1
|
Das A, Suar M, Reddy K. Hormones in malaria infection: influence on disease severity, host physiology, and therapeutic opportunities. Biosci Rep 2024; 44:BSR20240482. [PMID: 39492784 PMCID: PMC11581842 DOI: 10.1042/bsr20240482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Human malaria, caused by Plasmodium parasites, is a fatal disease that disrupts the host's physiological balance and affects the neuroendocrine system. This review explores how malaria influences and is influenced by hormones. Malaria activates the Hypothalamus-Pituitary-Adrenal axis, leading to increased cortisol, aldosterone, and epinephrine. Cortisol, while reducing inflammation, aids parasite survival, whereas epinephrine helps manage hypoglycemia. The Hypothalamus-Pituitary-Gonad and Hypothalamus-Pituitary-Thyroid axes are also impacted, resulting in lower sex and thyroid hormone levels. Malaria disrupts the renin-angiotensin-aldosterone system (RAAS), causing higher angiotensin-II and aldosterone levels, contributing to edema, hyponatremia and hypertension. Malaria-induced anemia is exacerbated by increased hepcidin, which impairs iron absorption, reducing both iron availability for the parasite and red blood cell formation, despite elevated erythropoietin. Hypoglycemia is common due to decreased glucose production and hyperinsulinemia, although some cases show hyperglycemia due to stress hormones and inflammation. Hypocalcemia, and hypophosphatemia are associated with low Vitamin D3 and parathyroid hormone but high calcitonin. Hormones such as DHEA, melatonin, PTH, Vitamin D3, hepcidin, progesterone, and erythropoietin protects against malaria. Furthermore, synthetic analogs, receptor agonists and antagonists or mimics of hormones like DHEA, melatonin, serotonin, PTH, vitamin D3, estrogen, progesterone, angiotensin, and somatostatin are being explored as potential antimalarial treatments or adjunct therapies. Additionally, hormones like leptin and PCT are being studied as probable markers of malaria infection.
Collapse
Affiliation(s)
- Aleena Das
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
- Technology Business Incubator, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| |
Collapse
|
2
|
Promdam N, Khuituan P, Panichayupakaranant P. Effects of standardized [6]-gingerol extracts and [6]-gingerol on isolated ileum and lower esophageal sphincter contractions in mice. Food Chem 2022; 378:132077. [PMID: 35042108 DOI: 10.1016/j.foodchem.2022.132077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/08/2023]
Abstract
Standardized [6]-gingerol extracts were prepared by microwave-assisted extraction using 20% v/v glycerin in ethanol and 20% v/v eutectic mixture of sucrose and citric acid in ethanol as alternative green solvents. The extracts obtained from 20% v/v glycerin in ethanol (GEE) and 20% v/v eutectic mixture of sucrose and citric acid in ethanol (EMSCEE) were standardized by HPLC to contain 17.0 mg/g of [6]-gingerol. The effects of the extracts on mouse ileal contractions via M3 and 5-HT3 receptors as well as lower esophageal sphincter (LES) contraction were determined in vitro relative to the marker compound, [6]-gingerol. [6]-Gingerol, GEE and EMSCEE demonstrated significant and concentration-dependent inhibitory effects on ileal contraction in mice via M3 and 5-HT3 receptors in a noncompetitive manner. In addition, [6]-gingerol and EMSCEE tend to increase the LES tone. These results indicated the potential of GEE and EMSCEE to attenuate nausea and vomiting and might be used as nutraceuticals.
Collapse
Affiliation(s)
- Nantaporn Promdam
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Pissared Khuituan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; Gut Biology and Microbiota Research Unit, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| |
Collapse
|
3
|
Lei ZN, Wu ZX, Dong S, Yang DH, Zhang L, Ke Z, Zou C, Chen ZS. Chloroquine and hydroxychloroquine in the treatment of malaria and repurposing in treating COVID-19. Pharmacol Ther 2020; 216:107672. [PMID: 32910933 PMCID: PMC7476892 DOI: 10.1016/j.pharmthera.2020.107672] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Chloroquine (CQ) and Hydroxychloroquine (HCQ) have been commonly used for the treatment and prevention of malaria, and the treatment of autoimmune diseases for several decades. As their new mechanisms of actions are identified in recent years, CQ and HCQ have wider therapeutic applications, one of which is to treat viral infectious diseases. Since the pandemic of the coronavirus disease 2019 (COVID-19), CQ and HCQ have been subjected to a number of in vitro and in vivo tests, and their therapeutic prospects for COVID-19 have been proposed. In this article, the applications and mechanisms of action of CQ and HCQ in their conventional fields of anti-malaria and anti-rheumatism, as well as their repurposing prospects in anti-virus are reviewed. The current trials and future potential of CQ and HCQ in combating COVID-19 are discussed.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Shaowei Dong
- Key Laboratory of medical electrophysiology of education ministry, School of Pharmacy, Southwest Medical University, China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Litu Zhang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Chang Zou
- Key Laboratory of medical electrophysiology of education ministry, School of Pharmacy, Southwest Medical University, China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
4
|
Jarvis GE, Barbosa R, Thompson AJ. Noncompetitive Inhibition of 5-HT3 Receptors by Citral, Linalool, and Eucalyptol Revealed by Nonlinear Mixed-Effects Modeling. J Pharmacol Exp Ther 2015; 356:549-62. [PMID: 26669427 PMCID: PMC5378937 DOI: 10.1124/jpet.115.230011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/14/2015] [Indexed: 12/15/2022] Open
Abstract
Citral, eucalyptol, and linalool are widely used as flavorings, fragrances, and cosmetics. Here, we examined their effects on electrophysiological and binding properties of human 5-HT3 receptors expressed in Xenopus oocytes and human embryonic kidney 293 cells, respectively. Data were analyzed using nonlinear mixed-effects modeling to account for random variance in the peak current response between oocytes. The oils caused an insurmountable inhibition of 5‐HT–evoked currents (citral IC50 = 120 µM; eucalyptol = 258 µM; linalool = 141 µM) and did not compete with fluorescently labeled granisetron, suggesting a noncompetitive mechanism of action. Inhibition was not use‐dependent but required a 30-second preapplication. Compound washout caused a slow (∼180 seconds) but complete recovery. Coapplication of the oils with bilobalide or diltiazem indicated they did not bind at the same locations as these channel blockers. Homology modeling and ligand docking predicted binding to a transmembrane cavity at the interface of adjacent subunits. Liquid chromatography coupled to mass spectrometry showed that an essential oil extracted from Lippia alba contained 75.9% citral. This inhibited expressed 5‐HT3 receptors (IC50 = 45 µg ml−1) and smooth muscle contractions in rat trachea (IC50 = 200 µg ml−1) and guinea pig ileum (IC50 = 20 µg ml−1), providing a possible mechanistic explanation for why this oil has been used to treat gastrointestinal and respiratory ailments. These results demonstrate that citral, eucalyptol, and linalool inhibit 5-HT3 receptors, and their binding to a conserved cavity suggests a valuable target for novel allosteric modulators.
Collapse
Affiliation(s)
- Gavin E Jarvis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom (G.E.J.); Mestrado em Bioprospecção Molecular, Universidade Regional do Cariri, Crato, Brazil (R.B.); and Department of Pharmacology, Cambridge, United Kingdom (A.J.T.)
| | - Roseli Barbosa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom (G.E.J.); Mestrado em Bioprospecção Molecular, Universidade Regional do Cariri, Crato, Brazil (R.B.); and Department of Pharmacology, Cambridge, United Kingdom (A.J.T.)
| | - Andrew J Thompson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom (G.E.J.); Mestrado em Bioprospecção Molecular, Universidade Regional do Cariri, Crato, Brazil (R.B.); and Department of Pharmacology, Cambridge, United Kingdom (A.J.T.)
| |
Collapse
|
5
|
Ruan M, Yu B, Xu L, Zhang L, Long J, Shen X. Attenuation of stress-induced gastrointestinal motility disorder by gentiopicroside, from Gentiana macrophylla Pall. Fitoterapia 2015; 103:265-76. [PMID: 25936770 DOI: 10.1016/j.fitote.2015.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/22/2015] [Accepted: 04/26/2015] [Indexed: 01/22/2023]
Abstract
AIM The current study was designed to explore the mechanism of the prokinetic activity of Gentiopicroside (Ge), from Gentiana macrophylla Pall which is widely used to strengthen gastric motility in clinic. METHODS Gastrointestinal motility disorder rats were induced by stress stimulation and the rats were treated with Ge. The functions of gastric emptying and intestinal propelling were measured after blood was obtained to assay the levels of plasmatic motilin (MTL), vasoactive intestinal peptide (VIP), somatostatin (SST), gastrin (GAS), neurotensin (NT) and substance of P (SP). The expressions of MTL receptor (MTLR), VIP receptor 2 (VIPR2) and SST receptor 2 (SSTR2) were measured also. In addition, an isolated guinea pig ileum was applied to evaluate the influences of Ge on M-R, H1-R, 5-HT4-R and D-R in vitro. RESULTS Ge increased gastric emptying and intestinal propelling obviously. It also decreased the level of SST and increased GAS in plasma significantly. Moreover, it promoted the expressions of MTLR in gastric antrum, duodenum, jejunum and ileum, and restrained the expression of VIPR2 in duodenum. Piboserod and loratadine had no obvious restrain to Ge' exciting ileum effect and Ge also didn't affect dopamine paralyzing ileum. However, Ge failed to improve the hypofunction of guinea pigs ileums pre-treated with atropine sulfate. CONCLUSION The mechanisms of Ge' prokinetic effect were associated with modulating the levels of SST and GAS in plasma, raising the expressions of MTLR in gastric antrum, duodenum, ileum and jejunum, reducing the expression of VIPR2 in duodenum and activating M-R.
Collapse
Affiliation(s)
- Ming Ruan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, PR China
| | - Bin Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Li Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Liang Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jun Long
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | | |
Collapse
|
6
|
Lochner M, Thompson AJ. The antimalarial drug proguanil is an antagonist at 5-HT3 receptors. J Pharmacol Exp Ther 2014; 351:674-84. [PMID: 25277140 DOI: 10.1124/jpet.114.218461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proguanil is an antimalarial prodrug that is metabolized to 4-chlorophenyl-1-biguanide (CPB) and the active metabolite cycloguanil (CG). These compounds are structurally related to meta-chlorophenyl biguanide (mCPBG), a 5-hydroxytryptamine 3 (5-HT3) receptor agonist. Here we examine the effects of proguanil and its metabolites on the electrophysiology and ligand-binding properties of human 5-HT3A receptors expressed in Xenopus oocytes and human embryonic kidney 293 cells, respectively. 5-HT3 receptor responses were reversibly inhibited by proguanil, with an IC50 of 1.81 μM. Competitive antagonism was shown by a lack of voltage-dependence, Schild plot (Kb = 1.70 μM), and radioligand competition (Ki = 2.61 μM) with the 5-HT3 receptor antagonist [(3)H]granisetron. Kinetic measurements (kon = 4.0 × 10(4) M(-1) s(-1) ; koff = 0.23 s(-1)) were consistent with a simple bimolecular reaction scheme with a Kb of 4.35 μM. The metabolites CG and CPB similarly inhibited 5-HT3 receptors as assessed by IC50 (1.48 and 4.36 μM, respectively), Schild plot (Kb = 2.97 and 11.4 μM), and radioligand competition (Ki = 4.89 and 0.41 μM). At higher concentrations, CPB was a partial agonist (EC50 = 14.1 μM; I/Imax = 0.013). These results demonstrate that proguanil competitively inhibits 5-HT3 receptors, with an IC50 that exceeds whole-blood concentrations following its oral administration. They may therefore be responsible for the occasional gastrointestinal side effects, nausea, and vomiting reported following its use. Clinical development of related compounds should therefore consider effects at 5-HT3 receptors as an early indication of possible unwanted gastrointestinal side effects.
Collapse
Affiliation(s)
- Martin Lochner
- Department of Pharmacology, Cambridge University, Cambridge, United Kingdom (A.J.T.); and Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland (M.L.)
| | - Andrew J Thompson
- Department of Pharmacology, Cambridge University, Cambridge, United Kingdom (A.J.T.); and Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland (M.L.)
| |
Collapse
|