1
|
Bhalla M, Herring S, Lenhard A, Wheeler JR, Aswad F, Klumpp K, Rebo J, Wang Y, Wilhelmsen K, Fortney K, Bou Ghanem EN. The prostaglandin D2 antagonist asapiprant ameliorates clinical severity in young hosts infected with invasive Streptococcus pneumoniae. Infect Immun 2024; 92:e0052223. [PMID: 38629842 PMCID: PMC11075459 DOI: 10.1128/iai.00522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/29/2024] [Indexed: 05/03/2024] Open
Abstract
Streptococcus pneumoniae (pneumococcus) remains a serious cause of pulmonary and systemic infections globally, and host-directed therapies are lacking. The aim of this study was to test the therapeutic efficacy of asapiprant, an inhibitor of prostaglandin D2 signaling, against pneumococcal infection. Treatment of young mice with asapiprant after pulmonary infection with invasive pneumococci significantly reduced systemic spread, disease severity, and host death. Protection was specific against bacterial dissemination from the lung to the blood but had no effect on pulmonary bacterial burden. Asapiprant-treated mice had enhanced antimicrobial activity in circulating neutrophils, elevated levels of reactive oxygen species (ROS) in lung macrophages/monocytes, and improved pulmonary barrier integrity indicated by significantly reduced diffusion of fluorescein isothiocyanate (FITC)-dextran from lungs into the circulation. These findings suggest that asapiprant protects the host against pneumococcal dissemination by enhancing the antimicrobial activity of immune cells and maintaining epithelial/endothelial barrier integrity in the lungs.
Collapse
Affiliation(s)
- Manmeet Bhalla
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Sydney Herring
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Alexsandra Lenhard
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Joshua R. Wheeler
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Fred Aswad
- BIOAGE Labs Inc., Richmond, California, USA
| | | | | | - Yan Wang
- BIOAGE Labs Inc., Richmond, California, USA
| | | | | | - Elsa N. Bou Ghanem
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
2
|
Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature 2022; 605:146-151. [PMID: 35314834 PMCID: PMC9783543 DOI: 10.1038/s41586-022-04630-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 03/11/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is especially severe in aged populations1. Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective, but vaccine efficacy is partly compromised by the emergence of SARS-CoV-2 variants with enhanced transmissibility2. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially for aged populations. Here we describe the isolation of highly virulent mouse-adapted viruses and use them to test a new therapeutic drug in infected aged animals. Many of the alterations observed in SARS-CoV-2 during mouse adaptation (positions 417, 484, 493, 498 and 501 of the spike protein) also arise in humans in variants of concern2. Their appearance during mouse adaptation indicates that immune pressure is not required for selection. For murine SARS, for which severity is also age dependent, elevated levels of an eicosanoid (prostaglandin D2 (PGD2)) and a phospholipase (phospholipase A2 group 2D (PLA2G2D)) contributed to poor outcomes in aged mice3,4. mRNA expression of PLA2G2D and prostaglandin D2 receptor (PTGDR), and production of PGD2 also increase with ageing and after SARS-CoV-2 infection in dendritic cells derived from human peripheral blood mononuclear cells. Using our mouse-adapted SARS-CoV-2, we show that middle-aged mice lacking expression of PTGDR or PLA2G2D are protected from severe disease. Furthermore, treatment with a PTGDR antagonist, asapiprant, protected aged mice from lethal infection. PTGDR antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, suggesting that the PLA2G2D-PGD2/PTGDR pathway is a useful target for therapeutic interventions.
Collapse
|
3
|
Eicosanoid receptors as therapeutic targets for asthma. Clin Sci (Lond) 2021; 135:1945-1980. [PMID: 34401905 DOI: 10.1042/cs20190657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Eicosanoids comprise a group of oxidation products of arachidonic and 5,8,11,14,17-eicosapentaenoic acids formed by oxygenases and downstream enzymes. The two major pathways for eicosanoid formation are initiated by the actions of 5-lipoxygenase (5-LO), leading to leukotrienes (LTs) and 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), and cyclooxygenase (COX), leading to prostaglandins (PGs) and thromboxane (TX). A third group (specialized pro-resolving mediators; SPMs), including lipoxin A4 (LXA4) and resolvins (Rvs), are formed by the combined actions of different oxygenases. The actions of the above eicosanoids are mediated by approximately 20 G protein-coupled receptors, resulting in a variety of both detrimental and beneficial effects on airway smooth muscle and inflammatory cells that are strongly implicated in asthma pathophysiology. Drugs targeting proinflammatory eicosanoid receptors, including CysLT1, the receptor for LTD4 (montelukast) and TP, the receptor for TXA2 (seratrodast) are currently in use, whereas antagonists of a number of other receptors, including DP2 (PGD2), BLT1 (LTB4), and OXE (5-oxo-ETE) are under investigation. Agonists targeting anti-inflammatory/pro-resolving eicosanoid receptors such as EP2/4 (PGE2), IP (PGI2), ALX/FPR2 (LXA4), and Chemerin1 (RvE1/2) are also being examined. This review summarizes the contributions of eicosanoid receptors to the pathophysiology of asthma and the potential therapeutic benefits of drugs that target these receptors. Because of the multifactorial nature of asthma and the diverse pathways affected by eicosanoid receptors, it will be important to identify subgroups of asthmatics that are likely to respond to any given therapy.
Collapse
|
4
|
Wong LYR, Zheng J, Wilhelmsen K, Li K, Ortiz ME, Schnicker NJ, Pezzulo AA, Szachowicz PJ, Klumpp K, Aswad F, Rebo J, Narumiya S, Murakami M, Meyerholz DK, Fortney K, McCray PB, Perlman S. Eicosanoid signaling as a therapeutic target in middle-aged mice with severe COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.20.440676. [PMID: 33907749 PMCID: PMC8077574 DOI: 10.1101/2021.04.20.440676] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is especially severe in aged populations1. Resolution of the COVID-19 pandemic has been advanced by the recent development of SARS-CoV-2 vaccines, but vaccine efficacy is partly compromised by the recent emergence of SARS-CoV-2 variants with enhanced transmissibility2. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially in aged populations. Here, we describe the isolation of a new set of highly virulent mouse-adapted viruses and use them to test a novel therapeutic drug useful in infections of aged animals. Initially, we show that many of the mutations observed in SARS-CoV-2 during mouse adaptation (at positions 417, 484, 501 of the spike protein) also arise in humans in variants of concern (VOC)2. Their appearance during mouse adaptation indicates that immune pressure is not required for their selection. Similar to the human infection, aged mice infected with mouse-adapted SARS-CoV-2 develop more severe disease than young mice. In murine SARS, in which severity is also age-dependent, we showed that elevated levels of an eicosanoid, prostaglandin D2 (PGD2) and of a phospholipase, PLA2G2D, contributed to poor outcomes in aged mice3,4. Using our virulent mouse-adapted SARS-CoV-2, we show that infection of middle-aged mice lacking expression of DP1, a PGD2 receptor, or PLA2G2D are protected from severe disease. Further, treatment with a DP1 antagonist, asapiprant, protected aged mice from a lethal infection. DP1 antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, and demonstrates that the PLA2G2D-PGD2/DP1 pathway is a useful target for therapeutic interventions.
Collapse
Affiliation(s)
- Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Jian Zheng
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | | | - Kun Li
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Miguel E. Ortiz
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University, Kyoto, Japan 606-8501
| | - Makoto Murakami
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | | | | | - Paul B. McCray
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Aoyagi H, Kajiwara D, Tsunekuni K, Tanaka K, Miyoshi K, Hirasawa N. Potential synergistic effects of novel hematopoietic prostaglandin D synthase inhibitor TAS-205 and different types of anti-allergic medicine on nasal obstruction in a Guinea pig model of experimental allergic rhinitis. Eur J Pharmacol 2020; 875:173030. [PMID: 32084417 DOI: 10.1016/j.ejphar.2020.173030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 11/18/2022]
Abstract
Nasal obstruction is one of the most bothersome symptoms of allergic rhinitis (AR) affecting sleep-related quality of life in AR patients. Although several treatments were tested to control nasal obstruction, some patients with moderate to severe AR do not respond to current treatments, including the combined administration of different types of anti-allergic medicine. Thus, new options for AR treatment are needed. This study aimed to evaluate the effects of combined treatment with a novel inhibitor of hematopoietic prostaglandin D synthase (HPGDS), TAS-205, and different types of anti-allergic medicine on nasal obstruction in AR. Firstly, we demonstrated that TAS-205 selectively inhibited prostaglandin D2 (PGD2) synthesis in an enzymatic assay in a cell-based assay and in vivo models of AR. Moreover, treatment with TAS-205 alone suppressed eosinophil infiltration into the nasal cavity and late phase nasal obstruction. The combined administration of TAS-205 with montelukast, a cysteinyl leukotriene receptor 1 antagonist, showed significant additive inhibitory effects on eosinophil infiltration and late phase nasal obstruction compared to treatment with each agent alone. In contrast, concomitant treatment with TAS-205 and fexofenadine, a histamine H1 blocker, showed inhibitory effects on late phase and early phase nasal obstruction, although the magnitude of the inhibitory effects upon combined administration was comparable to that of each single treatment. These results suggest that combined treatment with an HPGDS inhibitor and different types of anti-allergic medicine may be a promising strategy to control nasal obstruction in AR patients.
Collapse
Affiliation(s)
- Hiroki Aoyagi
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan; Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Miyagi, Japan.
| | - Daisuke Kajiwara
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Kenta Tsunekuni
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Katsunao Tanaka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Kazuhisa Miyoshi
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Miyagi, Japan
| |
Collapse
|
6
|
McGregor MC, Krings JG, Nair P, Castro M. Role of Biologics in Asthma. Am J Respir Crit Care Med 2020; 199:433-445. [PMID: 30525902 DOI: 10.1164/rccm.201810-1944ci] [Citation(s) in RCA: 277] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Patients with severe uncontrolled asthma have disproportionally high morbidity and healthcare utilization as compared with their peers with well-controlled disease. Although treatment options for these patients were previously limited, with unacceptable side effects, the emergence of biologic therapies for the treatment of asthma has provided promising targeted therapy for these patients. Biologic therapies target specific inflammatory pathways involved in the pathogenesis of asthma, particularly in patients with an endotype driven by type 2 (T2) inflammation. In addition to anti-IgE therapy that has improved outcomes in allergic asthma for more than a decade, three anti-IL-5 biologics and one anti-IL-4R biologic have recently emerged as promising treatments for T2 asthma. These targeted therapies have been shown to reduce asthma exacerbations, improve lung function, reduce oral corticosteroid use, and improve quality of life in appropriately selected patients. In addition to the currently approved biologic agents, several biologics targeting upstream inflammatory mediators are in clinical trials, with possible approval on the horizon. This article reviews the mechanism of action, indications, expected benefits, and side effects of each of the currently approved biologics for severe uncontrolled asthma and discusses promising therapeutic targets for the future.
Collapse
Affiliation(s)
- Mary Clare McGregor
- 1 Division of Pulmonary and Critical Care, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - James G Krings
- 1 Division of Pulmonary and Critical Care, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Parameswaran Nair
- 2 Division of Respirology, Department of Medicine, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, Ontario, Canada
| | - Mario Castro
- 1 Division of Pulmonary and Critical Care, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| |
Collapse
|
7
|
Paiva Ferreira LKD, Paiva Ferreira LAM, Monteiro TM, Bezerra GC, Bernardo LR, Piuvezam MR. Combined allergic rhinitis and asthma syndrome (CARAS). Int Immunopharmacol 2019; 74:105718. [PMID: 31255882 DOI: 10.1016/j.intimp.2019.105718] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/30/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022]
Abstract
Combined allergic rhinitis and asthma syndrome (CARAS) is a concept of "one airway - one disease" or "unified airway disease ". The upper and lower airway inflammation characterizes allergic rhinitis and asthma, respectively and both diseases have shown an intimate connection in their genesis, coexistence and similarities as triggered by the same etiological agents; the same inflammatory cell profile and share therapeutic treatment. This review highlights the concept of CARAS by its phenotype, endotype and biomarker classification. Indeed, rhinitis is divided into four major phenotypes: allergic rhinitis; infectious rhinitis; non-infective/non-allergic rhinitis and mixed rhinitis. On the other hand, asthma has no common consensus yet; however, the most accepted classification is based on the stage of life (early- or late- onset asthma) in which the clinical symptoms are presented. Experimental researches where animals develop a syndrome similar to CARAS have been contributed to better understand the pathogenesis of the syndrome. Therefore, the aim of this review is to clarify current terms related to CARAS as definition, phenotypes, endotypes/biomarkers, physiopathology and treatments.
Collapse
Affiliation(s)
- Laércia K D Paiva Ferreira
- Department of Physiology and Pathology, Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Larissa A M Paiva Ferreira
- Department of Physiology and Pathology, Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Talissa M Monteiro
- Department of Physiology and Pathology, Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Grasiela Costa Bezerra
- Department of Physiology and Pathology, Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Larissa Rodrigues Bernardo
- Department of Physiology and Pathology, Graduate Program in Development and Technological Innovation of Medicines, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcia Regina Piuvezam
- Department of Physiology and Pathology, Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil; Department of Physiology and Pathology, Graduate Program in Development and Technological Innovation of Medicines, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
8
|
Marone G, Galdiero MR, Pecoraro A, Pucino V, Criscuolo G, Triassi M, Varricchi G. Prostaglandin D 2 receptor antagonists in allergic disorders: safety, efficacy, and future perspectives. Expert Opin Investig Drugs 2018; 28:73-84. [PMID: 30513028 DOI: 10.1080/13543784.2019.1555237] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Prostaglandin D2 (PGD2) is a major cyclooxygenase mediator that is synthesized by activated human mast cells and other immune cells. The biological effects of PGD2 are mediated by D-prostanoid (DP1), DP2 (CRTH2) and thromboxane prostanoid (TP) receptors that are expressed on several immune and non-immune cells involved in allergic inflammation. PGD2 exerts various proinflammatory effects relevant to the pathophysiology of allergic disorders. Several selective, orally active, DP2 receptor antagonists and a small number of DP1 receptor antagonists are being developed for the treatment of allergic disorders. AREAS COVERED The role of DP2 and DP1 receptor antagonists in the treatment of asthma and allergic rhinitis. EXPERT OPINION Head-to-head studies that compare DP1 antagonists with the standard treatment for allergic rhinitis are necessary to verify the role of these novel drugs as mono- or combination therapies. Further clinical trials are necessary to verify whether DP2 antagonists as monotherapies or, more likely, as add-on therapies, will be effective for the treatment of different phenotypes of adult and childhood asthma. Long-term studies are necessary to evaluate the safety of targeted anti-PGD2 treatments.
Collapse
Affiliation(s)
- Giancarlo Marone
- a Department of Public Health , University of Naples Federico II , Naples , Italy.,b Monaldi Hospital Pharmacy , Naples , Italy
| | - Maria Rosaria Galdiero
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| | - Antonio Pecoraro
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| | - Valentina Pucino
- e William Harvey Research Institute, Barts and The London School of Medicine &Dentistry , Queen Mary University of London , London , UK
| | - Gjada Criscuolo
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| | - Maria Triassi
- a Department of Public Health , University of Naples Federico II , Naples , Italy
| | - Gilda Varricchi
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| |
Collapse
|
9
|
Li Y, Xia W, Zhao F, Wen Z, Zhang A, Huang S, Jia Z, Zhang Y. Prostaglandins in the pathogenesis of kidney diseases. Oncotarget 2018; 9:26586-26602. [PMID: 29899878 PMCID: PMC5995175 DOI: 10.18632/oncotarget.25005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Prostaglandins (PGs) are important lipid mediators produced from arachidonic acid via the sequential catalyzation of cyclooxygenases (COXs) and specific prostaglandin synthases. There are five subtypes of PGs, namely PGE2, PGI2, PGD2, PGF2α, and thromboxane A2 (TXA2). PGs exert distinct roles by combining to a diverse family of membrane-spanning G protein-coupled prostanoid receptors. The distribution of these PGs, their specific synthases and receptors vary a lot in the kidney. This review summarized the recent findings of PGs together with the COXs and their specific synthases and receptors in regulating renal function and highlighted the insights into their roles in the pathogenesis of various kidney diseases.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Weiwei Xia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Fei Zhao
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhaoying Wen
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Songming Huang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yue Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
10
|
Ding F, Fu Z, Liu B. Lipopolysaccharide Exposure Alleviates Asthma in Mice by Regulating Th1/Th2 and Treg/Th17 Balance. Med Sci Monit 2018; 24:3220-3229. [PMID: 29768397 PMCID: PMC5985709 DOI: 10.12659/msm.905202] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background It is generally believed that endotoxin exposure exacerbates risk of developing asthmatic symptoms. However, recent studies have indicated that prior bacterial exposure may prevent future symptoms of asthma. Here, we evaluated the influence of pre-exposure to different concentrations of lipopolysaccharide (LPS) to subsequent ovalbumin (OVA) allergen sensitization and challenge. Material/Methods Four-week-old Balb/c mice were treated intranasally with varying concentrations of LPS (1 ug, 10 ug, and 100 ug) or sterile PBS for 10 days, then 2 weeks later they were exposed to OVA. Both the molecular and functional airway responses to OVA administration were assessed following prior exposure to different doses of LPS or controls. Additionally, the Th1/Th2 and Treg/Th17 balance was measured. Results Airway responsiveness and immune cell recruitment in the bronchoalveolar lavage (BALF) were decreased in animals exposed to a low dose of LPS (1 ug) treatment compared with the asthma group. Moderate-dose (10 ug) and high-dose (100 ug) LPS administration showed no differences from controls. Further, low-dose LPS (1 ug) exposure was associated with increased Th1 cytokines, T-bet, Treg cytokine (IL-10, TGF-β), and Foxp3 expression, but decreased Th2 cytokines (IL-4,5,13), GATA3, Th17, and ROR-γt expression compared with the asthma group. Finally, higher numbers of CD4+CD25+Foxp3+Treg cells, and CD4+INF-γ+T cells, and lower CD4+IL-4+T cells and CD4+IL-17+T cells were observed in the low-dose LPS-treated groups compared to controls. Conclusions Our findings suggest that prior exposure to low doses of LPS may protect from OVA-induced airway hyperresponsiveness (AHR) and histopathologic changes through regulation of the Th1/Th2 and Treg/Th17 balance.
Collapse
Affiliation(s)
- Fengxia Ding
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Bo Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
11
|
Okubo K, Hashiguchi K, Takeda T, Baba K, Kitagoh H, Miho H, Tomomatsu H, Yamaguchi S, Odani M, Yamamotoya H. A randomized controlled phase II clinical trial comparing ONO-4053, a novel DP1 antagonist, with a leukotriene receptor antagonist pranlukast in patients with seasonal allergic rhinitis. Allergy 2017; 72:1565-1575. [PMID: 28378369 PMCID: PMC5638107 DOI: 10.1111/all.13174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Prostaglandin D2 (PGD2 ) is primarily produced by mast cells and is contributing to the nasal symptoms including nasal obstruction and rhinorrhea. OBJECTIVE This study aimed to evaluate the efficacy and safety of a novel PGD2 receptor 1 (DP1) antagonist, ONO-4053, in patients with seasonal allergic rhinitis (SAR). METHODS This study was a multicenter, randomized, double-blind, parallel-group study of patients with SAR. Following a one-week period of placebo run-in, patients who met the study criteria were randomized to either the ONO-4053, leukotriene receptor antagonist pranlukast, or placebo group for a two-week treatment period. A total of 200 patients were planned to be randomly assigned to receive ONO-4053, pranlukast, or placebo in a 2:2:1 ratio. Nasal and eye symptoms were evaluated. RESULTS Both ONO-4053 and pranlukast had higher efficacy than placebo on all nasal and eye symptoms. ONO-4053 outperformed pranlukast in a total of three nasal symptom scores (T3NSS) as well as in individual scores for sneezing, rhinorrhea, and nasal itching. For T3NSS, the Bayesian posterior probabilities that pranlukast was better than placebo and ONO-4053 was better than pranlukast were 70.0% and 81.6%, respectively, suggesting that ONO-4053 has a higher efficacy compared with pranlukast. There was no safety-related issue in this study. CONCLUSIONS We demonstrated that the efficacy of ONO-4053 was greater than that of pranlukast with a similar safety profile. This study indicates the potential of ONO-4053 for use as a treatment for SAR (JapicCTI-142706).
Collapse
Affiliation(s)
- K. Okubo
- Department of OtorhinolaryngologyNippon Medical SchoolTokyoJapan
| | - K. Hashiguchi
- Department of OtorhinolaryngologyFutaba ClinicTokyoJapan
- Medical Corporation ShinanokaiSamoncho ClinicTokyoJapan
| | - T. Takeda
- Department of OtorhinolaryngologyTakeda ClinicSaitamaJapan
| | - K. Baba
- Department of OtorhinolaryngologyTakasaka ClinicSaitamaJapan
| | - H. Kitagoh
- Department of OtorhinolaryngologyKitagoh ClinicKanagawaJapan
| | - H. Miho
- Department of OtorhinolaryngologyMiho ClinicKanagawaJapan
| | - H. Tomomatsu
- Department of OtorhinolaryngologyTomomatsu ClinicTokyoJapan
| | - S. Yamaguchi
- Discovery Research Laboratories IIIOno Pharmaceutical Co., Ltd.OsakaJapan
| | - M. Odani
- Data ScienceOno Pharmaceutical Co., Ltd.OsakaJapan
| | - H. Yamamotoya
- Translational ScienceOno Pharmaceutical Co., Ltd.OsakaJapan
| |
Collapse
|
12
|
Peinhaupt M, Sturm EM, Heinemann A. Prostaglandins and Their Receptors in Eosinophil Function and As Therapeutic Targets. Front Med (Lausanne) 2017; 4:104. [PMID: 28770200 PMCID: PMC5515835 DOI: 10.3389/fmed.2017.00104] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Of the known prostanoid receptors, human eosinophils express the prostaglandin D2 (PGD2) receptors DP1 [also D-type prostanoid (DP)] and DP2 (also chemoattractant receptor homologous molecule, expressed on Th2 cells), the prostaglandin E2 receptors EP2 and EP4, and the prostacyclin (PGI2) receptor IP. Prostanoids can bind to either one or multiple receptors, characteristically have a short half-life in vivo, and are quickly degraded into metabolites with altered affinity and specificity for a given receptor subtype. Prostanoid receptors signal mainly through G proteins and naturally activate signal transduction pathways according to the G protein subtype that they preferentially interact with. This can lead to the activation of sometimes opposing signaling pathways. In addition, prostanoid signaling is often cell-type specific and also the combination of expressed receptors can influence the outcome of the prostanoid impulse. Accordingly, it is assumed that eosinophils and their (patho-)physiological functions are governed by a sensitive prostanoid signaling network. In this review, we specifically focus on the functions of PGD2, PGE2, and PGI2 and their receptors on eosinophils. We discuss their significance in allergic and non-allergic diseases and summarize potential targets for drug intervention.
Collapse
Affiliation(s)
- Miriam Peinhaupt
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva M Sturm
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
13
|
New Pharmacologic Strategies for Allergic Rhinitis. CURRENT TREATMENT OPTIONS IN ALLERGY 2016. [DOI: 10.1007/s40521-016-0105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Santini G, Mores N, Malerba M, Mondino C, Macis G, Montuschi P. Investigational prostaglandin D2 receptor antagonists for airway inflammation. Expert Opin Investig Drugs 2016; 25:639-52. [PMID: 27094922 DOI: 10.1080/13543784.2016.1175434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION By activating DP1 and DP2 receptors on immune and non-immune cells, prostaglandin D2 (PGD2), a major metabolic product of cyclo-oxygenase pathway released after IgE-mediated mast cell activation, has pro-inflammatory effects, which are relevant to the pathophysiology of allergic airway disease. At least 15 selective, orally active, DP2 receptor antagonists and one DP1 receptor antagonist (asapiprant) are under development for asthma and/or allergic rhinitis. AREAS COVERED In this review, the authors cover the pharmacology of PGD2 and PGD2 receptor antagonists and look at the preclinical, phase I and phase II studies with selective DP1 and DP2 receptor antagonists. EXPERT OPINION Future research should aim to develop once daily compounds and increase the drug clinical potency which, apart from OC000459 and ADC-3680, seems to be relatively low. Further research and development of DP2 receptor antagonists is warranted, particularly in patients with severe uncontrolled asthma, whose management is a top priority. Pediatric studies, which are not available, are required for assessing the efficacy and safety of this novel drug class in children with asthma and allergic rhinitis. Studies on the efficacy of DP2 receptor antagonists in various asthma phenotypes including: smokers, obese subjects, early vs late asthma onset, fixed vs reversible airflow limitation, are required for establishing their pharmacotherapeutic role.
Collapse
Affiliation(s)
- Giuseppe Santini
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Nadia Mores
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Mario Malerba
- b Department of Internal Medicine , University of Brescia , Brescia , Italy
| | - Chiara Mondino
- c Department of Allergology , 'Bellinzona e Valli' Hospital , Bellinzona , Switzerland
| | - Giuseppe Macis
- d Department of Radiological Sciences, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Paolo Montuschi
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| |
Collapse
|
15
|
Nagira Y, Goto K, Tanaka H, Aoki M, Furue S, Inagaki N, Tomita Y, Shichijo M. Prostaglandin D2 Modulates Neuronal Excitation of the Trigeminal Ganglion to Augment Allergic Rhinitis in Guinea Pigs. ACTA ACUST UNITED AC 2016; 357:273-80. [DOI: 10.1124/jpet.115.231225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/02/2016] [Indexed: 01/29/2023]
|
16
|
Nakano Y, Kidani Y, Goto K, Furue S, Tomita Y, Inagaki N, Tanaka H, Shichijo M. Role of Prostaglandin D2 and DP1 Receptor on Japanese Cedar Pollen-Induced Allergic Rhinitis in Mice. J Pharmacol Exp Ther 2016; 357:258-63. [PMID: 26945086 DOI: 10.1124/jpet.115.229799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/16/2015] [Indexed: 01/13/2023] Open
Abstract
Although we previously demonstrated the contribution of the DP1receptor in nasal obstruction using animals sensitized with ovalbumin in the presence of adjuvant, the contribution of the DP1receptor in sneezing is unclear. Here, we developed a mouse model of Japanese cedar (JC:Cryptomeria japonica) pollinosis to evaluate the symptoms of sneezing. To achieve this, we used JC pollen crude extract in the absence of adjuvant to sensitize mice to develop a model closer to the pathophysiology of human JC pollinosis. The immunologic and pharmacologic features of this model are highly similar to those observed in JC pollinosis in humans. Using this model, we found that DP1receptor antagonists suppressed JC pollen extract-induced sneezing and that a DP1receptor agonist induced sneezing. Moreover, JC pollen extract-induced sneezing was diminished in DP1receptor knockout mice. In conclusion, we developed a novel mouse model of allergic rhinitis that closely mimics human JC pollinosis. A strong contribution of DP1receptor signaling to sneezing was demonstrated using this model, suggesting that DP1receptor antagonists could suppress sneezing and nasal obstruction, and therefore these agents could be a new therapeutic option for allergic rhinitis.
Collapse
Affiliation(s)
- Yoshiyuki Nakano
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Yujiro Kidani
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Kumiko Goto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Shingo Furue
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Yasuhiko Tomita
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Naoki Inagaki
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Hiroyuki Tanaka
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Michitaka Shichijo
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| |
Collapse
|
17
|
Licari A, Castagnoli R, Bottino C, Marseglia A, Marseglia G, Ciprandi G. Emerging drugs for the treatment of perennial allergic rhinitis. Expert Opin Emerg Drugs 2016; 21:57-67. [PMID: 26733401 DOI: 10.1517/14728214.2016.1139082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Allergic rhinitis is a worldwide health problem, currently affecting up to 40% of the general population, and characterized by the following symptoms in a variable degree of severity and duration: nasal congestion/obstruction, rhinorrhea, itchy nose and/or eyes, and/or sneezing. General symptoms like fatigue, reduced quality of sleep, impaired concentration and reduced productivity, if left untreated, may significantly affect quality of life. In addition, of being associated to various comorbidities, allergic rhinitis is also an independent risk factor for the development and worsening of asthma. Perennial allergic rhinitis is caused by allergens present around the year. AREAS COVERED Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines currently recommend a stepwise therapeutic approach that combines patient education with specific allergen avoidance, symptomatic pharmacotherapy and allergen immunotherapy. The available treatment strategies provide suboptimal symptom relief in patients with moderate-to-severe disease who continue to experience symptoms while treated, even on multiple therapies. EXPERT OPINION New insights into current therapy have been provided with the development of new symptomatic drugs with improved pharmacokinetics and safety. However, the ultimate research goal is beyond symptomatic treatment, and is mainly directed at modifying the immune response to allergens and prevent the progression of allergic rhinitis towards asthma. In this direction, promising advances are expected in the fields of allergen immunotherapy and biological drugs, such as omalizumab. Finally, significant research efforts are also focused on the growing number of new specific molecular targets involved in the Th2 pathway inflammation of allergic diseases.
Collapse
Affiliation(s)
- Amelia Licari
- a Department of Pediatrics, Foundation IRCCS Policlinico San Matteo , University of Pavia , Pavia , Italy
| | - Riccardo Castagnoli
- a Department of Pediatrics, Foundation IRCCS Policlinico San Matteo , University of Pavia , Pavia , Italy
| | - Chiara Bottino
- a Department of Pediatrics, Foundation IRCCS Policlinico San Matteo , University of Pavia , Pavia , Italy
| | - Alessia Marseglia
- a Department of Pediatrics, Foundation IRCCS Policlinico San Matteo , University of Pavia , Pavia , Italy
| | - GianLuigi Marseglia
- a Department of Pediatrics, Foundation IRCCS Policlinico San Matteo , University of Pavia , Pavia , Italy
| | - Giorgio Ciprandi
- b Department of Medicine , IRCCS-A.O.U. San Martino di Genova , Genoa , Italy
| |
Collapse
|