1
|
Qu J, Pei H, Li XZ, Li Y, Chen JM, Zhang M, Lu ZQ. Erythrocyte membrane biomimetic EGCG nanoparticles attenuate renal injury induced by diquat through the NF-κB/NLRP3 inflammasome pathway. Front Pharmacol 2024; 15:1414918. [PMID: 39045044 PMCID: PMC11263105 DOI: 10.3389/fphar.2024.1414918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Diquat (DQ) poisoning can cause multiple organ damage, and the kidney is considered to be the main target organ. Increasing evidence shows that alleviating oxidative stress and inflammatory response has promising application prospects. Epigallocatechin gallate (EGCG) has potent antioxidant and anti-inflammatory effects. In this study, red blood cell membrane (RBCm)-camouflaged polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) were synthesized to deliver EGCG (EGCG-RBCm/NPs) for renal injury induced by DQ. Human renal tubular epithelial cells (HK-2 cells) were stimulated with 600 μM DQ for 12 h and mice were intraperitoneally injected with 50 mg/kg b.w. DQ, followed by 20 mg/kg b.w./day EGCG or EGCG-RBCM/NPs for 3 days. The assessment of cellular vitality was carried out using the CCK-8 assay, while the quantification of reactive oxygen species (ROS) was performed through ROS specific probes. Apoptosis analysis was conducted by both flow cytometry and TUNEL staining methods. Pathological changes in renal tissue were observed. The expressions of NLRP3, IL-1β, IL-18, NFκB and Caspase1 were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry, immunofluorescence, and Western blot. The results showed that the DQ group had increased ROS expression, increased the level of oxidative stress, and increased apoptosis rate compared with the control group. Histopathological analysis of mice in the DQ group showed renal tubular injury and elevated levels of blood urea nitrogen (BUN), serum creatinine (SCr), kidney injury molecule-1 (KIM-1), and cystatin C (Cys C). Furthermore, the DQ group exhibited heightened expression of NLRP3, p-NFκB p65, Caspase1 p20, IL-1β, and IL-18. However, EGCG-RBCm/NPs treatment mitigated DQ-induced increases in ROS, apoptosis, and oxidative stress, as well as renal toxicity and decreases in renal biomarker levels. Meanwhile, the expression of the above proteins were significantly decreased, and the survival rate of mice was ultimately improved, with an effect better than that of the EGCG treatment group. In conclusion, EGCG-RBCm/NPs can improve oxidative stress, inflammation, and apoptosis induced by DQ. This effect is related to the NF-κB/NLRP3 inflammasome pathway. Overall, this study provides a new approach for treating renal injury induced by DQ.
Collapse
Affiliation(s)
- Jie Qu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Hui Pei
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Xin-Ze Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Yan Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Jian-Ming Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Min Zhang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Zhong-Qiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| |
Collapse
|
2
|
Chu H, Qin Y, Qiu T, Zhou S, Na Z, Sun Y, Xu Y, Zhong Y. Phenotype and function of smooth muscle cells derived from the human normal great saphenous vein in response to hypoxia. Phlebology 2024; 39:96-107. [PMID: 37921696 DOI: 10.1177/02683555231211990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
OBJECTIVE The contribution of hypoxia to the pathophysiology of vascular smooth muscle cells (VSMCs) has not yet been fully elucidated. This study evaluated the effect of hypoxia on the phenotype and function of SMCs derived from the human normal great saphenous veins (NGSVs). METHODS Fifteen NGSV tissue samples were collected. SMCs were isolated and cultured. Proliferation, migration, adhesion, senescence, and the structure of cytoskeletal filaments in SMCs were observed. mRNA and protein expression of Bax, Bcl-2, caspase-3, matrix metalloproteinases (MMP)-2, MMP-9, tissue inhibitor of metalloproteinases (TIMP)-1, and TIMP-2 was detected by fluorescent quantitative polymerase chain reaction and immunoblotting in the cobalt chloride (CoCl2) and the control groups. RESULTS A decrease in the number of cytoskeletal filaments was observed. mRNA and protein expression of Bas and caspase-3 was significantly decreased, while the quantity of proliferation, migration, adhesion, senescence, and mRNA and protein expression of Bcl-2, MMP-2, MMP-9, TIMP-1, and TIMP-2 in SMCs in the CoCl2 group were significantly increased compared with the control group. CONCLUSION Under hypoxic conditions, the phenotype and function of SMCs derived from the human NGSVs were dysregulated, suggesting that VSMCs switch from the contractile phenotype to the secretory or synthetic phenotype, and more dedifferentiate, resulting in extracellular matrix deposition and apoptotic decrease through the intrinsic pathway.
Collapse
Affiliation(s)
- Haibo Chu
- Department of General Surgery, Jiaozhou Branch of Shanghai East Hospital, Tongji University, Qingdao, China
| | - Yanyan Qin
- Department of General Surgery, Jiaozhou Branch of Shanghai East Hospital, Tongji University, Qingdao, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Tianzhen Qiu
- Department of General Surgery, Jiaozhou Branch of Shanghai East Hospital, Tongji University, Qingdao, China
| | - Shunchang Zhou
- Department of General Surgery, Jiaozhou Branch of Shanghai East Hospital, Tongji University, Qingdao, China
| | - Zhang Na
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Yanping Sun
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Yongbo Xu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
3
|
Lu Y, Li D, Shan L. MicroRNA153 induces apoptosis by targeting NFATc3 to improve vascular remodeling in pulmonary hypertension. Clin Exp Hypertens 2023; 45:2140810. [PMID: 36373478 DOI: 10.1080/10641963.2022.2140810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The present study aimed to investigate the effect of microRNA153 (miRNA153) on pulmonary hypertension (PH). METHODS PH was induced by a single subcutaneous injection of sugen5416 (SU5416) combined with hypoxia exposure for 3 weeks (SuHx) in rats, while pulmonary arterial smooth muscle cells (PASMCs) obtained from rats were exposed to hypoxia to establish an in vitro model. Through observing the characteristic hemodynamic index in rats and by analyzing the physiological function, vascular remodeling and right ventricular hypertrophy were identified. The regulatory effects of miRNA153 on the nuclear factor of activated T cell isoform c3 (NFATc3) were measured by RT-qPCR, western blot, and immunofluorescence. Cell apoptosis was evaluated by flow cytometry. RESULTS The miRNA153 expression was reduced and unclear translation of NFATc3 was increased in both the in vivo and in vitro models of PH. In vivo, the pulmonary arterial pressure, right ventricle/(left ventricle + interventricular septum) (RV/(LV+S)), and media vascular thickness were increased in rats with PH; however, all these parameters were suppressed by prophylactic administration of miRNA153agomir. The upregulation of NFATc3 and downregulation of the potassium voltage-gated channel subfamily A member 5 (Kv1.5) were also reversed by transfection with miRNA153agomir. In vitro, miRNA153 increased the level of Kv1.5 in hypoxic PASMCs by targeting NFATc3 and inhibiting their proliferation and apoptosis resistance. CONCLUSION Our results confirmed that the therapeutic administration of miRNA153 promotes apoptosis and inhibits the proliferation of PASMCs to ameliorate PH, and that the NFATc3/Kv1.5 channel pathway may be involved in this process.
Collapse
Affiliation(s)
- Ya Lu
- Department of Respiratory Disease, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dongyan Li
- Human Resources Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lina Shan
- Department of Respiratory Disease, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
4
|
Jiang J, Kao TC, Hu S, Li Y, Feng W, Guo X, Zeng J, Ma X. Protective role of baicalin in the dynamic progression of lung injury to idiopathic pulmonary fibrosis: A meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154777. [PMID: 37018850 DOI: 10.1016/j.phymed.2023.154777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND PURPOSE The pathological progression of lung injury (LI) to idiopathic pulmonary fibrosis (IPF) is a common feature of the development of lung disease. At present, effective strategies for preventing this progression are unavailable. Baicalin has been reported to specifically inhibit the progression of LI to IPF. Therefore, this meta-analysis aimed to assess its clinical application and its potential as a therapeutic drug for lung disease based on integrative analysis. METHODS We systematically searched preclinical articles in eight databases and reviewed them subjectively. The CAMARADES scoring system was used to assess the degree of bias and quality of evidence, whereas the STATA software (version 16.0 software) was used for statistical analysis, including a 3D analysis of the effects of dosage frequency of baicalin in LI and IPF. The protocol of this meta-analysis is documented in the PROSPERO database (CRD42022356152). RESULTS A total of 23 studies and 412 rodents were included after several rounds of screening. Baicalin was found to reduce the levels of TNF-α, IL-1β, IL-6, HYP, TGF-β and MDA and the W/D ratio and increase the levels of SOD. Histopathological analysis of lung tissue validated the regulatory effects of baicalin, and the 3D analysis of dosage frequency revealed that the effective dose of baicalin is 10-200 mg/kg. Mechanistically, baicalin can prevent the progression of LI to IPF by modulating p-Akt, p-NF-κB-p65 and Bcl-2-Bax-caspase-3 signalling. Additionally, baicalin is involved in signalling pathways closely related to anti-apoptotic activity and regulation of lung tissue and immune cells. CONCLUSION Baicalin at the dose of 10-200 mg/kg exerts protective effects against the progression of LI to IPF through anti-inflammatory and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Jiajie Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Te-Chan Kao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Sihan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Weiyi Feng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaochuan Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
5
|
The Effect of Thyme Essential Oil on Liver Injuries Caused by Renal Ischemia-Reperfusion in Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2988334. [PMID: 36337844 PMCID: PMC9629959 DOI: 10.1155/2022/2988334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Liver damage occurs following renal ischemia-reperfusion (RIR) that can cause inflammation and inflammatory cytokines activated after kidney injury. In this study, thyme essential oil (TE) with antioxidant and anti-inflammatory properties was used to reduce liver damage induced by renal IR. 32 male rats were randomly divided into 4 equal groups: (1) control, (2) RIR, (3) RIR+TE, and (4) TE. Rats received TE as a pretreatment at a dose of 0.5 ml/kg for one week. Then, under anesthesia for 45 minutes for ischemia, the kidneys of the animals were closed with clamps, and reperfusion was performed for 24 hours. Animal serum was isolated to evaluate alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) parameters. The liver of rats was examined for the measurement of malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH), glutathione peroxidase (GPX), catalase (CAT), and expression of genes such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and caspase-3. ALP, AST, ALT, MDA, NO, IL-6, TNF-α, and caspase-3 increased significantly in the RIR group compared to the control group (p < 0.05). GSH, GPX, and CAT decreased significantly in the RIR group compared to the control group (p < 0.05). TE caused a decrease in ALP, AST, ALT, MDA, NO, IL-6, and TNF-α compared to the RIR group and caused an increase in the amount of GSH, GPX, and CAT in the RIR group (p < 0.05). This study showed that TE has antioxidant and anti-inflammatory properties that reduce liver damage induced by RIR.
Collapse
|
6
|
Phytochemical Analysis and Antioxidant, Antibacterial, and Antifungal Effects of Essential Oil of Black Caraway (Nigella sativa L.) Seeds against Drug-Resistant Clinically Pathogenic Microorganisms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5218950. [PMID: 35958807 PMCID: PMC9363207 DOI: 10.1155/2022/5218950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Nigella sativa (NS) is a plant that has long been utilized in traditional medicine as a treatment for certain diseases. The aim of this work was to valorize the essential oil (EO) of this species by phytochemical analysis and antimicrobial and antioxidant evaluation. EO was extracted by hydrodistillation from the seeds of Nigella sativa (EO-NS). Phytochemical content of EO-NS was evaluated by use of gas chromatography coupled to mass spectrometry (GC-MS/MS). Antioxidant ability was in vitro determined by use of three assays: 2.2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing power (FRAP), and total antioxidant capacity (TAC) relative to two synthetic antioxidants: BHT and quercetin. Antimicrobial effect was evaluated against four clinically important bacterial strains (Staphylococcus aureus, ATCC 6633; Escherichia coli, K12; Bacillus subtilis, DSM 6333; and Proteus mirabilis, ATCC 29906) and against four fungal strains (Candida albicans, ATCC 10231; Aspergillus niger, MTCC 282; Aspergillus flavus, MTCC 9606; and Fusarium oxysporum, MTCC 9913). Fifteen constituents that accounted for the majority of the mass of the EO-NS were identified and quantified by use of GC-MSMS. The main component was O-cymene (37.82%), followed by carvacrol (17.68%), α-pinene (10.09%), trans-sabinene hydrate (9.90%), and 4-terpineol (7.15%). EO-NS exhibited significant antioxidant activity with IC50, EC50, and total antioxidant capacity (TAC) of
,
, and
mg EAA/g, respectively. Additionally, EO-NS exhibited promising antibacterial activity on all strains under investigation, especially on E. coli K12 resulting in inhibition diameter of
mm and a minimum inhibitory concentration (MIC) of
μg/mL. Also, EO-NS had significant antifungal efficacy, with a percentage of inhibition of
% and MIC of
μg/mL against F. oxysporum, MTCC 9913 and with a diameter of inhibition
mm and MIC of
μg/mL against C. albicans. To minimize development of antibiotic-resistant bacteria, EO-NS can be utilized as a natural, alternative to synthetic antibiotics and antioxidants to treat free radicals implicated in microbial infection-related inflammatory reactions.
Collapse
|
7
|
Oxidative Stress and Antioxidative Therapy in Pulmonary Arterial Hypertension. Molecules 2022; 27:molecules27123724. [PMID: 35744848 PMCID: PMC9229274 DOI: 10.3390/molecules27123724] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is clinically characterized by a progressive increase in pulmonary artery pressure, followed by right ventricular hypertrophy and subsequently right heart failure. The underlying mechanism of PAH includes endothelial dysfunction and intimal smooth muscle proliferation. Numerous studies have shown that oxidative stress is critical in the pathophysiology of PAH and involves changes in reactive oxygen species (ROS), reactive nitrogen (RNS), and nitric oxide (NO) signaling pathways. Disrupted ROS and NO signaling pathways cause the proliferation of pulmonary arterial endothelial cells (PAECs) and pulmonary vascular smooth muscle cells (PASMCs), resulting in DNA damage, metabolic abnormalities, and vascular remodeling. Antioxidant treatment has become a main area of research for the treatment of PAH. This review mainly introduces oxidative stress in the pathogenesis of PAH and antioxidative therapies and explains why targeting oxidative stress is a valid strategy for PAH treatment.
Collapse
|
8
|
Alves-Silva JM, Zuzarte M, Marques C, Viana S, Preguiça I, Baptista R, Ferreira C, Cavaleiro C, Domingues N, Sardão VA, Oliveira PJ, Reis F, Salgueiro L, Girão H. 1,8-cineole Ameliorates Right Ventricle Dysfunction Associated With Pulmonary Arterial Hypertension by Restoring Connexin 43 and Mitochondrial Homeostasis. Pharmacol Res 2022; 180:106151. [PMID: 35247601 DOI: 10.1016/j.phrs.2022.106151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/07/2022] [Accepted: 02/26/2022] [Indexed: 10/19/2022]
Abstract
For the first time, the present study unravels a cardiospecific therapeutic approach for Pulmonary Arterial Hypertension (PAH), a disease with a very poor prognosis and high mortality rates due to right ventricle dysfunction. We first established a new in vitro model of high-pressure-induced hypertrophy that closely resembles heart defects associated with PAH and validated our in vitro findings on a preclinical in vivo model of monocrotaline (MCT)-induced PAH. Our results showed the in vitro antihypertrophic effect of 1,8-cineole, a monoterpene widely found in several essential oils. Also, a decrease in RV hypertrophy and fibrosis, and an improvement in heart function in vivo was observed, when 1,8-cineole was applied topically. Furthermore, 1,8-cineole restored gap junction protein connexin43 distribution at the intercalated discs and mitochondrial functionality, suggesting it may act by preserving cardiac cell-to-cell communication and bioenergetics. Overall, our results point out a promising therapeutic compound that can be easily applied topically, thus paving the way for the development of effective cardiac-specific therapies to greatly improve PAH outcomes.
Collapse
Affiliation(s)
- Jorge M Alves-Silva
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| | - Carla Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Sofia Viana
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology & Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Inês Preguiça
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology & Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal
| | - Rui Baptista
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal; Cardiology Department, Hospital Centre of Entre Douro and Vouga, Santa Maria da Feira, Portugal
| | - Cátia Ferreira
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Carlos Cavaleiro
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra, Portugal
| | - Neuza Domingues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Vilma A Sardão
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal; Univ Coimbra, Faculty of Sport Science and Physical Education, Coimbra, Portugal
| | - Paulo J Oliveira
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal
| | - Flávio Reis
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology & Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra, Portugal
| | - Henrique Girão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
9
|
Ahmed OM, Galaly SR, Mostafa MAMA, Eed EM, Ali TM, Fahmy AM, Zaky MY. Thyme Oil and Thymol Counter Doxorubicin-Induced Hepatotoxicity via Modulation of Inflammation, Apoptosis, and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6702773. [PMID: 35178158 PMCID: PMC8844103 DOI: 10.1155/2022/6702773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/26/2021] [Accepted: 01/02/2022] [Indexed: 12/14/2022]
Abstract
Doxorubicin (DOX) is an effective anticancer agent with a wide spectrum of activities. However, it has many adverse effects on various organs especially on the liver. Thymol, one of the major components of thyme oil, has biological properties that include anti-inflammatory and antioxidant activities. Thus, this study was designed to examine thyme oil and thymol for their ability to prevent doxorubicin-induced hepatotoxicity in Wistar rats. Hepatotoxicity was induced by an intraperitoneal injection of doxorubicin, at a dose of 2 mg/kg bw/week, for seven weeks. Doxorubicin-injected rats were supplemented with thyme oil and thymol at doses 250 and 100 mg/kg bw, respectively, four times/week by oral gavage for the same period. Treatment of rats with thyme oil and thymol reversed the high serum activities of AST, ALT, and ALP and total bilirubin, AFP, and CA19.9 levels, caused by doxorubicin. Thyme oil and thymol also reduced the high levels of TNF-α and the decreased levels of both albumin and IL-4. These agents ameliorated doxorubicin-induced elevation in hepatic lipid peroxidation and associated reduction in GSH content and GST and GPx activities. Further, the supplementation with thyme oil and thymol significantly augmented mRNA expression of the level of antiapoptotic protein Bcl-2 and significantly downregulated nuclear and cytoplasmic levels of the hepatic apoptotic mediator p53. Thus, thyme oil and thymol successfully counteracted doxorubicin-induced experimental hepatotoxicity via their anti-inflammatory, antioxidant, and antiapoptotic properties.
Collapse
Affiliation(s)
- Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Sanaa R. Galaly
- Cell Biology and Histology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mennah-Allah M. A. Mostafa
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Emad M. Eed
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Alzhraa M. Fahmy
- Tropical Medicine and Infectious Diseases Department, Beni-Suef University Faculty of Medicine, Beni-Suef, Egypt
| | - Mohamed Y. Zaky
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
- Department of Medical Oncology Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| |
Collapse
|
10
|
Xue Z, Li Y, Zhou M, Liu Z, Fan G, Wang X, Zhu Y, Yang J. Traditional Herbal Medicine Discovery for the Treatment and Prevention of Pulmonary Arterial Hypertension. Front Pharmacol 2021; 12:720873. [PMID: 34899290 PMCID: PMC8660120 DOI: 10.3389/fphar.2021.720873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary artery remodeling that may subsequently culminate in right heart failure and premature death. Although there are currently both non-pharmacological (lung transplantation, etc.) and pharmacological (Sildenafil, Bosentan, and new oral drugs on trial) therapies available, PAH remains a serious and fatal pulmonary disease. As a unique medical treatment, traditional herbal medicine (THM) treatment has gradually exerted its advantages in treating PAH worldwide through a multi-level and multi-target approach. Additionally, the potential mechanisms of THM were deciphered, including suppression of proliferation and apoptosis of pulmonary artery smooth muscle cells, controlling the processes of inflammation and oxidative stress, and regulating vasoconstriction and ion channels. In this review, the effects and mechanisms of the frequently studied compound THM, single herbal preparations, and multiple active components from THM are comprehensively summarized, as well as their related mechanisms on several classical preclinical PAH models. It is worth mentioning that sodium tanshinone IIA sulfonate sodium and tetramethylpyrazine are under clinical trials and are considered the most promoting medicines for PAH treatment. Last, reverse pharmacology, a strategy to discover THM or THM-derived components, has also been proposed here for PAH. This review discusses the current state of THM, their working mechanisms against PAH, and prospects of reverse pharmacology, which are expected to facilitate the natural anti-PAH medicine discovery and development and its bench-to-bedside transformation.
Collapse
Affiliation(s)
- Zhifeng Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yixuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Mengen Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhidong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
11
|
Rathod NB, Kulawik P, Ozogul F, Regenstein JM, Ozogul Y. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Silva EAP, Santos DM, de Carvalho FO, Menezes IAC, Barreto AS, Souza DS, Quintans-Júnior LJ, Santos MRV. Monoterpenes and their derivatives as agents for cardiovascular disease management: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153451. [PMID: 33483251 DOI: 10.1016/j.phymed.2020.153451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Monoterpenes are one of the most studied plant's secondary metabolites, they are found abundantly in essential oils of aromatic plants. They also have a great range of pharmacological properties, such as antihypertensive, bradycardic, antiarrhythmic and hypotensive. In the face of the burden caused by cardiovascular disease (CVDs) worldwide, studies using monoterpenes to assess their cardiovascular effects have increased over the years. PURPOSE This systematic review aimed to summarize the use of monoterpenes in animal models of any CVDs. METHODS PubMed, SCOPUS, LILACS and Web of Science databases were used to search for articles that used monoterpenes, in any type of administration, to treat or prevent CVDs in animal models. The PRISMA guidelines were followed. Two independent researchers extracted main characteristics of studies, methods and outcomes. Data obtained were analyzed qualitatively and quantitatively. RESULTS At the ending of the search process, 33 articles were selected for the systematic review. Of these, 17 articles were included in the meta-analysis. A total of 16 different monoterpenes were found for the treatment of hypertension, myocardial infarction, pulmonary hypertension, cardiac hypertrophy and arrhythmia. The main actions include hypotension, bradycardia, vasodilatation, antiarrhythmic, and antioxidant and antiapoptotic properties. From our data, it can be suggested that monoterpenes may be a significant source for new drug development. However, there is still a need to apply these knowledge into clinical research and a long path to pursue before putting them in the market. CONCLUSION The variability of cardiovascular effects demonstrated by the monoterpenes highlighted them as a promising candidates for treatment or prevention of CVDs. Nevertheless, studies that investigate their biological sites of action needs to be further encouraged.
Collapse
Affiliation(s)
- Eric Aian P Silva
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil
| | - Danillo M Santos
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Fernanda Oliveira de Carvalho
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Igor A Cortes Menezes
- Hospital de Clínicas, Universidade Federal do Paraná, Rua General Carneiro, 181, Curitiba-PR, 80060-900, Brazil
| | - André S Barreto
- Department of Health Education, Universidade Federal de Sergipe, Av. Governador Marcelo Deda, 13, Centro, Lagarto-SE, CEP 49400-000, Brazil
| | - Diego S Souza
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Márcio R V Santos
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil; Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil.
| |
Collapse
|
13
|
Ouyang S, Chen W, Gaofeng Z, Changcheng L, Guoping T, Minyan Z, Yang L, Min Y, Luo J. Cyanidin‑3‑O‑β‑glucoside protects against pulmonary artery hypertension induced by monocrotaline via the TGF‑β1/p38 MAPK/CREB signaling pathway. Mol Med Rep 2021; 23:338. [PMID: 33760143 PMCID: PMC7974420 DOI: 10.3892/mmr.2021.11977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary artery hypertension (PAH) is a disease with high morbidity and mortality. Cyanidin‑3‑O‑β‑glucoside (Cy‑3‑g), a classical anthocyanin, has a variety of biological effects. The present study evaluated whether Cy‑3‑g attenuated PAH, and explored the potential mechanism of action. Rats were injected with monocrotaline (MCT; 60 mg per kg of body weight) and then treated with Cy‑3‑g (200 or 400 mg per kg of body weight) for 4 weeks. Protein expression was determined in vitro in transforming growth factor‑β1 (TGF‑β1)‑mediated human pulmonary arterial smooth muscle cells (SMCs). The results indicated that Cy‑3‑g significantly inhibited the mean pulmonary artery pressure, right ventricular systolic pressure and right ventricular hypertrophy index, as well as vascular remodeling induced by MCT in PAH rats. Further experiments showed that Cy‑3‑g suppressed the expression of pro‑-inflammatory factors and enhanced the levels of anti‑inflammatory factors. Cy‑3‑g blocked oxidative stress and improved vascular endothelial injury. Cy‑3‑g also reduced the proliferation of SMCs. Furthermore, the MCT‑ and TGF‑β1‑induced increase in TGF‑β1, phosphorylated (p)‑p38 mitogen‑activated protein kinase (MAPK) and p‑cAMP‑response element binding protein (CREB) expression was blocked by Cy‑3‑g treatment in vivo and in vitro. These results indicated that Cy‑3‑g could prevent vascular remodeling in PAH via inhibition of the TGF‑β1/p38 MAPK/CREB axis.
Collapse
Affiliation(s)
- Shao Ouyang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zeng Gaofeng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lei Changcheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Tian Guoping
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhu Minyan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Liu Yang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yang Min
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jiahao Luo
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
14
|
Zhang Q, Cao Y, Liu Y, Huang W, Ren J, Wang P, Song C, Fan K, Ba L, Wang L, Sun H. Shear stress inhibits cardiac microvascular endothelial cells apoptosis to protect against myocardial ischemia reperfusion injury via YAP/miR-206/PDCD4 signaling pathway. Biochem Pharmacol 2021; 186:114466. [PMID: 33610591 DOI: 10.1016/j.bcp.2021.114466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/09/2023]
Abstract
Cardiac microvascular endothelial cells (CMECs), derived from coronary circulation microvessel, are the main barrier for the exchange of energy and nutrients between myocardium and blood. However, microvascular I/R injury is a severely neglected topic, and few strategies can reverse this pathology. In this study, we investigated the mechanism of shear stress in microvascular I/R injury, and try to elucidate the downstream signaling pathways that inhibit CMECs apoptosis to reduce I/R injury. Our results demonstrated that shear stress inhibited the apoptosis protein, increased PECAM-1 expression and eNOS phosphorylation in hypoxia reoxygenated (H/R) CMECs. The mechanism of shear stress was related to up-regulated expression of YAP, the increased number of YAP entering the nucleus by dephosphorylation, the reduced number of TUNEL positive cells, increased miR-206 and inhibited protein level of PDCD4 in CMECs. However, siRNA-mediated knockdown of YAP abolished the protective effects of shear stress on CMECs apoptosis, similar results obtained from administration with AMO-miR-206, and also prevented PDCD4 (target gene of miR-206) increasing when treatment with both AMO-miR-206 and mimics-miR-206. In vivo, restoring the blood fluid with nitroglycerin (NTG) to mimic in vitro shear stress levels, which subsequently improved cardiac function, reduced infarcted area, lowered microvascular perfusion defects. Functional investigations clearly illustrated that increased the protein expression of PECAM-1 and eNOS phosphorylation, activated YAP, strengthened miR-206 expression, and suppressed PDCD4 expression. In summary, this study confirmed that shear stress reversed CMECs apoptosis, relieved microvascular I/R injury, the mechanism of which involving through YAP/miR-206/PDCD4 signaling pathway to finally suppress myocardial I/R injury.
Collapse
Affiliation(s)
- Qianlong Zhang
- Department of Physiology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Yongsheng Liu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Wei Huang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Jing Ren
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Peng Wang
- Department of Physiology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Chao Song
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Kai Fan
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Lina Ba
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Lixin Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China.
| |
Collapse
|
15
|
Yang Y, Yin L, Zhu M, Song S, Sun C, Han X, Xu Y, Zhao Y, Qi Y, Xu L, Peng JY. Protective effects of dioscin on vascular remodeling in pulmonary arterial hypertension via adjusting GRB2/ERK/PI3K-AKT signal. Biomed Pharmacother 2021; 133:111056. [PMID: 33378960 DOI: 10.1016/j.biopha.2020.111056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and lethal cardiopulmonary. Pulmonary vascular remodeling (PVR) caused by excessive proliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs) is the chief pathological feature of PAH. Dioscin is a natural product that possesses multiple pharmacological activities, but its effect on PAH remains unclear. In this study, effect of dioscin on vascular remodeling in PAH was assessed in hypoxia-induced PASMCs, hypoxia-induced and monocrotaline (MCT)-induced rats. Western blot, Real-time PCR and siRNA transfection tests were applied to evaluate the possible mechanisms of dioscin. In vitro experiments, results showed dioscin markedly inhibited the proliferation and migration, and promoted apoptosis of hypoxic PASMCs. In vivo, dioscin significantly decreased the right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI), and improved pulmonary vascular stenosis in rats induced by hypoxia or MCT. Molecular mechanism studies showed that dioscin significantly reduced the expression of growth factor receptor-bound protein 2 (GRB2). Subsequently, dioscin reduced the expressions of Ras, Cyclin D1, CDK4, c-Fos, PCNA and p-ERK to inhibit proliferation and migration of PASMCs, inhibited p-PI3K and p-AKT levels and increased Bax/Bcl2 ratio to promote cell apoptosis. GRB2 siRNA transfection in PASMCs further confirmed that the inhibitory action of dioscin in PAH was evoked by adjusting GRB2/ERK/PI3K-AKT signal. Taken together, our study indicated that dioscin attenuates PAH through adjusting GRB2/ERK/PI3K-AKT signal to inhibit PASMCs proliferation and migration, and promote apoptosis, and dioscin may be developed as a therapeutic strategy for treating PAH in the future.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Diosgenin/analogs & derivatives
- Diosgenin/pharmacology
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/metabolism
- GRB2 Adaptor Protein/genetics
- GRB2 Adaptor Protein/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/enzymology
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Signal Transduction
- Vascular Remodeling/drug effects
- Rats
Collapse
Affiliation(s)
- Yueyue Yang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Manning Zhu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Changjie Sun
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yanyan Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China.
| | - J-Y Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
16
|
Huang S, Yue Y, Feng K, Huang X, Li H, Hou J, Yang S, Huang S, Liang M, Chen G, Wu Z. Conditioned medium from M2b macrophages modulates the proliferation, migration, and apoptosis of pulmonary artery smooth muscle cells by deregulating the PI3K/Akt/FoxO3a pathway. PeerJ 2020; 8:e9110. [PMID: 32411539 PMCID: PMC7207208 DOI: 10.7717/peerj.9110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/10/2020] [Indexed: 01/20/2023] Open
Abstract
Background Immunity and inflammation are considered to be central features of pulmonary artery hypertension (PAH), in which macrophages are one of the main components of inflammatory cell infiltration around the pulmonary artery. M2b macrophages, which are different from M1 and M2 macrophages, are believed to have immunomodulatory activities and produce little fibrosis. The purpose of this study was to explore the effect of M2b macrophages on pulmonary artery smooth muscle cells (PASMCs) derived from monocrotaline-induced PAH rats. Methods PASMCs were cultured in serum-free medium, the supernatant of M0 macrophages, or the supernatant of M2b macrophages for 24 hours. Then cell proliferation was assessed by cell counting kit-8 and cell migration ability was detected by wound healing and transwell assays. The apoptosis rate of cells was determined by TUNEL staining and annexin V-PE/7-ADD staining. Western blot was used to detect the expression of Bcl-2 family proteins, cleaved caspase-9 and PI3K/Akt/FoxO3a pathway. LY294002 (a specific inhibitor of PI3K) was used to investigate its effect on PASMCs and its relationship with M2b macrophages. Results Conditioned medium from M2b macrophages significantly inhibited the proliferation and migration of PASMCs compared with the control group and M0 macrophage group. Furthermore, conditioned medium from M2b macrophages promote PASMC apoptosis and increased the expression of pro-apoptotic proteins Bax and cleaved caspase-9, inhibited the expression of anti-apoptotic proteins Bcl-2 and Bcl-xl. Finally, conditioned medium from M2b macrophages inhibited the PI3K/Akt/FoxO3a pathway. Inhibition of PI3K/Akt/FoxO3a pathway also significantly inhibit the proliferation, migration, and apoptosis resistance of PASMCs. Conclusion Conditioned medium from M2b macrophages can inhibit the proliferation, migration, and apoptosis resistance of PASMCs, which may be at least partially by deregulating the PI3K/Akt/FoxO3a pathway.
Collapse
Affiliation(s)
- Suiqing Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Yuan Yue
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Kangni Feng
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Huayang Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Jian Hou
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Song Yang
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,Department of Cardiosurgery Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaojie Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Mengya Liang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guangxian Chen
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Zhao H, Li C, Li L, Liu J, Gao Y, Mu K, Chen D, Lu A, Ren Y, Li Z. Baicalin alleviates bleomycin‑induced pulmonary fibrosis and fibroblast proliferation in rats via the PI3K/AKT signaling pathway. Mol Med Rep 2020; 21:2321-2334. [PMID: 32323806 PMCID: PMC7185294 DOI: 10.3892/mmr.2020.11046] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 01/13/2020] [Indexed: 01/15/2023] Open
Abstract
Baicalin is an important flavonoid compound THAT is isolated from the Scutellaria baicalensis Georgi Chinese herb and plays a critical role in anti‑oxidative, anti‑inflammatory, anti‑infection and anti‑tumor functions. Although baicalin can suppress the proliferation of tumor cells, the underlying mechanisms of baicalin in bleomycin (BLM)‑induced pulmonary fibrosis remain to be elucidated. Thus, the aim of the present study was to determine the role of baicalin in pulmonary fibrosis and fibroblast proliferation in rats. Hematoxylin and eosin (H&E) and Masson staining were used to measure the morphology of pulmonary fibrosis, ELIASA kits were used to test the ROS and inflammation, and western blotting and TUNEL were performed to study the apoptosis proteins. In vitro, MTT assay, flow cytometry, western blotting and immunofluorescence were performed to investigate the effects of baicalin on proliferation of fibroblasts. The most significantly fibrotic changes were identified in the lungs of model rats at day 28. Baicalin (50 mg/kg) attenuated the degree of pulmonary fibrosis, and the hydroxyproline content of the lung tissues was decreased in the baicalin group, compared with the BLM group. Further investigation revealed that baicalin significantly increased glutathione peroxidase (GSH‑px), total‑superoxide dismutase (T‑SOD) and glutathione (GSH) levels, whilst decreasing that of serum malondialdehyde (MDA). TUNEL‑positive cells were significantly decreased in rats treated with baicalin group, compared with the model group. Furthermore, it was found that BLM promoted fibroblasts viability in a dose‑dependent manner in vivo, which was restricted following treatment with different concentrations of baicalin. Moreover, BLM promoted the expression levels of cyclin A, D and E, proliferating cell nuclear antigen, phosphorylated (p)‑AKT and p‑calcium/calmodulin‑dependent protein kinase type. BLM also promoted the transition of cells from the G0/G1 phase to the G2/M and S phases, and increased the intracellular Ca2+ concentration, which was subsequently suppressed by baicalin. Collectively, the results of the present study suggested that baicalin exerted a suppressive effect on BLM‑induced pulmonary fibrosis and fibroblast proliferation.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chundi Li
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Lina Li
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Junying Liu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Yinghui Gao
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Kun Mu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Donghe Chen
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Aiping Lu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Yuanyuan Ren
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Zhenhua Li
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
18
|
Jasemi SV, Khazaei H, Aneva IY, Farzaei MH, Echeverría J. Medicinal Plants and Phytochemicals for the Treatment of Pulmonary Hypertension. Front Pharmacol 2020; 11:145. [PMID: 32226378 PMCID: PMC7080987 DOI: 10.3389/fphar.2020.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Background Pulmonary hypertension (PH) is a progressive disease that is associated with pulmonary arteries remodeling, right ventricle hypertrophy, right ventricular failure and finally death. The present study aims to review the medicinal plants and phytochemicals used for PH treatment in the period of 1994 – 2019. Methods PubMed, Cochrane and Scopus were searched based on pulmonary hypertension, plant and phytochemical keywords from August 23, 2019. All articles that matched the study based on title and abstract were collected, non-English, repetitive and review studies were excluded. Results Finally 41 studies remained from a total of 1290. The results show that many chemical treatments considered to this disease are ineffective in the long period because they have a controlling role, not a therapeutic one. On the other hand, plants and phytochemicals could be more effective due to their action on many mechanisms that cause the progression of PH. Conclusion Studies have shown that herbs and phytochemicals used to treat PH do their effects from six mechanisms. These mechanisms include antiproliferative, antioxidant, antivascular remodeling, anti-inflammatory, vasodilatory and apoptosis inducing actions. According to the present study, many of these medicinal plants and phytochemicals can have effects that are more therapeutic than chemical drugs if used appropriately.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
19
|
Mikhael M, Makar C, Wissa A, Le T, Eghbali M, Umar S. Oxidative Stress and Its Implications in the Right Ventricular Remodeling Secondary to Pulmonary Hypertension. Front Physiol 2019; 10:1233. [PMID: 31607955 PMCID: PMC6769067 DOI: 10.3389/fphys.2019.01233] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by increased pulmonary artery pressures. Long standing pulmonary arterial pressure overload leads to right ventricular (RV) hypertrophy, RV failure, and death. RV failure is a major determinant of survival in PH. Oxidative stress has been associated with the development of RV failure secondary to PH. Here we summarize the structural and functional changes in the RV in response to sustained pulmonary arterial pressure overload. Furthermore, we review the pre-clinical and clinical studies highlighting the association of oxidative stress with pulmonary vasculature and RV remodeling in chronic PH. Targeting oxidative stress promises to be an effective therapeutic strategy for the treatment of RV failure.
Collapse
Affiliation(s)
- Matthew Mikhael
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Christian Makar
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Amir Wissa
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Trixie Le
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
20
|
Xing XQ, Li B, Xu SL, Liu J, Zhang CF, Yang J. MicroRNA-214-3p Regulates Hypoxia-Mediated Pulmonary Artery Smooth Muscle Cell Proliferation and Migration by Targeting ARHGEF12. Med Sci Monit 2019; 25:5738-5746. [PMID: 31373336 PMCID: PMC6689201 DOI: 10.12659/msm.915709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/17/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND miR-214-3p has been found to inhibit proliferation and migration in cancer cells. The objective of this study was to determine whether ARHGEF12 is involved in miR-214-3p-mediated suppression of proliferation and migration of pulmonary artery smooth muscle cells (PASMCs). MATERIAL AND METHODS PASMCs were cultured under normoxia or hypoxia. miR-214-3p mimics or inhibitors were transiently transfected into PASMCs. Proliferation, apoptosis, and migration of PASMCs were evaluated using MTT assay, flow cytometry, and Boyden chamber apparatus. Western blot analysis was used to examine expression of Rho guanine nucleotide exchange factor 12 (ARHGEF12), c-fos, c-jun, and caspase-3. Luciferase reporter assay was used to test the direct regulation of miR-214-3p on the 3'-untranslated region (UTR) of ARHGEF12. RESULTS miR-214-3p was significantly upregulated in hypoxia-treated PASMCs. Knockdown of miR-214-3p significantly attenuated hypoxia-induced proliferation and migration in PASMCs and promoted apoptosis, whereas this effect was aggravated by overexpression of miR-214-3p. In addition, dual-luciferase reporter assay demonstrated that ARHGEF12 is a direct target gene of miR-214-3p. The protein levels of ARHGEF12 were downregulated after knockdown of miR-214-3p in PASMCs. Rescue experiment results indicated that decreased proliferation of PASMCs resulted from knockdown of miR-214-3p were partially reversed by silencing of ARHGEF12 by siRNA. Furthermore, knockdown of miR-214-3p reduced expression of c-jun and c-fos, but increased expression of caspase-3 in PASMCs under hypoxia. CONCLUSIONS In conclusion, these results indicate that miR-214-3p acts as a novel regulator of hypoxia-induced proliferation and migration by directly targeting ARHGEF12 and dysregulating c-jun and c-fos in PASMCs, and may be a potential therapeutic target for treating pulmonary hypertension.
Collapse
Affiliation(s)
- Xi-Qian Xing
- Department of Respiratory Medicine, Fourth Affiliated Hospital of Kunming Medical University, Second People’s Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Bo Li
- College of Pharmacy, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Shuang-Lan Xu
- Department of Respiratory Medicine, Fourth Affiliated Hospital of Kunming Medical University, Second People’s Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Jie Liu
- Department of Respiratory Medicine, Fourth Affiliated Hospital of Kunming Medical University, Second People’s Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Chun-Fang Zhang
- Department of Respiratory Medicine, Fourth Affiliated Hospital of Kunming Medical University, Second People’s Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Jiao Yang
- Department of Respiratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| |
Collapse
|
21
|
Lv JX, Zhou J, Tong RQ, Wang B, Chen XL, Zhuang YY, Xia F, Wei XD. Hypoxia‑induced miR‑210 contributes to apoptosis of mouse spermatocyte GC‑2 cells by targeting Kruppel‑like factor 7. Mol Med Rep 2018; 19:271-279. [PMID: 30431115 PMCID: PMC6297767 DOI: 10.3892/mmr.2018.9644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/14/2018] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to investigate the underlying mechanisms of hypoxia-induced microRNA (miR)-210 effects on mouse GC-2spd (GC-2) cells. GC-2 cells were subjected to hypoxia or normoxia for 12, 24, 48 and 72 h. Apoptosis of GC-2 cells was detected using terminal deoxynucleotidyl-transferase-meditated dUTP nick end labeling and flow cytometry. Reverse transcription-quantitative polymerase chain reaction was performed to analyze the expression of miR-210. Hypoxia-inducible factor-1α (HIF-1α), caspase-3, B-cell lymphoma 2, apoptosis regulator BAX and Kruppel-like factor 7 (KLF7) protein expression levels were detected by western blotting. Luciferase reporter gene assays were used to assess the targeting effects of miR-210 on KLF7. Hypoxia induced GC-2 cell apoptosis and increased the expression of HIF-1α and pro-apoptotic proteins; however, decreased anti-apoptotic protein expression levels. Furthermore, hypoxia resulted in the upregulation of miR-210 in GC-2 cells. HIF-1α and miR-210 were involved in the apoptosis of GC-2 cells by mediating the expression of apoptosis-associated proteins. Furthermore, KLF7 was directly targeted by miR-210 to influence the apoptosis of GC-2 cells subjected to hypoxia. The results suggested that hypoxia-induced miR-210 stimulated the activation of the apoptosis signaling pathway and contributed to the apoptosis of GC-2 cells by targeting KLF7.
Collapse
Affiliation(s)
- Jin-Xing Lv
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jian Zhou
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Rui-Qing Tong
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Bin Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xue-Lei Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yan-Yan Zhuang
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fei Xia
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xue-Dong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
22
|
Chen Y, Ba L, Huang W, Liu Y, Pan H, Mingyao E, Shi P, Wang Y, Li S, Qi H, Sun H, Cao Y. Role of carvacrol in cardioprotection against myocardial ischemia/reperfusion injury in rats through activation of MAPK/ERK and Akt/eNOS signaling pathways. Eur J Pharmacol 2016; 796:90-100. [PMID: 27916558 DOI: 10.1016/j.ejphar.2016.11.053] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022]
Abstract
Carvacrol (CAR) is a compound isolated from some essential oils, many studies have demonstrated its therapeutic potential on different diseases. This study aims to evaluate the protective effect of CAR against myocardial ischemia/reperfusion (I/R) injury in rats. Male adult rats underwent ligation of the left anterior descending coronary artery (LAD) in I/R models. Rats were treated with CAR after LAD. The levels of I/R- induced infarct size, cardiomyocyte apoptosis and cardiac functional impairment were examined. Levels of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) were detected by western blotting. Cardiomyocytes induced by hypoxic reperfusion (H/R) injury were tested by Hoechst 33258. Our results revealed that CAR administration significantly protected the heart function, attenuated myocardial infarct size, increased SOD and CAT levels, reduced MDA level and especially decreased cardiomyocytes apoptosis. Western blotting showed that CAR treatment up-regulated phosphorylated ERK (p-ERK), while producing no impact onp38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK). The cardioprotection of CAR was reversed by the ERK inhibitor PD-98059, demonstrating the involvement of the MAPK/ERK pathway in the anti-apoptotic mechanisms of CAR. Besides, the results in vitro also showed the protective efficiency of CAR on cardiomyocytes H/R injury. Furthermore, pretreatment with CAR markedly increased the activation of Akt/eNOS pathway in cardiomyocytes subjected to H/R, and the protective effects of CAR were abolished in the presence of the Akt inhibitor LY294002. Therefore, the cardioprotective effects of CAR may be attributed to its antioxidant and antiapoptotic activities through activations of the MAPK/ERK and Akt/eNOS signaling pathways.
Collapse
Affiliation(s)
- Yunping Chen
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Lina Ba
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Wei Huang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Yan Liu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Hao Pan
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - E Mingyao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Pilong Shi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Ye Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Shuzhi Li
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Hanping Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China.
| |
Collapse
|