1
|
Bao JM, Hou T, Zhao L, Song YJ, Liu Y, Xing LP, Xu H, Wang XY, Li Q, Zhang L, Chang JL, Li W, Shi Q, Wang YJ, Liang QQ. Notoginsenoside R1 reduces acquired lymphedema and increases lymphangiogenesis by promoting VEGF-C expression via cAMP/PKA/CREB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156554. [PMID: 40020630 DOI: 10.1016/j.phymed.2025.156554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Acquired lymphedema is a global health concern with limited treatment options. While vascular endothelial growth factor C (VEGF-C) administration has shown promise for the treatment of this patient population, no small-molecule compounds have hitherto been identified to improve lymphedema by stimulating VEGF-C expression and lymphangiogenesis. OBJECTIVE This study investigated the therapeutic effect of notoginsenoside R1 (R1) on a mouse model of tail acquired lymphedema and explored the underlying mechanisms. METHODS C57BL/6J mice and lymphatic endothelial cells (LECs) specific VEGFR-3 knockout transgenic mice underwent surgical induction of tail acquired lymphedema. Tail circumference, lymphatic drainage function, VEGF-C expression, and lymphangiogenesis were measured. LECs' function was assessed using wound healing and tube formation assays. Quantitative PCR (q-PCR) and western blot were conducted to measure VEGF-C expression levels. In addition, RNA sequencing analysis and western blot were performed to elucidate the signal pathways involved. Luciferase reporter assays assessed VEGF-C promoter activity. RESULTS R1 treatment improved lymphedema, lymphatic function, and lymphangiogenesis in the mouse model. R1 enhanced migration, tube formation, and VEGF-C expression of LECs. These effects were abolished by VEGF-C siRNA and VEGFR-3 inhibitors. VEGFR3 knockout in LECs completely blocked R1's ability to promote lymphangiogenesis and lymphatic drainage while partially but significantly reducing its improvement on lymphedema. R1 activated the cAMP/PKA signaling pathway, leading to PKA and CREB phosphorylation. The PKA inhibitor and CREB siRNA inhibited R1-induced VEGF-C expression. Additionally, R1 activated VEGF-C promoter activity in a CREB-dependent manner. CONCLUSION R1 emerges as the first reported small natural compound to promote VEGF-C expression. It reduces acquired lymphedema and enhances lymphangiogenesis via the cAMP/PKA/CREB signaling pathway. These findings suggest R1 as a potential novel oral medication for treating acquired lymphedema patients.
Collapse
Affiliation(s)
- Jia-Min Bao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Tong Hou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Jing'an District Central Hospital, Shanghai 200040, China
| | - Li Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yong-Jia Song
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Lian-Ping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiao-Yun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China
| | - Qing Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Li Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jun-Li Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Wei Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Jing'an District Central Hospital, Shanghai 200040, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yong-Jun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Qian-Qian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
2
|
Ma L, Gao Y, Yang G, Zhao L, Zhao Z, Zhao Y, Zhang Y, Li S, Li S. Notoginsenoside R1 Ameliorate High-Fat-Diet and Vitamin D3-Induced Atherosclerosis via Alleviating Inflammatory Response, Inhibiting Endothelial Dysfunction, and Regulating Gut Microbiota. Drug Des Devel Ther 2024; 18:1821-1832. [PMID: 38845851 PMCID: PMC11155380 DOI: 10.2147/dddt.s451565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Aim Natural medicines possess significant research and application value in the field of atherosclerosis (AS) treatment. The study was performed to investigate the impacts of a natural drug component, notoginsenoside R1, on the development of atherosclerosis (AS) and the potential mechanisms. Methods Rats induced with AS by a high-fat-diet and vitamin D3 were treated with notoginsenoside R1 for six weeks. The ameliorative effect of NR1 on AS rats was assessed by detecting pathological changes in the abdominal aorta, biochemical indices in serum and protein expression in the abdominal aorta, as well as by analysing the gut microbiota. Results The NR1 group exhibited a noticeable reduction in plaque pathology. Notoginsenoside R1 can significantly improve serum lipid profiles, encompassing TG, TC, LDL, ox-LDL, and HDL. Simultaneously, IL-6, IL-33, TNF-α, and IL-1β levels are decreased by notoginsenoside R1 in lowering inflammatory elements. Notoginsenoside R1 can suppress the secretion of VCAM-1 and ICAM-1, as well as enhance the levels of plasma NO and eNOS. Furthermore, notoginsenoside R1 inhibits the NLRP3/Cleaved Caspase-1/IL-1β inflammatory pathway and reduces the expression of the JNK2/P38 MAPK/VEGF endothelial damage pathway. Fecal analysis showed that notoginsenoside R1 remodeled the gut microbiota of AS rats by decreasing the count of pathogenic bacteria (such as Firmicutes and Proteobacteria) and increasing the quantity of probiotic bacteria (such as Bacteroidetes). Conclusion Notoginsenoside R1, due to its unique anti-inflammatory properties, may potentially prevent the progression of atherosclerosis. This mechanism helps protect the vascular endothelium from damage, while also regulating the imbalance of intestinal microbiota, thereby maintaining the overall health of the body.
Collapse
Affiliation(s)
- Liying Ma
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Yansong Gao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Ge Yang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Lei Zhao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Zijian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Yujuan Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Yuhang Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Shenhui Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Shengyu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| |
Collapse
|
3
|
OxLDL-Induced Foam Cell Formation Inhibitory Activity of Pepsin Hydrolysate of Ark Shell (Scapharca subcrenata (Lischke, 1869)) in RAW264.7 Macrophages. J Food Biochem 2023. [DOI: 10.1155/2023/6905673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inhibitory effect of ark shell (Scapharca subcrenata (Lischke, 1869)) proteolytic hydrolysates (ASHs) on oxidized low-density lipoprotein (oxLDL)-induced macrophage foam cell formation was investigated. Two types of ASHs were prepared by Alcalase® and pepsin, ASAH (ark shell-Alcalase® hydrolysates), and ASPH (ark shell-pepsin hydrolysate). Oil Red O staining results showed that ASPH suppressed foam cell formation and lipid accumulation more than ASAH in oxLDL-induced foam cell formation of RAW264.7 macrophages. ASPH reduced the levels of total cholesterol, cholesterol ester, and free cholesterol in oxLDL-treated RAW264.7 macrophages. It was found that ASPH increased cholesterol efflux and decreased cholesterol influx rate. In this regard, protein expressions of CD36 and scavenger receptor class A1 (SR-A1) for cholesterol influx and ATP-binding cassette transporter A1 and G1 (ABCA1 and ABCG1) for cholesterol efflux were investigated. ASPH treatment resulted in an increase of ABCA1 and ABCG1 expression but downregulated CD36 and SR-A1 expression. Furthermore, ASPH suppressed production of proinflammatory cytokines, including tumor necrosis factor-α and interleukin-6 and -1β, through regulating nuclear factor-kappa B (NF-κB) in oxLDL-induced foam cell formation of RAW264.7 macrophages. Taken together, our data indicate that ASPH might be a useful ingredient in functional foods for ameliorating atherosclerosis by preventing foam cell formation.
Collapse
|
4
|
Liu L, Hu J, Mao Q, Liu C, He H, Hui X, Yang G, Qu P, Lian W, Duan L, Dong Y, Pan J, Liu Y, He Q, Li J, Wang J. Functional compounds of ginseng and ginseng-containing medicine for treating cardiovascular diseases. Front Pharmacol 2022; 13:1034870. [PMID: 36532771 PMCID: PMC9755186 DOI: 10.3389/fphar.2022.1034870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/24/2022] [Indexed: 10/29/2023] Open
Abstract
Ginseng (Panax ginseng C.A.Mey.) is the dry root and rhizome of the Araliaceae ginseng plant. It has always been used as a tonic in China for strengthening the body. Cardiovascular disease is still the main cause of death in the world. Some studies have shown that the functional components of ginseng can regulate the pathological process of various cardiovascular diseases through different mechanisms, and its formulation also plays an irreplaceable role in the clinical treatment of cardiovascular diseases. Therefore, this paper elaborates the current pharmacological effects of ginseng functional components in treating cardiovascular diseases, summarizes the adverse reactions of ginseng, and sorts out the Chinese patent medicines containing ginseng formula which can treat cardiovascular diseases.
Collapse
Affiliation(s)
- Lanchun Liu
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Hu
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiyuan Mao
- Departmen of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Liu
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoqiang He
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoshan Hui
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang Yang
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peirong Qu
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjing Lian
- Beijing University of Chinese Medicine, Beijing, China
| | - Lian Duan
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Dong
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juhua Pan
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongmei Liu
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Ping TN, Hsieh SL, Wang JJ, Chen JB, Wu CC. Panax notoginseng Suppresses Bone Morphogenetic Protein-2 Expression in EA.hy926 Endothelial Cells by Inhibiting the Noncanonical NF-κB and Wnt/β-Catenin Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2022; 11:3265. [PMID: 36501304 PMCID: PMC9735440 DOI: 10.3390/plants11233265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Panax notoginseng (PN) exerts cardiovascular-disease-protective effects, but the effect of PN on reducing vascular calcification (VC) is unknown. Under the VC process, however, endothelial bone morphogenetic protein-2 (BMP-2) signals connect endothelial and smooth muscle cells. To investigate the effects of PN water extract (PNWE) on BMP-2 expression, human EA.hy926 endothelial cells were pretreated with PNWE for 48 h, and BMP-2 expression was then induced using warfarin/β-glycerophosphate (W/BGP) for another 24 h. The expression of BMP-2, the degrees of oxidative stress and inflammation, and the activation of noncanonical NF-κB and Wnt/β-catenin signaling were analyzed. The results showed that the BMP-2 levels in EA.hy926 cells were reduced in the groups treated with 10, 50, or 100 μg/mL PNWE combined with W/BGP. PNWE combined with W/BGP significantly reduced thiobarbituric-acid-reactive substrate and reactive oxygen species levels as well as prostaglandin E2, IL-1β, IL-6, and TNF-α. PNWE (10, 50, and 100 μg/mL) reduced the p52 levels and p52/p100 protein ratio. Wnt and β-catenin protein expression was decreased in the groups treated with PNWE combined with W/BGP. These results showed that PNWE reduced BMP-2 expression in EA.hy926 cells by inhibiting the noncanonical NF-κB and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Tsu-Ni Ping
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Jyh-Jye Wang
- Department of Nutrition and Health Science, Fooyin University, Kaohsiung 83102, Taiwan
| | - Jin-Bor Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| |
Collapse
|
6
|
Qi L, Zhang J, Wang J, An J, Xue W, Liu Q, Zhang Y. Mechanisms of ginsenosides exert neuroprotective effects on spinal cord injury: A promising traditional Chinese medicine. Front Neurosci 2022; 16:969056. [PMID: 36081662 PMCID: PMC9445311 DOI: 10.3389/fnins.2022.969056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating disorder of the central nervous system (CNS). It is mainly caused by trauma and reduces the quality of life of the affected individual. Ginsenosides are safe and effective traditional Chinese medicines (TCMs), and their efficacy against SCI is being increasingly researched in many countries, especially in China and Korea. This systematic review evaluated the neuroprotective effects of ginsenosides in SCI and elucidated their properties.
Collapse
|
7
|
Liu C, Chen Z, Wu SL, Chow TC, Cheng RS, Lee JT, Yew DT. Comparative Review on Effects of Pien Tze Huang and AnGong NiuHuang Pill and their Potential on Treatment of Central Nervous System Diseases. Mini Rev Med Chem 2022; 22:2350-2360. [PMID: 35306986 DOI: 10.2174/1389557522666220318111730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
The ancient composite formulae Angong Niuhuang pill and Pien Tze Huang that were used a few hundred years ago to treat febrile disease and inflammation respectively are found to exert effects benefiting other neurological diseases and conditions. This short review introduces the main constituents of the two formulae, looking into both the cumulative synergetic and possible individual effects of each herb or animal apcoien. In essence, the main effects of Angong Niuhuang pill include antiinflammation, antioxidation, anti-cell death, anticonvulsion, antiedema, antipyretic, antithrombotic, antimicrobial (bacteria, viruses, fungi), neuroprotective effects, and cardiovascular protection. The main effects of Pien Tze Huang include antiinflammation, antioxidation, anti-cell death, antithrombotic, antimicrobial, neuroprotective effects, and cardiovascular protection. Comparing both composites, similarities of the effects and part of the components are found, showing some pharmacological evidence. This review casts light on research on the effects of neuroprotective and cardiovascular protective mechanisms as well as treatment mechanisms for cerebral accidents in the integrative medicine perspective.
Collapse
Affiliation(s)
- Congsheng Liu
- Fujian Provincial Corporate Key Laboratory of PTH Natural Medicine Research and Development (R & D), Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Fujian, China
| | - Zhiliang Chen
- Fujian Provincial Corporate Key Laboratory of PTH Natural Medicine Research and Development (R & D), Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Fujian, China
| | - Sharon L.Y. Wu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Hong S.A.R., China
| | - Tony C.H. Chow
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Hong S.A.R., China
| | - Rufina S.Y. Cheng
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Hong S.A.R., China
| | - Jocy T.C. Lee
- Hong Kong College of Technology, Hong Hong S.A.R., China
| | - David T. Yew
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Hong S.A.R., China
- Hong Kong College of Technology, Hong Hong S.A.R., China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Hong S.A.R., China
| |
Collapse
|
8
|
Yang F, Yang MY, Le JQ, Luo BY, Yin MD, Chao-Li, Jiang JL, Fang YF, Shao JW. Protective Effects and Therapeutics of Ginsenosides for Improving Endothelial Dysfunction: From Therapeutic Potentials, Pharmaceutical Developments to Clinical Trials. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:749-772. [PMID: 35450513 DOI: 10.1142/s0192415x22500318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The endothelium covers the internal lumen of the entire circulatory system and plays an important modulatory role in vascular homeostasis. Endothelium dysfunction, characterized by a vasoconstrictive, pro-inflammatory, and pro-coagulant state, usually manifests as a significant pathological process of vascular diseases, including hypertension, atherosclerosis (AS), stroke, diabetes mellitus, coronary artery disease, and cancer. Therefore, there is an urgent necessity to seek promising therapeutic drugs or remedies to ameliorate endothelial dysfunction-induced vascular ailments and complications. Recently, much attention has been attached to ginsenosides, the most significant active components of ginseng, which have always been referred to as "all-healing" and widely used for its extensively medicinal value. Surprisingly, ginsenosides have diverse biological activity which might be related to inflammation, apoptosis, oxidative stress, and angiogenesis. In this review, a brief introduction about endothelial dysfunction and ginsenosides was demonstrated, and the emphasis was put on summarizing multi-faceted pharmacological effects and underlying molecular mechanisms of ginsenosides on the endothelium, including vasorelaxation, anti-oxidation, anti-inflammation, and angio-modulation. Beyond that, nanotechnology to improve efficacy and the existing clinical trials of ginsenosides were concluded. Hopefully, our work will give suggestions for promoting clinical application of traditional Chinese medicine, e.g., hypertension, AS, diabetes, ischemic stroke, and cancer. This review provides a comprehensive base of knowledge for ginsenosides to prevention and treatment of vascular injury- related diseases with clinical significance.
Collapse
Affiliation(s)
- Fang Yang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ming-Yue Yang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Qing Le
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Bang-Yue Luo
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Meng-Die Yin
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Chao-Li
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jia-Li Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yi-Fan Fang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Wei Shao
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
9
|
Chen Y, Zhang H, Fan W, Mats L, Liu R, Deng Z, Tsao R. Anti-Inflammatory Effect and Cellular Transport Mechanism of Phenolics from Common Bean ( Phaseolus vulga L.) Milk and Yogurts in Caco-2 Mono- and Caco-2/EA.hy926 Co-Culture Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1513-1523. [PMID: 33497227 DOI: 10.1021/acs.jafc.0c06934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The bioavailability and anti-inflammatory activity of the phenolic compounds derived from gastrointestinal digestates of navy bean and light red kidney bean milks and yogurts were investigated in both Caco-2 mono- and Caco-2/EA.hy926 co-culture cell models. Instead of being transported directly, the ferulic acid ester derivatives in common bean milks and yogurts were found to be metabolized into ferulic acid and then be transported through the Caco-2 cell monolayer with an average basolateral ferulic acid concentration of 56 ± 3 ng/mL after 2 h. Strong anti-inflammatory effects were observed in the basolateral EA.hy926 cells of the co-culture model, and modulations of oxLDL-induced inflammatory mediators by the transported phenolics were verified to be through the p38 MAPK pathway. The present results suggest that the common bean-derived phenolics can be metabolized and absorbed by the intestinal epithelial cells and have antioxidant and anti-inflammatory effects against oxidative stress injury in vascular endothelial cells, hence contributing to the amelioration of vascular diseases.
Collapse
Affiliation(s)
- Yuhuan Chen
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, Jiangxi, China
- Agriculture and Agri-Food Canada, Guelph Research & Development Centre, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hua Zhang
- Agriculture and Agri-Food Canada, Guelph Research & Development Centre, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Wenyi Fan
- Department of Animal Bioscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Lili Mats
- Agriculture and Agri-Food Canada, Guelph Research & Development Centre, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Ronghua Liu
- Agriculture and Agri-Food Canada, Guelph Research & Development Centre, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, Jiangxi, China
| | - Rong Tsao
- Agriculture and Agri-Food Canada, Guelph Research & Development Centre, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| |
Collapse
|
10
|
Sarhene M, Ni JY, Duncan ES, Liu Z, Li S, Zhang J, Guo R, Gao S, Gao X, Fan G. Ginsenosides for cardiovascular diseases; update on pre-clinical and clinical evidence, pharmacological effects and the mechanisms of action. Pharmacol Res 2021; 166:105481. [PMID: 33549726 DOI: 10.1016/j.phrs.2021.105481] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) remains the major cause of death worldwide, accounting for almost 31% of the global mortality annually. Several preclinical studies have indicated that ginseng and the major bioactive ingredient (ginsenosides) can modulate several CVDs through diverse mechanisms. However, there is paucity in the translation of such experiments into clinical arena for cardiovascular ailments due to lack of conclusive specific pathways through which these activities are initiated and lack of larger, long-term well-structured clinical trials. Therefore, this review elaborates on current pharmacological effects of ginseng and ginsenosides in the cardiovascular system and provides some insights into the safety, toxicity, and synergistic effects in human trials. The review concludes that before ginseng, ginsenosides and their preparations could be utilized in the clinical treatment of CVDs, there should be more preclinical studies in larger animals (like the guinea pig, rabbit, dog, and monkey) to find the specific dosages, address the toxicity, safety and synergistic effects with other conventional drugs. This could lead to the initiation of large-scale, long-term well-structured randomized, and placebo-controlled clinical trials to test whether treatment is effective for a longer period and test the efficacy against other conventional therapies.
Collapse
Affiliation(s)
- Michael Sarhene
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Jing Yu Ni
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Esi Sophia Duncan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Zhihao Liu
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Sheng Li
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Jing Zhang
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Rui Guo
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Shan Gao
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China.
| |
Collapse
|
11
|
Jiang Z, Tu L, Yang W, Zhang Y, Hu T, Ma B, Lu Y, Cui X, Gao J, Wu X, Tong Y, Zhou J, Song Y, Liu Y, Liu N, Huang L, Gao W. The chromosome-level reference genome assembly for Panax notoginseng and insights into ginsenoside biosynthesis. PLANT COMMUNICATIONS 2021; 2:100113. [PMID: 33511345 PMCID: PMC7816079 DOI: 10.1016/j.xplc.2020.100113] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 05/13/2023]
Abstract
Panax notoginseng, a perennial herb of the genus Panax in the family Araliaceae, has played an important role in clinical treatment in China for thousands of years because of its extensive pharmacological effects. Here, we report a high-quality reference genome of P. notoginseng, with a genome size up to 2.66 Gb and a contig N50 of 1.12 Mb, produced with third-generation PacBio sequencing technology. This is the first chromosome-level genome assembly for the genus Panax. Through genome evolution analysis, we explored phylogenetic and whole-genome duplication events and examined their impact on saponin biosynthesis. We performed a detailed transcriptional analysis of P. notoginseng and explored gene-level mechanisms that regulate the formation of characteristic tubercles. Next, we studied the biosynthesis and regulation of saponins at temporal and spatial levels. We combined multi-omics data to identify genes that encode key enzymes in the P. notoginseng terpenoid biosynthetic pathway. Finally, we identified five glycosyltransferase genes whose products catalyzed the formation of different ginsenosides in P. notoginseng. The genetic information obtained in this study provides a resource for further exploration of the growth characteristics, cultivation, breeding, and saponin biosynthesis of P. notoginseng.
Collapse
Affiliation(s)
- Zhouqian Jiang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lichan Tu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | | | - Yifeng Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Baowei Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jie Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yadi Song
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Nan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Corresponding author
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Corresponding author
| |
Collapse
|
12
|
Ginsenosides for the treatment of metabolic syndrome and cardiovascular diseases: Pharmacology and mechanisms. Biomed Pharmacother 2020; 132:110915. [DOI: 10.1016/j.biopha.2020.110915] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022] Open
|
13
|
Notoginsenoside R1 alleviates oxidized low-density lipoprotein-induced apoptosis, inflammatory response, and oxidative stress in HUVECS through modulation of XIST/miR-221-3p/TRAF6 axis. Cell Signal 2020; 76:109781. [DOI: 10.1016/j.cellsig.2020.109781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 12/23/2022]
|
14
|
Huang L, Li Q. Notoginsenoside R1 promotes differentiation of human alveolar osteoblasts in inflammatory microenvironment through inhibiting NF‑κB pathway and activating Wnt/β‑catenin pathway. Mol Med Rep 2020; 22:4754-4762. [PMID: 33174026 PMCID: PMC7646889 DOI: 10.3892/mmr.2020.11537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Alveolar bone is vital for dental implantation and periodontal treatment. Notoginsenoside R1 (NTR1) may promote the differentiation of human alveolar osteoblasts (HAOBs), but the underlying molecular mechanisms remain unclear. The present study investigated the pro-differentiation function of NTR1 on HAOBs in order to find new methods of dental treatment. HAOBs were surgically obtained from dental patients and the cells were isolated, cultured and identified under an inverted phase contrast microscope. The cells were treated with different concentrations of NTR1 alone or further stimulated by TNF-α. An alkaline phosphate (ALP) activity assay and alizarin red staining were performed to detect ALP activity and mineralization of the cells, respectively. Cell viability was assayed using an MTT assay. The expressions of osteogenic-related factors and the factors associated with the NF-κB and Wnt/β-catenin pathways were examined by reverse transcription-quantitative PCR or western blot analysis. Successfully passaged HAOBs presented blue granules and red calcium deposits after staining. The viability of HAOBs was unchanged following treatment with NTR1 at ≤20 µmol/l and/or TNF-α, but slightly reduced by 40 µmol/l NTR1. TNF-α-induced decreases of calcium nodules and ALP activity were decreased by NTR1 in HAOBs. TNF-α also regulated the expressions of runt-related transcription factor 2, osteopontin (OPN), osteocalcin (OCN), p50, phosphorylated p65, AXIN2, Dickkopf-related protein 1 and β-catenin, while the regulatory effect was reversed by NTR1. NTR1 promoted the differentiation of HAOBs in the TNF-α-induced inflammatory microenvironment through inhibiting the NF-κB pathway and activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Lei Huang
- Department of Oral and Maxillofacial Surgery, Jingmen Number 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Qiong Li
- Department of Oral and Maxillofacial Surgery, Jingmen Number 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
15
|
Xue K, Ruan L, Hu J, Fu Z, Tian D, Zou W. Panax notoginseng saponin R1 modulates TNF-α/NF-κB signaling and attenuates allergic airway inflammation in asthma. Int Immunopharmacol 2020; 88:106860. [PMID: 32771949 DOI: 10.1016/j.intimp.2020.106860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUD Panax notoginseng saponin R1 (PNS-R1) is one of the most important chemical monomers derived from the panax notoginseng, and our previous study found that PNS-R1 reduced glucocorticoid-induced apoptosis in asthmatic airway epithelial cells. Thus, in this study, we explored the effects of the PNS-R1 on inflammation of allergic asthma. METHODS The asthmatic mice were administered 15 mg/kg PNS-R1 by intraperitoneal injection three days before sensitized to OVA. The effects of PNS-R1 on asthmatic mice were detected by airway hyperresponsiveness, inflammation, mucus hypersecretion and inflammatory cytokines such as interleukin (IL)-13, IL-4, IL-5, IL-8 and tumor necrosis factor (TNF)-α were studied. We also treated human bronchial epithelial cells (16HBE) with house dust mites (HDM) and then detected the secretion of cellular inflammatory factors (IL-13 and TNF-α). Western blot and immunofluorescence were used to examine the effect of PNS-R1 on TNF-α/NF-κB pathway. TNF-α/NF-κB/IKK signal pathway activator was used in PNS-R1-treated asthmatic mice. RESULTS PNS-R1 significantly reduced the airway inflammatory, mucus secretion and hyperresponsiveness in asthma model. It also reduced the levels of IL-13, IL-4, IL-5 and IL-8 in bronchoalveolar lavage fluid (BALF) and IgE and OVA-specific IgE in serum for asthma mice. PNS-R1 reduced IL-13 and TNF-α secretion in HDM-treated 16HBE cells. In addition, PNS-R1 suppressed TNF-α/NF-κB pathway in both asthmatic mice and 16HBE. Activation of NF-kB pathway reversed the therapeutic effect of PNS-R1 on asthmatic mice. CONCLUSION The results indicated that PNS-R1 effectively suppresses allergic airway inflammation of asthma partly through TNF-α/NF-κB pathway. PNS-R1 may play a potential role in allergic asthma treatment in the future.
Collapse
Affiliation(s)
- Kunjiao Xue
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Lingying Ruan
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Jie Hu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Zhou Fu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Daiyin Tian
- Chongqing Key Laboratory of Pediatrics, Chongqing, PR China.
| | - Wenjing Zou
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China.
| |
Collapse
|
16
|
Blueberry-Derived Exosome-Like Nanoparticles Counter the Response to TNF-α-Induced Change on Gene Expression in EA.hy926 Cells. Biomolecules 2020; 10:biom10050742. [PMID: 32397678 PMCID: PMC7277966 DOI: 10.3390/biom10050742] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Exosome-like nanoparticles (ELNs) are attracting interest as important vehicles of intercellular communication, both in prokaryotes and eukaryotes. Recently, dietary nanoparticles similar to mammalian exosomes have attracted attention for these features. In particular they appear to be relevant in the modulation of several cellular processes as well as candidate carriers of bioactive molecules (proteins, lipids, and nucleic acids, including miRNAs) with therapeutic value. Herein, we investigated the cellular uptake of blueberry-derived ELNs (B-ELNs) by a human stabilized endothelial cell line (EA.hy926) and the ability of B-ELNs to modulate the expression of inflammatory genes as the response of tumor necrosis factor-α (TNF-α). Our results indicate that 1) EA.hy926 cells internalize B-ELNs in a dose-dependent manner; 2) pretreatment with B-ELNs counters TNF-α-induced reactive oxygen species (ROS) generation and loss of cell viability and modulates the differential expression of 29 genes (fold change > 1.5) induced by TNF-α compared to control; 3) pathway analysis reveals their involvement in a total of 340 canonical pathways, 121 KEGG pathways, and 121 GO Biological processes; and 4) the intersection between differentially expressed (DE) genes and miRNAs contained in B-ELNs unveils a set of candidate target genes, such as prostaglandin I2 synthase (PTGIS), mitogen-activated protein kinase 14 (MAPK14), and phosphodiesterase 7A (PDE7A), for ELNs-contained cargo. In conclusion, our study indicates that B-ELNs can be considered candidate therapeutic carriers of bioactive compounds potentially able to protect vascular system against various stressors.
Collapse
|
17
|
Liu H, Yang J, Yang W, Hu S, Wu Y, Zhao B, Hu H, Du S. Focus on Notoginsenoside R1 in Metabolism and Prevention Against Human Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:551-565. [PMID: 32103897 PMCID: PMC7012233 DOI: 10.2147/dddt.s240511] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Notoginsenoside (NG)-R1 is one of the main bioactive compounds from Panax notoginseng (PN) root, which is well known in the prescription for mediating the micro-circulatory hemostasis in human. In this article, we mainly discuss NG-R1 in metabolism and the biological activities, including cardiovascular protection, neuro-protection, anti-diabetes, liver protection, gastrointestinal protection, lung protection, bone metabolism regulation, renal protection, and anti-cancer. The metabolites produced by deglycosylation of NG-R1 exhibit higher permeability and bioavailability. It has been extensively verified that NG-R1 may ameliorate ischemia-reperfusion (IR)-induced injury in cardiovascular and neuronal systems mainly by upregulating the activity of estrogen receptor α-dependent phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and nuclear factor erythroid-2-related factor 2 (NRF2) pathways and downregulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. However, no specific targets for NG-R1 have been identified. Expectedly, NG-R1 has been used as a main bioactive compound in many Traditional Chinese Medicines clinically, such as Xuesaitong, Naodesheng, XueShuanTong, ShenMai, and QSYQ. These suggest that NG-R1 exhibits a significant potency in drug development.
Collapse
Affiliation(s)
- Hai Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China.,College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, People's Republic of China
| | - Jianqiong Yang
- Department of Clinical Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, People's Republic of China
| | - Wanqing Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shaonan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yali Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Bo Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Haiyan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
18
|
Zhang J, Zheng Q, Lu H, Jin F, Li Y, Bi F, Xu J. Notoginsenoside R1 protects human keratinocytes HaCaT from LPS-induced inflammatory injury by downregulation of Myd88. Int J Immunopathol Pharmacol 2019; 33:2058738419857550. [PMID: 31204533 PMCID: PMC6580720 DOI: 10.1177/2058738419857550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Burn injury is a gigantic challenge in public health which brings multiple
negative effects to patients both in physical and spiritual aspects.
Inflammation plays vital roles in the progression of burn injury, and our study
investigated whether notoginsenoside R1 (NGR1) alleviated lipopolysaccharide
(LPS)-induced human keratinocyte HaCaT cell inflammatory injury. Inflammatory
injury was induced by LPS in HaCaT cells. Stimulated cells were then treated by
NGR1 in different concentrations. Cell viability and cell apoptosis were
detected by Cell Counting Kit-8 and flow cytometry, respectively. The
concentration of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) was
measured by enzyme-linked immunosorbent assay (ELISA). The accumulated levels of
apoptosis-related proteins (caspase-3 and caspase-9), nuclear factor κB (NF-κB),
p38 mitogen-activated protein kinase (p38MAPK) signal pathways–related proteins
(p65, IκBα, and p38MAPK), and myeloid differentiation primary response 88
(MyD88) were examined by western blot. Transfection was used to alter the
expression of MyD88. We found that LPS stimulated HaCaT cells and induced cell
inflammation, evidenced by decreasing cell viability, increasing cell apoptosis,
and elevating TNF-α and IL-6 expressions. Then, we found that NGR1 reversed the
results by enhancing cell viability, inhibiting cell apoptosis, and reducing
TNF-α and IL-6 expressions. In addition, NGR1 decreased the phosphorylation of
p65, IκBα, and p38MAPK, which increased by LPS. Moreover, NGR1 negatively
regulated the expression of MyD88, and transfection with pMyD88 led to the
opposite results with what showed by NGR1 in LPS-stimulated HaCaT cells. To sum
up, NGR1 alleviates LPS-induced HaCaT cell inflammatory injury by downregulation
of MyD88, as well as inactivation of NF-κB and p38MAPK signal pathways.
Collapse
Affiliation(s)
- Jingqun Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qibing Zheng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Haiqiang Lu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Fangfang Jin
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ying Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Fang Bi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Jiahong Xu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
19
|
Notoginsenoside R1 suppresses miR-301a via NF-κB pathway in lipopolysaccharide-treated ATDC5 cells. Exp Mol Pathol 2019; 112:104355. [PMID: 31837326 DOI: 10.1016/j.yexmp.2019.104355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/07/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Notoginsenoside R1 (NG-R1) exhibits a pharmacological activity against excessive inflammation. Here, we aimed to ascertain the anti-inflammatory role of NG-R1 in ankylosing spondylitis (AS) as well as the possible mechanism which is still under to be elucidated. METHODS In this study, lipopolysaccharide (LPS) was applied to evoke extreme inflammation in ATDC5 cells. To investigate the anti-inflammatory property of NG-R1, ATDC5 cells were exposed to NG-R1 prior to LPS stimulation. microRNA-301a (miR-301a)-overexpressed ATDC5 cells were established which confirmed by qRT-PCR. Then, inflammatory lesions were indicated by cell viability, apoptosis and inflammatory factors, including interleukin-1 beta (IL-1β), IL-6 and tumor necrosis factor-alpha (TNF-α). Nuclear factor-kappa B (NF-κB) pathway was determined by Western blotting assay. RESULTS We found NG-R1 dramatically dampened the decrease of cell viability, facilitation of apoptosis and abundance of inflammatory factors induced by LPS. Additionally, NG-R1 pre-incubation impeded LPS-induced accumulation of miR-301a. However, the protective capacity of NG-R1 was impaired by miR-301a overexpression. Of note, LPS-caused phosphorylation of p65 and inhibitor of nuclear factor kappa-B alpha (IκBα) was repressed by NG-R1, while further enhanced in miR-301-transfected ATDC5 cells. CONCLUSION NG-R1 relived LPS-elicited inflammatory damages via blocking NF-κB in a miR-301a-silenced manner.
Collapse
|
20
|
Wang M, Ma J. Effect of NGR1 on the Atopic Dermatitis Model and its Mechanisms. Open Med (Wars) 2019; 14:847-853. [PMID: 31737789 PMCID: PMC6843485 DOI: 10.1515/med-2019-0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
Atopic dermatitis (AD) is a highly pruritic chronic inflammatory skin disease. Notoginsenoside R1 (NGR1), a unique ingredient of P. notoginseng which is a well-known medicinal herb for its long history of use in traditional Chinese medicine, has been identified to have various biologically active properties that include anti-inflammatory effects. However, the effects of NGR1 on AD remain unclear. Therefore, this study aimed to investigate the effect and mechanism of NGR1 on the in vitro cell model of AD induced by LPS stimulation. RAW264.7 cells were stimulated with 1 μg/ml LPS to establish the in vitro cell inflammation model of AD. RAW264.7 cells were treated with various concentrations of NGR1 (0.1, 1, and 10 μM); then, an MTT assay was performed to determine the cell viability. An ELISA assay detected the levels of pro-inflammatory cytokines (interleukin-1β, IL-1β; interleukin-6, IL-6; tumor necrosis factor-α, TNF-α). Additionally, NO production was measured using a nitrate/nitrite assay kit. Results indicated that LPS induced increases in the levels of TNFα, IL-1β, IL-6, and NO production was significantly reduced by NGR1 treatment in a dose-dependent manner. Further, NGR1 treatment inhibited the activation of the NF-κB pathway, and the NLRP3 inflammasome in LPS stimulated RAW264.7 macrophages. The study data indicated that NGR1 might relieve atopic dermatitis via inhibiting inflammation through suppressing the NF-κB signaling pathway and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Mingmei Wang
- Department of Pharmacy, Fourth Medical Center of PLA General Hospita, 51#Fucheng Road, Beijing 100037, China
| | - Jianli Ma
- Department of Pharmacy, Fourth Medical Center of PLA General Hospita, 51#Fucheng Road, Beijing 100037, China
| |
Collapse
|
21
|
Tong Q, Zhu PC, Zhuang Z, Deng LH, Wang ZH, Zeng H, Zheng GQ, Wang Y. Notoginsenoside R1 for Organs Ischemia/Reperfusion Injury: A Preclinical Systematic Review. Front Pharmacol 2019; 10:1204. [PMID: 31680976 PMCID: PMC6811647 DOI: 10.3389/fphar.2019.01204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Notoginsenoside R1 (NGR1) exerts pharmacological actions for a variety of diseases such as myocardial infarction, ischemic stroke, acute renal injury, and intestinal injury. Here, we conducted a preclinical systematic review of NGR1 for ischemia reperfusion (I/R) injury. Eight databases were searched from their inception to February 23rd, 2019; Review Manager 5.3 was applied for data analysis. CAMARADES 10-item checklist and cell 10-item checklist were used to evaluate the methodological quality. Twenty-five studies with 304 animals and 124 cells were selected. Scores of the risk of bias in animal studies ranged from 3 to 8, and the cell studies ranged from 3 to 5. NGR1 had significant effects on decreasing myocardial infarct size in myocardial I/R injury, decreasing cerebral infarction volume and neurologic deficit score in cerebral I/R injury, decreasing serum creatinine in renal I/R injury, and decreasing Park/Chiu score in intestinal I/R injury compared with controls (all P < 0.05 or P < 0.01). The multiple organ protection of NGR1 after I/R injury is mainly through the mechanisms of antioxidant, anti-apoptosis, and anti-inflammatory, promoting angiogenesis and improving energy metabolism. The findings showed the organ protection effect of NGR1 after I/R injury, and NGR1 can potentially become a novel drug candidate for ischemic diseases. Further translation studies are needed.
Collapse
Affiliation(s)
- Qiang Tong
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Chong Zhu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuang Zhuang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li-Hui Deng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-Hao Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hua Zeng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Sun Y, Liu B, Zheng X, Wang D. Notoginsenoside R1 alleviates lipopolysaccharide-triggered PC-12 inflammatory damage via elevating microRNA-132. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1808-1814. [PMID: 31062615 DOI: 10.1080/21691401.2019.1610414] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Delayed inflammatory response is closely associated with the severity of Spinal cord injury (SCI). Herein, the function and molecular mechanism of notoginsenoside R1 (NGR1) in the in vitro model of SCI inflammation injury were explored. METHODS PC-12 neuronal cells were subjected with LPS to construct a cell-based model of SCI inflammatory injury. NGR1 was applied in this cell model. miR-132 was silenced by transfection with miR-132 inhibitor. Cell viability and apoptosis were assessed, respectively. Then, the expression changes of pro-inflammatory cytokines and JNK pathway were examined. RESULTS In this model, LPS was neurotoxic, with inhibiting PC-12 cell viability, inducing apoptosis, and enhancing concentrations of IL-6, IL-8 and TNF-α. However, NGR1 weakened the influence of LPS on PC-12 cells via elevating cell viability, decreasing apoptosis, decreasing pro-inflammatory cytokines expression, and suppressing activation of JNK signalling pathway. miR-132 was up-regulated by NGR1 treatment. Silence of miR-132 eliminated the influence of NGR1 on LPS-stimulated PC-12 cells. CONCLUSION NGR1 relieved PC-12 cells from LPS-triggered inflammatory damage via elevating miR-132 and hereafter suppressing JNK pathway.
Collapse
Affiliation(s)
- Yuanliang Sun
- a Department of Spine Surgery , The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Bing Liu
- b Department of Critical Care Medicine , The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Xiujun Zheng
- a Department of Spine Surgery , The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Dechun Wang
- c Department of Spine Surgery , Qingdao Municipal Hospital , Qingdao , China
| |
Collapse
|
23
|
Zhang S, Ju Z, Guan H, Yu L, Wang Z, Zhao Y. Dose-dependent exposure profile and metabolic characterization of notoginsenoside R 1 in rat plasma by ultra-fast liquid chromatography-electrospray ionization-tandem mass spectrometry. Biomed Chromatogr 2019; 33:e4670. [PMID: 31368122 DOI: 10.1002/bmc.4670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022]
Abstract
Notoginsenoside R1 (NGR1 ), a diagnostic protopanaxatriol-type (ppt-type) saponin in Panax notoginseng, possesses potent biological activities including antithrombotic, anti-inflammatory, neuron protection and improvement of microcirculation, yet its pharmacokinetics and metabolic characterization as an individual compound remain unclear. The aim of this study was to investigate the exposure profile of NGR1 in rats after oral and intravenous administration and to explore the metabolic characterization of NGR1 . A simple and sensitive ultra-fast liquid chromatographic-tandem mass spectrometric method was developed and validated for the quantitative determination of NGR1 and its major metabolites, and for characterization of its metabolic profile in rat plasma. The blood samples were precipitated with methanol, quantified in a negative multiple reaction monitoring mode and analyzed within 6.0 min. Validation parameters (linearity, precision and accuracy, recovery and matrix effect, stability) were within acceptable ranges. After oral administration, NGR1 exhibited dose-independent exposure behaviors with t1/2 over 8.0 h and oral bioavailability of 0.25-0.29%. A total of seven metabolites were characterized, including two pairs of epimers, 20(R)-notoginsenoside R2 /20(S)-notoginsenoside R2 and 20(R)-ginsenoside Rh1 /20(S)-ginsenoside Rh1 , with the 20(R) form of saponins identified for the first time in rat plasma. Five deglycometabolites were quantitatively determined, among which 20(S)-notoginsenoside R2 , ginsenoside Rg1 , ginsenoside F1 and protopanaxatriol displayed relatively high exploration, which may partly explain the pharmacodynamic diversity of ginsenosides after oral dose.
Collapse
Affiliation(s)
- Sainan Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengcai Ju
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huida Guan
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Lu Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Yuqing Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
24
|
Qian D, Shao X, Li Y, Sun X. Retracted
: Notoginsenoside R1 protects WI‐38 cells against lipopolysaccharide‐triggered injury via adjusting the miR‐181a/TLR4 axis. J Cell Biochem 2019; 120:19764-19774. [DOI: 10.1002/jcb.29282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Daolin Qian
- Department of Pediatric Internal Medicine Juancheng People's Hospital Heze Shandong China
| | - Xiankun Shao
- Department of Pediatric Heze Municipal Hospital Heze Shandong China
| | - Yingchun Li
- Department of Neurology Heze No. 3 People's Hospital Heze Shandong China
| | - Xinyan Sun
- Department of Pediatric Internal Medicine Heze Municipal Hospital Heze Shandong China
| |
Collapse
|
25
|
Tian R, Wang L, Chen A, Huang L, Liang X, Wang R, Mao W, Xu P, Bao K. Sanqi oral solution ameliorates renal damage and restores podocyte injury in experimental membranous nephropathy via suppression of NFκB. Biomed Pharmacother 2019; 115:108904. [DOI: 10.1016/j.biopha.2019.108904] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 01/08/2023] Open
|
26
|
Notoginsenoside R1 protects human renal proximal tubular epithelial cells from lipopolysaccharide-stimulated inflammatory damage by up-regulation of miR-26a. Chem Biol Interact 2019; 308:364-371. [PMID: 31158334 DOI: 10.1016/j.cbi.2019.05.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Notoginsenoside R1 (NGR1) is the main saponin isolated from the roots of Panax notoginseng (Burk.) F.H. Chen (Araliaceae). This study explored the protective effects of NGR1 on human renal proximal tubular epithelial cell inflammatory damage caused by lipopolysaccharide (LPS), as well as possible internal molecular mechanisms. METHODS Cell viability and apoptosis were assessed using CCK-8 assay and Annexin V-FITC/PI Apoptosis Detection kit, respectively. Reactive oxygen species (ROS) level was tested using DCFH-DA staining. qRT-PCR was used to measure microRNA-26a (miR-26a), interleukin 1β (IL-1β), IL-6 and tumor necrosis factor α (TNF-α) expressions. miRNA transfection was conducted to knock down miR-26a. The protein expression levels of key molecules related to cell apoptosis, inflammatory response and nuclear factor kappa B (NF-κB) pathway were detected using western blotting. RESULTS LPS stimulation caused human renal proximal tubular epithelial cell viability reduction, apoptosis and inflammatory cytokines expression. NGR1 treatment protected human renal proximal tubular epithelial cells from LPS-caused viability reduction, ROS level elevation, apoptosis and inflammatory cytokines expression. Mechanistically, NGR1 enhanced miR-26a expression in LPS-treated human renal proximal tubular epithelial cells. Knockdown of miR-26a reversed the protective effect of NGR1 on LPS-treated cells. Besides, NGR1 inactivated NF-κB pathway in LPS-treated human renal proximal tubular epithelial cells via up-regulating miR-26a. CONCLUSION NGR1 protected human renal proximal tubular epithelial cells from LPS-caused inflammatory damage at least partially via up-regulating miR-26a and then inactivating NF-κB pathway.
Collapse
|
27
|
Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y, Li N. Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:443-465. [PMID: 30802611 DOI: 10.1016/j.jep.2019.02.035] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F. H. Chen, also called Sanqi, is a widely used traditional Chinese medicine, which has long history used as herbal medicines. It is currently an important medicinal material in China, holding the first place in the sale volume of the whole patent medicines market in China, and the market size of the single species has exceeded 10 billion yuan. In addition, P. notoginseng is an important constituent part of many famous Chinese patent medicines, such as Compound Danshen Dripping Pills and Yunnan Baiyao. P. notoginseng saponins (PNSs), which are the major active components of P. notoginseng, are a kind of chemical mixture containing different dammarane-type saponins. Many studies show that PNSs have been extensively used in medical research or applications, such as atherosclerosis, diabetes, acute lung injury, cancer, and cardiovascular diseases. In addition, various PNS preparations, such as injections and capsules, have been made commercially available and are widely applied in clinical practice. AIM OF THE REVIEW Since the safety and efficacy of compounds are related to their qualitative and quantitative analyses, this review briefly summarizes the analytic approaches for PNSs and their biological effects developed in the last decade. METHODOLOGY This review conducted a systematic search in electronic databases, such as Pubmed, Google Scholar, SciFinder, ISI Web of Science, and CNKI, since 2009. The information provided in this review is based on peer-reviewed papers and patents in either English or Chinese. RESULTS At present, the chromatographic technique remains the most extensively used approach for the identification or quantitation of PNSs, coupled with different detectors, among which the difference mainly lies in their sensitivity and specificity for analyzing various compounds. It is well-known that PNSs have traditionally strong activity on cardiovascular diseases, such as atherosclerosis, intracerebral hemorrhage, or brain injury. The recent studies showed that PNSs also responded to osteoporosis, cancers, diabetes, and drug toxicity. However, some other studies also showed that some PNSs injections and special PNS components might lead to some biological toxicity under certain dosages. CONCLUSION This review may be used as a basis for further research in the field of quantitative and qualitative analyses, and is expected to provide updated and valuable insights into the potential medicinal applications of PNSs.
Collapse
Affiliation(s)
- Congcong Xu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weiwei Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ning Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Institute of KPC Pharmaceuticals, Inc., Kunming 650100, China.
| |
Collapse
|
28
|
Cong S, Xiang L, Yuan X, Bai D, Zhang X. Notoginsenoside R1 up-regulates microRNA-132 to protect human lung fibroblast MRC-5 cells from lipopolysaccharide-caused injury. Int Immunopharmacol 2019; 68:137-144. [PMID: 30622031 DOI: 10.1016/j.intimp.2018.12.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/14/2018] [Accepted: 12/30/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pneumonia is a common lung disease in children with high fatality rate. Notoginsenoside R1 (NGR1) is the main active component extracted from the roots of Panax notoginseng (Burk.) F.H. Chen (Araliaceae). Here, we carefully explored the potential anti-inflammatory and protective effects of NGR1 on lipopolysaccharide (LPS)-induced lung fibroblast MRC-5 cell injury. METHODS Viability and apoptosis of MRC-5 cells after different treatment or transfection were respectively assessed using CCK-8 assay and Annexin V-FITC/PI staining. The expression levels of microRNA-132 (miR-132), IL-1β, IL-6 and TNF-α in MRC-5 cells were measured using qRT-PCR. MicroRNA transfection was conducted to reduce the expression level of miR-132. Western blotting was used to analyze the protein expression levels of key factors involving in cell proliferation, apoptosis, NF-κB pathway and JNK pathway. RESULTS LPS treatment caused MRC-5 cell proliferation inhibition, apoptosis and over-production of inflammatory cytokines. NGR1 treatment had no significant effects on MRC-5 cell proliferation, apoptosis and production of inflammatory cytokines, but protected MRC-5 cells from LPS-caused cell proliferation inhibition, apoptosis and over-production of inflammatory cytokines. In addition, NGR1 increased the expression level of miR-132 in MRC-5 cells. Knockdown of miR-132 reversed the protective effects of NGR1 on LPS-treated MRC-5 cells. Furthermore, NGR1 attenuated LPS-activated NF-κB and JNK pathways in MRC-5 cells via up-regulation of miR-132. CONCLUSION This research confirmed the protective roles of NGR1 in lung fibroblast cell inflammatory injury. NGR1 protected MRC-5 cells from LPS-caused inflammatory injury through up-regulating miR-132 and then inactivating NF-κB and JNK pathways.
Collapse
Affiliation(s)
- Shan Cong
- Department of Pediatrics, Jining No.1 People's Hospital, Jining, Shandong 272011, China; Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272067, China
| | - Longquan Xiang
- Department of Pathology, Jining No.1 People's Hospital, Jining, Shandong 272011, China
| | - Xiutai Yuan
- Department of Pediatrics, Jining No.1 People's Hospital, Jining, Shandong 272011, China
| | - Dong Bai
- Department of Pediatrics, Jining No.1 People's Hospital, Jining, Shandong 272011, China
| | - Xuehua Zhang
- Department of Pediatrics, Jining No.1 People's Hospital, Jining, Shandong 272011, China.
| |
Collapse
|
29
|
Impact of Sodium N-[8-(2-Hydroxybenzoyl)amino]-caprylate on Intestinal Permeability for Notoginsenoside R1 and Salvianolic Acids in Caco-2 Cells Transport and Rat Pharmacokinetics. Molecules 2018; 23:molecules23112990. [PMID: 30453465 PMCID: PMC6278436 DOI: 10.3390/molecules23112990] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/13/2023] Open
Abstract
For drugs with high hydrophilicity and poor membrane permeability, absorption enhancers can promote membrane permeability and improve oral bioavailability. Sodium N-[8-(2-hydroxybenzoyl)amino]caprylate (SNAC) is a new kind of absorption enhancer that has good safety. To investigate the absorption enhancement effect of SNAC on non-polar charged and polar charged drugs and establish the absorption enhancement mechanism of SNAC, SNAC was synthesized and characterized. Two representative hydrophilic drugs—notoginsenoside R1 (R1) and salvianolic acids (SAs)—were selected as model drugs. In vitro Caco-2 cells transport and in vivo rat pharmacokinetics studies were conducted to examine the permeation effect of SNAC on R1 and SAs. R1, rosmarinic acid (RA), salvianolic acid B (SA-B) and salvianolic acid B (SA-A) were determined to compare the permeation enhancement of different drugs. The MTT assay results showed that SNAC had no toxicity to Caco-2 cells. The transepithelial electrical resistance (TEER) of Caco-2 cell monolayer displayed that SNAC facilitated passive transport of polar charged SAs through the membrane of epithelial enterocytes. The pharmacokinetics results demonstrated that area under the curve (AUC) of RA, SA-B and SA-A with administration of SAs containing SNAC was 35.27, 8.72 and 9.23 times than administration of SAs. Tmax of RA, SA-B and SA-A were also prolonged. The AUC of R1 with administration of R1 containing SNAC was 2.24-times than administration of R1. SNAC is more effective in promoting absorption of SAs than R1. The study demonstrated that SNAC significantly improved bioavailability of R1 and SAs. What’s more, the effect of SNAC on absorption enhancement of charged drugs was larger than that of non-charged drugs. The current findings not only confirm the usefulness of SNAC for the improved delivery of R1 and SAs but also demonstrate the importance of biopharmaceutics characterization in the dosage form development of drugs.
Collapse
|
30
|
Notoginsenoside Fc attenuates high glucose-induced vascular endothelial cell injury via upregulation of PPAR-γ in diabetic Sprague–Dawley rats. Vascul Pharmacol 2018; 109:27-35. [DOI: 10.1016/j.vph.2018.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/16/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
|
31
|
Notoginsenoside R1 inhibits vascular smooth muscle cell proliferation, migration and neointimal hyperplasia through PI3K/Akt signaling. Sci Rep 2018; 8:7595. [PMID: 29765072 PMCID: PMC5953917 DOI: 10.1038/s41598-018-25874-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/21/2018] [Indexed: 11/23/2022] Open
Abstract
Restenosis caused by neointimal hyperplasia significantly decreases long-term efficacy of percutaneous transluminal angioplasty (PTA), stenting, and by-pass surgery for managing coronary and peripheral arterial diseases. A major cause of pathological neointima formation is abnormal vascular smooth muscle cell (VSMC) proliferation and migration. Notoginsenoside R1 (NGR1) is a novel saponin that is derived from Panax notoginseng and has reported cardioprotective, neuroprotective and anti-inflammatory effects. However, its role in modulating VSMC neointima formation remains unexplored. Herein, we report that NGR1 inhibits serum-induced VSMC proliferation and migration by regulating VSMC actin cytoskeleton dynamics. Using a mouse femoral artery endothelium denudation model, we further demonstrate that systemic administration of NGR1 had a potent therapeutic effect in mice, significantly reducing neointimal hyperplasia following acute vessel injury. Mechanistically, we show that NGR1’s mode of action is through inhibiting the activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Taken together, this study identified NGR1 as a potential therapeutic agent for combating restenosis after PTA in cardiovascular diseases.
Collapse
|
32
|
Tu L, Wang Y, Chen D, Xiang P, Shen J, Li Y, Wang S. Protective Effects of Notoginsenoside R1 via Regulation of the PI3K-Akt-mTOR/JNK Pathway in Neonatal Cerebral Hypoxic-Ischemic Brain Injury. Neurochem Res 2018; 43:1210-1226. [PMID: 29696512 PMCID: PMC5996020 DOI: 10.1007/s11064-018-2538-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/22/2018] [Accepted: 04/21/2018] [Indexed: 01/21/2023]
Abstract
Notoginsenoside R1 (NGR1) is a predominant phytoestrogen extracted from Panax notoginseng that has recently been reported to play important roles in the treatment of cardiac dysfunction, diabetic kidney disease, and acute liver failure. Studies have suggested that NGR1 may be a viable treatment of hypoxic-ischemic brain damage (HIBD) in neonates by reducing endoplasmic reticulum stress via estrogen receptors (ERs). However, whether NGR1 has other neuroprotective mechanisms or long-term neuroprotective effects is unclear. In this study, oxygen-glucose deprivation/reoxygenation (OGD/R) in primary cortical neurons and unilateral ligation of the common carotid artery (CCL) in 7-day-old postnatal Sprague Dawley (SD) rats followed by exposure to a hypoxic environment were used to mimic an HIBD episode. We assessed the efficacy of NGR1 by measuring neuronal damage with MTT assay and assessed brain injury by TTC staining and brain water content detection 24–48 h after OGD/HIE. Simultaneously, we measured the long-term neurophysiological effects using the beam walking test (5 weeks after HI) and Morris water maze test 5–6 weeks after HI. Expression of PI3K-Akt-mTOR/JNK (24 h after HI or OGD/R) proteins was detected by Western blotting after stimulation with HI, NGR1, LY294002 (PI3K inhibitor), 740Y-P (PI3K agonist), or ICI 182780(estrogen receptors inhibitor). The results indicated that NGR1 exerted neuroprotective effects by inhibiting neuronal apoptosis and promoting cell survival via the PI3K-Akt-mTOR/JNK signaling pathways by targeting ER in neonatal hypoxic–ischemic injury.
Collapse
Affiliation(s)
- Liu Tu
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yan Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Di Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Ping Xiang
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jingjing Shen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yingbo Li
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Shali Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
33
|
Cui YC, Yan L, Pan CS, Hu BH, Chang X, Fan JY, Han JY. The Contribution of Different Components in QiShenYiQi Pills® to Its Potential to Modulate Energy Metabolism in Protection of Ischemic Myocardial Injury. Front Physiol 2018; 9:389. [PMID: 29755361 PMCID: PMC5932340 DOI: 10.3389/fphys.2018.00389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/28/2018] [Indexed: 11/30/2022] Open
Abstract
Ischemic heart diseases remain a challenge for clinicians. QiShenYiQi pills® (QSYQ) has been reported to be curative during coronary heart diseases with modulation of energy metabolism as one of the underlying mechanisms. In this study, we detected the effect of QSYQ and its components on rat myocardial structure, mitochondrial respiratory chain complexes activity and energy metabolism, and heart function after 30 min of cardiac ischemia, with focusing on the contribution of each component to its potential to regulate energy metabolism. Results showed that treatment with QSYQ and all its five components protected myocardial structure from damage by ischemia. QSYQ also attenuated release of myocardial cTnI, and restored the production of ATP after cardiac ischemia. AS-IV and Rb1, but not Rg1, R1, and DLA, had similar effect as QSYQ in regulation of energy metabolism. These results indicate that QSYQ may prevent ischemia-induced cardiac injury via regulation of energy metabolism, to which each of its components contributes differently.
Collapse
Affiliation(s)
- Yuan-Chen Cui
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Beijing Laboratory of Integrative Microangiopathy, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
34
|
Li G, Xing X, Luo Y, Deng X, Lu S, Tang S, Sun G, Sun X. Notoginsenoside R1 prevents H9c2 cardiomyocytes apoptosis against hypoxia/reoxygenation via the ERs/PI3K/Akt pathway. RSC Adv 2018; 8:13871-13878. [PMID: 35539324 PMCID: PMC9079795 DOI: 10.1039/c8ra02554a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/29/2018] [Indexed: 12/26/2022] Open
Abstract
Notoginsenoside R1 (NGR1) is separate from Panax notoginsenosides (PNS), and plays a role similar to phytoestrogen in preventing and treating cardiovascular diseases. However, the protective mechanism of NGR1 in the myocardial ischemia/reperfusion injury via the estrogen receptor (ER) pathway remains unclear, which hinder its application. This study aimed to study the preventive mechanisms of NGR1 in the apoptosis of H9c2 cardiomyocytes after hypoxia/reoxygenation (H/R). NGR1 did not affect the expression of ERα and ERβ proteins in normal H9c2 cardiomyocytes. However, NGR1 could upregulate the ERα and G protein-coupled receptor 30 (GPR30) proteins in H9c2 cardiomyocytes after H/R without affecting ERβ levels. Moreover, it significantly affected the expression levels of PI3K and its downstream apoptosis proteins such as Bcl-2 Associated X Protein (Bax), B cell lymphoma/lewkmia-2 (Bcl-2), caspase-3, and so forth. Whereas, after adding the PI3K protein antagonist, the modulatory expression levels of PI3K and its downstream apoptosis proteins were remarkably abolished. After adding ERα and GPR30 antagonists, NGR1 had no significant effect on the expression of PI3K and its downstream Akt protein in the model group. The data of flow cytometry showed that after adding the ERα, GPR30 and PI3K antagonists, the apoptotic rate of cardiomyocytes had no significant changes compared with the model group. This study demonstrated that NGR1 protected H9c2 cardiomyocytes from the injury after H/R by affecting ERα and GPR30 to regulate the expression levels of PI3K and its downstream apoptosis proteins. Notoginsenoside R1 (NGR1) is separate from Panax notoginsenosides (PNS), and plays a role similar to phytoestrogen in preventing and treating cardiovascular diseases.![]()
Collapse
Affiliation(s)
- Guang Li
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Yunnan Branch
| | - Xiaoyan Xing
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| | - Yun Luo
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| | - Xuehong Deng
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| | - Shan Lu
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| | - Shimin Tang
- Changchun University of Chinese Medicine
- Changchun
- China
| | - Guibo Sun
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| | - Xiaobo Sun
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| |
Collapse
|
35
|
Yang H, Chen X, Jiang C, He K, Hu Y. Antiviral and Immunoregulatory Role Against PCV2 in Vivo of Chinese Herbal Medicinal Ingredients. J Vet Res 2017; 61:405-410. [PMID: 29978102 PMCID: PMC5937337 DOI: 10.1515/jvetres-2017-0062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/04/2017] [Indexed: 11/15/2022] Open
Abstract
Introduction The aim of the research was to investigate the antiviral and immunoregulatory effects of saikosaponin A, saikosaponin D, Panax notoginseng saponins, notoginsenoside R1, and anemoside B4 saponins commonly found in Chinese herbal medicines. Material and Methods control mice were challenged intramuscularly (im) with 0.2 mL of porcine circovirus 2 (PCV2) solution containing 107 TCID50 of the virus/mL. Mice of high-, middle-, and low-dose saponin groups were initially challenged im with 0.2 mL of PCV2 solution and three days later treated intraperitoneally (ip) with one of five saponins at one of three doses (10, 5, or 1 mg/kg b.w.). In the drug control group, mice were dosed ip with 10 mg/kg b.w. of a given saponin, and mice in a blank control group were administered the same volume of normal saline. Results The results revealed that the saponins could reduce the incidence and severity of PCV2-induced immunopathological damage, e.g. body temperature elevation, weight loss, anaemia, and internal organ swelling. In addition, it was seen that the saponins could affect the immunoglobulin levels and protein absorption. Conclusion The data suggested that the saponins might effectively regulate immune responses.
Collapse
Affiliation(s)
- Haifeng Yang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300 China
| | - Xiaolan Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300 China
| | - Chunmao Jiang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300 China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Yiyi Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| |
Collapse
|
36
|
Zhao H, Han Z, Li G, Zhang S, Luo Y. Therapeutic Potential and Cellular Mechanisms of Panax Notoginseng on Prevention of Aging and Cell Senescence-Associated Diseases. Aging Dis 2017; 8:721-739. [PMID: 29344413 PMCID: PMC5758348 DOI: 10.14336/ad.2017.0724] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Owing to a dramatic increase in average life expectancy, most countries in the world are rapidly entering an aging society. Therefore, extending health span with pharmacological agents targeting aging-related pathological changes, are now in the spotlight of gerosciences. Panax notoginseng (Burk.) F. H. Chen, a species of the genus Panax, has been called the "Miracle Root for the Preservation of Life," and has long been used as a Chinese herb with magical medicinal value. Panax notoginseng has been extensively employed in China to treat microcirculatory disturbances, inflammation, trauma, internal and external bleeding due to injury, and as a tonic. In recent years, with the deepening of the research pharmacologically, many new functions have been discovered. This review will introduce its pharmacological function on lifespan extension, anti-vascular aging, anti-brain aging, and anti-cancer properties, aiming to lay the ground for fully elucidating the potential mechanisms of Panax notoginseng's anti-aging effect to promote its clinical application.
Collapse
Affiliation(s)
- Haiping Zhao
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ziping Han
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Guangwen Li
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Sijia Zhang
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
37
|
Notoginsenoside R1 Alleviates Oxygen-Glucose Deprivation/Reoxygenation Injury by Suppressing Endoplasmic Reticulum Calcium Release via PLC. Sci Rep 2017; 7:16226. [PMID: 29176553 PMCID: PMC5701215 DOI: 10.1038/s41598-017-16373-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/12/2017] [Indexed: 01/09/2023] Open
Abstract
As documented in our previous study, notoginsenoside R1 (NGR1) can inhibit neuron apoptosis and the expression of endoplasmic reticulum (ER) stress-associated pro-apoptotic proteins in hypoxic–ischemic encephalopathy. Recent evidence indicates that the Phospholipase C (PLC)/inositol 1,4,5-trisphosphate receptor (IP3R) is important for the regulation of Ca2+ release in the ER. Ca2+ imbalance can stimulate ER stress, CAMKII, and cell apoptosis. The purpose of this study was to further investigate the neuroprotective effect of NGR1 and elucidate how NGR1 regulates ER stress and cell apoptosis in the oxygen–glucose deprivation/reoxygenation (OGD/R) model. Cells were exposed to NGR1 or the PLC activator m-3M3FBS. Then, IP3R- and IP3-induced Ca2+ release (IICR) and activation of the ER stress and CaMKII signal pathway were measured. The results showed that NGR1 inhibited IICR and strengthened the binding of GRP78 with PERK and IRE1. NGR1 also alleviated the activation of the CaMKII pathway. Pretreatment with m-3M3FBS attenuated the neuroprotective effect of NGR1; IICR was activated, activation of the ER stress and CaMKII pathway was increased, and more cells were injured. These results indicate that NGR1 may suppress activation of the PLC/IP3R pathway, subsequently inhibiting ER Ca2+ release, ER stress, and CaMKII and resulting in suppressed cell apoptosis.
Collapse
|
38
|
Shen Q, Li J, Zhang C, Wang P, Mohammed A, Ni S, Tang Z. Panax notoginseng saponins reduce high-risk factors for thrombosis through peroxisome proliferator-activated receptor -γ pathway. Biomed Pharmacother 2017; 96:1163-1169. [PMID: 29174034 DOI: 10.1016/j.biopha.2017.11.106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/01/2017] [Accepted: 11/20/2017] [Indexed: 12/09/2022] Open
Abstract
The classic Virchow theory suggests that blood stasis, hypercoagulability and endothelial dysfunction are three major factors that cause venous thrombosis (VT). It is a complicated biological process involved multi-factors. Platelet plays a central role and participates in multiple links of this process. Panax notoginseng saponins (PNS), the principal constituents derived from panax notoginseng, has been widely described for its anti-platelet activity. However, its potential mechanism against platelet aggregation has not been clarified. In this present study, we evaluated the anti-platelet effects of PNS on thrombin-induced platelet activation and its possible molecular mechanism of action, and further explored the therapeutic action of PNS on thrombin induced hypercoagulability in rat. Our results showed that PNS treatment inhibited platelet aggregation induced by thrombin, which was accompanied with over-expression of Peroxisome proliferator-activated receptor γ (PPAR-γ) protein, mRNA and upregulation of phosphatidylinositol 3 kinase (PI3K)/ protein kinase B (Akt)/ endothelial nitric oxide synthase (eNOS) pathway in platelet, and this effect could be reversed by PPAR-γ inhibitor T0070907. In vivo, PNS significantly reversed thrombin-induced hypercoagulable state in rat which was accompanied by PPAR-γ protein and mRNA upregulation in rat lung. In conclusion, these data suggested that PNS could suppress thrombin-induced platelet aggregation in vitro and effectively improve hypercoagulable state in vivo and PNS-induced activation of PPAR-γ and its downstream PI3K/Akt/eNOS pathway played the central role.
Collapse
Affiliation(s)
- Qin Shen
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jun Li
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Caixin Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Pengbo Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Anaz Mohammed
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Songshi Ni
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Zhiyuan Tang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
39
|
Duan L, Xiong X, Hu J, Liu Y, Li J, Wang J. Panax notoginseng Saponins for Treating Coronary Artery Disease: A Functional and Mechanistic Overview. Front Pharmacol 2017; 8:702. [PMID: 29089889 PMCID: PMC5651167 DOI: 10.3389/fphar.2017.00702] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
Coronary artery disease (CAD) is a major public health problem and the chief cause of morbidity and mortality worldwide. Panax notoginseng, a valuable herb in traditional Chinese medicine (TCM) with obvious efficacy and favorable safety, shows a great promise as a novel option for CAD and is increasingly recognized clinically. Firstly, this review introduced recent clinical trials on treatment with PNS either alone or in combination with conventional drugs as novel treatment strategies. Then we discussed the mechanisms of P. notoginseng and Panax notoginseng saponins (PNS), which can regulate signaling pathways associated with inflammation, lipid metabolism, the coagulation system, apoptosis, angiogenesis, atherosclerosis, and myocardial ischaemia.
Collapse
Affiliation(s)
- Lian Duan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Junyuan Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|