevated phosphorylation of p38. Here, we further investigate whether aging affects activation of p38 signaling and the inflammatory reaction after exposure to lipopolysaccharide (LPS) in the lungs of mice in vivo and humans ex vivo. The data showed that activation of p38 peaked at 0.5h and then rapidly declined in young (2-month-old) mouse lung, after intranasal inhalation challenge with LPS. In contract, activation of p38 peaked at 24h and was sustained longer in aged (20-month-old) mice. As well as altered p38, activations of its upstream activator MKK and downstream substrate NF-κB were also changed in the lungs of aged mice, which corresponded with the absence in the early phase but delayed increases in concentrations of TNF-α, IL-1β and IL-6. Consistent with the above observations in mice, similar patterns of p38 signaling also occurred in human lungs. Compared with younger lungs from adult-middle aged subjects, the activation of p38, MKK and NF-κB, as well as the production of pro-inflammatory cytokines were significantly increased in the lungs of older subjects ex vivo. Exposure of human lung cells to LPS induced rapid activation of p38, MKK and NF-κB in these cells from adult-middle aged subjects, but not older subjects, with increases in the production of the pro-inflammatory cytokines. The LPS-induced rapid activation in the lung cells from adult-middle aged subjects occurred as early as 0.25h after exposure, and then declined. Compared with adult-middle aged subjects, the LPS exposure did not induce marked changes in the early phase, either in the activation of p38, MKK and NF-κB, or in the production of TNF-α, IL-1β or IL-6 in the lung cells from older subjects. In contrast, these changes occurred relatively late, peaked at 16h and were sustained longer in the lungs of older subjects. These data support the hypothesis that the sustained activation of the p38 signaling pathway at baseline and the absence in the early phase but delayed of p38 signaling pathway response to LPS in the elderly may play important roles in increased susceptibility of aged lungs to inflammatory injury.
Collapse
Affiliation(s)
- Xiaoxia Ren
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China; Beijing Institute of Respiratory Medicine, Beijing 100020, PR China
| | - Huadong Du
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Yan Li
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China; Beijing Institute of Respiratory Medicine, Beijing 100020, PR China
| | - Xiujuan Yao
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China; Beijing Institute of Respiratory Medicine, Beijing 100020, PR China
| | - Junmin Huang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China; Beijing Institute of Respiratory Medicine, Beijing 100020, PR China
| | - Zongli Li
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China; Beijing Institute of Respiratory Medicine, Beijing 100020, PR China
| | - Wei Wang
- Department of Immunology, Capital Medical University, Beijing 100069, PR China
| | - Junfa Li
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, PR China
| | - Song Han
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, PR China
| | - Chen Wang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China; Beijing Institute of Respiratory Medicine, Beijing 100020, PR China
| | - Kewu Huang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China; Beijing Institute of Respiratory Medicine, Beijing 100020, PR China.
| |
Collapse
|