1
|
Shan D, Wang A, Yi K. Lipids, apolipoproteins and gestational diabetes mellitus: a Mendelian randomization study. BMC Pregnancy Childbirth 2024; 24:347. [PMID: 38711000 DOI: 10.1186/s12884-024-06556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND This study investigates the causal relationship between lipid traits and GDM in an effort to better understand the aetiology of GDM. METHODS Employing a two-sample Mendelian Randomization (MR) framework, we used Single Nucleotide Polymorphisms (SNPs) as instrumental variables to examine the impact of lipids and apolipoproteins on GDM. The research comprised univariable and multivariable MR analyses, with a prime focus on individual and combined effects of lipid-related traits. Statistical techniques included the fixed-effect inverse variance weighted (IVW) method and supplementary methods such as MR-Egger for comprehensive assessment. RESULTS Our findings revealed the following significant associations: apoA-I and HDL cholesterol were inversely correlated with GDM risk, while triglycerides showed a positive correlation. In multivariable analysis, apoA-I consistently exhibited a strong causal link with GDM, even after adjusting for other lipids and Body Mass Index (BMI). CONCLUSION The study demonstrates a significant causal relationship between apoA-I and GDM risk.
Collapse
Affiliation(s)
- Dan Shan
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ao Wang
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Yi
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Hoekstra M, Van Eck M. High-density lipoproteins and non-alcoholic fatty liver disease. ATHEROSCLEROSIS PLUS 2023; 53:33-41. [PMID: 37663008 PMCID: PMC10469384 DOI: 10.1016/j.athplu.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
Background and aims Non-alcoholic fatty liver disease (NAFLD), a high incidence liver pathology, is associated with a ∼1.5-fold higher cardiovascular disease risk. This phenomenon is generally attributed to the NAFLD-associated increase in circulating levels of pro-atherogenic apolipoprotein B100-containing small dense low-density lipoprotein and plasma hypertriglyceridemia. However, also a significant reduction in cholesterol transported by anti-atherogenic high-density lipoproteins (HDL) is frequently observed in subjects suffering from NAFLD as compared to unaffected people. In this review, we summarize data regarding the relationship between NAFLD and plasma HDL-cholesterol levels, with a special focus on highlighting potential causality between the NAFLD pathology and changes in HDL metabolism. Methods and results Publications in PUBMED describing the relationship between HDL levels and NAFLD susceptibility and/or disease severity, either in human clinical settings or genetically-modified mouse models, were critically reviewed for subsequent inclusion in this manuscript. Furthermore, relevant literature describing effects on lipid loading in cultured hepatocytes of models with genetic alterations related to HDL metabolism have been summarized. Conclusions Although in vitro observations suggest causality between HDL formation by hepatocytes and protection against NAFLD-like lipid accumulation, current literature remains inconclusive on whether relative HDL deficiency is actually driving the development of fatty liver disease in humans. In light of the current obesity pandemic and the associated marked rise in NAFLD incidence, it is of clear scientific and societal interest to gain further insight into the relationship between HDL-cholesterol levels and fatty liver development to potentially uncover the therapeutic potential of pharmacological HDL level and/or function modulation.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
- Pharmacy Leiden, Leiden, the Netherlands
| | - Miranda Van Eck
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
- Pharmacy Leiden, Leiden, the Netherlands
| |
Collapse
|
3
|
Pinyopornpanish K, Leerapun A, Pinyopornpanish K, Chattipakorn N. Effects of Metformin on Hepatic Steatosis in Adults with Nonalcoholic Fatty Liver Disease and Diabetes: Insights from the Cellular to Patient Levels. Gut Liver 2021; 15:827-840. [PMID: 33820884 PMCID: PMC8593497 DOI: 10.5009/gnl20367] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/05/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) patients with diabetes constitute a subgroup of patients with a high rate of liver-related complications. Currently, there are no specific drug recommendations for these patients. Metformin, a conventional insulin sensitizer agent, has been widely prescribed in patients with diabetes. Metformin treatment has been shown to be effective at alleviating hepatic lipogenesis in animal models of NAFLD, with a variety of mechanisms being deemed responsible. To date, most studies have enrolled diabetic patients who are treated with metformin, with the drug being taken continuously throughout the study. Although evidence exists regarding the benefits of metformin for NAFLD in preclinical studies, reports on the efficacy of metformin in adult NAFLD patients have had some discrepancies regarding changes in liver biochemistry and hepatic fat content. Evidence has also suggested possible effects of metformin as regards the prevention of hepatocellular carcinoma tumorigenesis. This review was performed to comprehensively summarize the available in vitro, in vivo and clinical studies regarding the effects of metformin on liver steatosis for the treatment of adult NAFLD patients with diabetes. Consistent reports as well as controversial findings are included in this review, and the mechanistic insights are also provided. In addition, this review focuses on the efficacy of metformin as a monotherapy and as a combined therapy with other antidiabetic medications.
Collapse
Affiliation(s)
| | - Apinya Leerapun
- Division of Gastroenterology, Department of Internal Medicine, Chiang Mai, Thailand
| | | | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Isoform and tissue dependent impact of apolipoprotein E on adipose tissue metabolic activation: The role of apolipoprotein A1. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158551. [PMID: 31678510 DOI: 10.1016/j.bbalip.2019.158551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 01/27/2023]
Abstract
Adipose organ is made of white (WAT) and brown (BAT) adipose tissue which are primarily responsible for lipid storage and energy production (heat and ATP) respectively. Metabolic activation of WAT may ascribe to this tissue characteristics of BAT, namely non-shivering thermogenesis and ATP production. Recent data indicate that apolipoproteins E (APOE) and A1 (APOA1) regulate WAT mitochondrial metabolic activation. Here, we investigated the functional cross-talk between natural human APOE2 and APOE4 isoforms with APOA1 in this process, using Apoe2knock-in and Apoe4knock-in mice. At baseline when Apoe2knock-in and Apoe4knock-in mice express both APOE and Apoa1, the Apoe2knock-in strain appears to have higher mitochondrial oxidative phosphorylation levels and non-shivering thermogenesis in WAT compared to Apoe4knock-in mice. When mice were switched to a high-fat diet for 18 weeks, circulating levels of endogenous Apoa1 in Apoe2knock-in mice became barely detectable though significant levels of APOE2 were still present. This change was accompanied by a significant reduction in WAT mitochondrial Ucp1 expression while BAT Ucp1 was unaffected. Ectopic APOA1 expression in Apoe2knock-in animals potently stimulated WAT but not BAT mitochondrial Ucp1 expression providing further evidence that APOA1 potently stimulates WAT non-shivering thermogenesis in the presence of APOE2. Ectopic expression of APOA1 in Apoe4knock-in mice stimulated BAT but no WAT mitochondrial Ucp1 levels, suggesting that in the presence of APOE4, APOA1 is a trigger of BAT non-shivering thermogenesis. Overall, our data identified a tissue-specific role of the natural human APOE2 and APOE4 isoforms in WAT- and BAT-metabolic activation respectively, that appears dependent on circulating APOA1 levels.
Collapse
|
5
|
Site-specific effects of apolipoprotein E expression on diet-induced obesity and white adipose tissue metabolic activation. Biochim Biophys Acta Mol Basis Dis 2018; 1864:471-480. [DOI: 10.1016/j.bbadis.2017.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/27/2017] [Accepted: 11/13/2017] [Indexed: 11/21/2022]
|
6
|
Zvintzou E, Lhomme M, Chasapi S, Filou S, Theodoropoulos V, Xapapadaki E, Kontush A, Spyroulias G, Tellis CC, Tselepis AD, Constantinou C, Kypreos KE. Pleiotropic effects of apolipoprotein C3 on HDL functionality and adipose tissue metabolic activity. J Lipid Res 2017; 58:1869-1883. [PMID: 28701354 DOI: 10.1194/jlr.m077925] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/29/2017] [Indexed: 12/28/2022] Open
Abstract
APOC3 is produced mainly by the liver and intestine and approximately half of plasma APOC3 associates with HDL. Though it was believed that APOC3 associates with HDL by simple binding to preexisting particles, recent data support that biogenesis of APOC3-containing HDL (APOC3-HDL) requires Abca1. Moreover, APOC3-HDL contributes to plasma triglyceride homeostasis by preventing APOC3 association with triglyceride-rich lipoproteins. Interestingly, APOC3-HDL also shows positive correlation with the morbidly obese phenotype. However, the roles of APOC3 in HDL functionality and adipose tissue metabolic activity remain unknown. Therefore, here we investigated the direct effects of APOC3 expression on HDL structure and function, as well as white adipose tissue (WAT) and brown adipose tissue (BAT) metabolic activity. C57BL/6 mice were infected with an adenovirus expressing human APOC3 or a recombinant attenuated control adenovirus expressing green fluorescent protein and blood and tissue samples were collected at 5 days postinfection. HDL was then analyzed for its apolipoprotein and lipid composition and particle functionality. Additionally, purified mitochondria from BAT and WAT were analyzed for uncoupling protein 1, cytochrome c (Cytc), and Cytc oxidase subunit 4 protein levels as an indirect measure of their metabolic activity. Serum metabolomic analysis was performed by NMR. Combined, our data show that APOC3 modulates HDL structure and function, while it selectively promotes BAT metabolic activation.
Collapse
Affiliation(s)
- Evangelia Zvintzou
- Pharmacology Department, University of Patras Medical School, Rio Achaias TK 26500, Greece
| | - Marie Lhomme
- ICANalytics and INSERM UMR_S 1166, ICAN, 75013 Paris, France
| | - Stella Chasapi
- Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Serafoula Filou
- Pharmacology Department, University of Patras Medical School, Rio Achaias TK 26500, Greece
| | | | - Eva Xapapadaki
- Pharmacology Department, University of Patras Medical School, Rio Achaias TK 26500, Greece
| | - Anatol Kontush
- Faculté de Médecine Pitié-Salpêtrière, ICAN, 75013 Paris, France
| | | | - Constantinos C Tellis
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandros D Tselepis
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Caterina Constantinou
- Pharmacology Department, University of Patras Medical School, Rio Achaias TK 26500, Greece
| | - Kyriakos E Kypreos
- Pharmacology Department, University of Patras Medical School, Rio Achaias TK 26500, Greece
| |
Collapse
|
7
|
Fai Tse WK, Li JW, Kwan Tse AC, Chan TF, Hin Ho JC, Sun Wu RS, Chu Wong CK, Lai KP. Fatty liver disease induced by perfluorooctane sulfonate: Novel insight from transcriptome analysis. CHEMOSPHERE 2016; 159:166-177. [PMID: 27289203 DOI: 10.1016/j.chemosphere.2016.05.060] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 05/20/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a hepato-toxicant and potential non-genotoxic carcinogen, was widely used in industrial and commercial products. Recent studies have revealed the ubiquitous occurrence of PFOS in the environment and in humans worldwide. The widespread contamination of PFOS in human serum raised concerns about its long-term toxic effects and its potential risks to human health. Using fatty liver mutant foie gras (fgr(-/-))/transport protein particle complex 11 (trappc11(-/-)) and PFOS-exposed wild-type zebrafish embryos as the study model, together with RNA sequencing and comparative transcriptomic analysis, we identified 499 and 1414 differential expressed genes (DEGs) in PFOS-exposed wild-type and trappc11 mutant zebrafish, respectively. Also, the gene ontology analysis on common deregulated genes was found to be associated with different metabolic processes such as the carbohydrate metabolic process, glycerol ether metabolic process, mannose biosynthetic process, de novo' (Guanosine diphosphate) GDP-l-fucose biosynthetic process, GDP-mannose metabolic process and galactose metabolic process. Ingenuity Pathway Analysis further highlighted that these deregulated gene clusters are closely related to hepatitis, inflammation, fibrosis and cirrhosis of liver cells, suggesting that PFOS can cause liver pathogenesis and non-alcoholic fatty liver disease in zebrafish. The transcriptomic alterations revealed may serve as biomarkers for the hepatotoxic effect of PFOS.
Collapse
Affiliation(s)
- William Ka Fai Tse
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | - Jing Woei Li
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Anna Chung Kwan Tse
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China; The State Key Laboratory in Marine Pollution, Hong Kong SAR, China.
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jeff Cheuk Hin Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Rudolf Shiu Sun Wu
- The State Key Laboratory in Marine Pollution, Hong Kong SAR, China; Department of Science and Environmental Studies, Institute of Education, Hong Kong SAR, China.
| | - Chris Kong Chu Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; The State Key Laboratory in Marine Pollution, Hong Kong SAR, China.
| | - Keng Po Lai
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Filou S, Lhomme M, Karavia EA, Kalogeropoulou C, Theodoropoulos V, Zvintzou E, Sakellaropoulos GC, Petropoulou PI, Constantinou C, Kontush A, Kypreos KE. Distinct Roles of Apolipoproteins A1 and E in the Modulation of High-Density Lipoprotein Composition and Function. Biochemistry 2016; 55:3752-62. [PMID: 27332083 DOI: 10.1021/acs.biochem.6b00389] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In addition to high-density lipoprotein cholesterol (HDL-C) levels, HDL quality also appears to be very important for atheroprotection. Analysis of various clinical paradigms suggests that the lipid and apolipoprotein composition of HDL defines its size, shape, and functions and may determine its beneficial effects on human health. Previously, we reported that like apolipoprotein A-I (Apoa1), apolipoprotein E (Apoe) is also capable of promoting the de novo biogenesis of HDL with the participation of ATP binding cassette A lipid transporter member 1 (Abca1) and plasma enzyme lecithin:cholesterol acyltransferase (Lcat), in a manner independent of a functional Apoa1. Here, we performed a comparative analysis of the functions of these HDL subpopulations. Specifically, Apoe and Apoa1 double-deficient (Apoe(-/-) × Apoa1(-/-)) mice were infected with APOA1- or APOE3-expressing adenoviruses, and APOA1-containing HDL (APOA1-HDL) and APOE3-containing HDL (APOE3-HDL), respectively, were isolated and analyzed by biochemical and physicochemical methods. Western blot and lipidomic analyses indicated significant differences in the apolipoprotein and lipid composition of the two HDL species. Moreover APOE3-HDL presented a markedly reduced antioxidant potential and Abcg1-mediated cholesterol efflux capacity. Surprisingly, APOE3-HDL but not APOA1-HDL attenuated LPS-induced production of TNFα in RAW264.7 cells, suggesting that the anti-inflammatory effects of APOA1 are dependent on APOE expression. Taken together, our data indicate that APOA1 and APOE3 recruit different apolipoproteins and lipids on the HDL particle, leading to structurally and functionally distinct HDL subpopulations. The distinct role of these two apolipoproteins in the modulation of HDL functionality may pave the way toward the development of novel pharmaceuticals that aim to improve HDL functionality.
Collapse
Affiliation(s)
- Serafoula Filou
- Department of Pharmacology, University of Patras Medical School , Rio Achaias, TK 26500, Greece
| | - Marie Lhomme
- ICANalytics, ICAN , 83 Bd de l'hopital, 75013 Paris, France
| | - Eleni A Karavia
- Department of Pharmacology, University of Patras Medical School , Rio Achaias, TK 26500, Greece
| | | | - Vassilis Theodoropoulos
- Department of Pharmacology, University of Patras Medical School , Rio Achaias, TK 26500, Greece
| | - Evangelia Zvintzou
- Department of Pharmacology, University of Patras Medical School , Rio Achaias, TK 26500, Greece
| | - George C Sakellaropoulos
- Department of Medical Physics, University of Patras Medical School , Rio Achaias, TK 26500, Greece
| | | | - Caterina Constantinou
- Department of Pharmacology, University of Patras Medical School , Rio Achaias, TK 26500, Greece
| | - Anatol Kontush
- INSERM UMR_S 1166-ICAN , Faculté de Médecine Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013 Paris, France
| | - Kyriakos E Kypreos
- Department of Pharmacology, University of Patras Medical School , Rio Achaias, TK 26500, Greece
| |
Collapse
|
9
|
Constantinou C, Karavia EA, Xepapadaki E, Petropoulou PI, Papakosta E, Karavyraki M, Zvintzou E, Theodoropoulos V, Filou S, Hatziri A, Kalogeropoulou C, Panayiotakopoulos G, Kypreos KE. Advances in high-density lipoprotein physiology: surprises, overturns, and promises. Am J Physiol Endocrinol Metab 2016; 310:E1-E14. [PMID: 26530157 DOI: 10.1152/ajpendo.00429.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/21/2022]
Abstract
Emerging evidence strongly supports that changes in the HDL metabolic pathway, which result in changes in HDL proteome and function, appear to have a causative impact on a number of metabolic disorders. Here, we provide a critical review of the most recent and novel findings correlating HDL properties and functionality with various pathophysiological processes and disease states, such as obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, inflammation and sepsis, bone and obstructive pulmonary diseases, and brain disorders.
Collapse
Affiliation(s)
| | - Eleni A Karavia
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Eva Xepapadaki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Eugenia Papakosta
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Marilena Karavyraki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Serafoula Filou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Aikaterini Hatziri
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | | | - Kyriakos E Kypreos
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| |
Collapse
|