1
|
Fernandes-da-Silva A, Santana-Oliveira DA, Oliveira ASD, Ferreira TAM, Monteiro NC, Silva-Veiga FM, Martins FF, Cummins CL, Romeiro LAS, Souza-Mello V. LDT409 (pan-PPAR partial agonist) mitigates metabolic dysfunction-associated steatotic liver disease in high-fructose-fed mice. Mol Cell Endocrinol 2024; 594:112380. [PMID: 39332468 DOI: 10.1016/j.mce.2024.112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
AIM This study sought to evaluate the effects of LDT409, a pan-PPAR partial agonist obtained from the main industrial waste from cashew nut processing, on hepatic remodeling, highlighting energy metabolism and endoplasmic reticulum (ER) stress in high-fructose-fed mice. METHODS Male C57BL/6 mice received a control diet (C) or a high-fructose diet (HFRU) for ten weeks. Then, a five-week treatment started: C, C-LDT409, HFRU, and HFRU-LDT409. The LDT409 (40 mg/kg of body weight) was mixed with the diets. RESULTS The HFRU diet caused insulin resistance and endoplasmic reticulum (ER) stress. High Pparg and decreased Ppara expression increased steatosis and pro-fibrogenic gene expression in livers of HFRU-fed mice. Suppressed lipogenic factors, orchestrated by PPAR-gamma, and mitigated ER stress concomitant with the increase in beta-oxidation driven by PPAR-alpha mediated the LDT409 beneficial effects. CONCLUSIONS LDT409 may represent a potential low-cost approach to treat metabolic dysfunction-associated steatotic liver disease, which does not currently have a specific treatment.
Collapse
Affiliation(s)
- Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andressa S de Oliveira
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasília, Brasília, DF, Brazil; Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| | - Thaís A M Ferreira
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasília, Brasília, DF, Brazil; Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| | - Natália Cipriano Monteiro
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasília, Brasília, DF, Brazil; Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Luiz Antonio Soares Romeiro
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasília, Brasília, DF, Brazil; Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Engin A. Nonalcoholic Fatty Liver Disease and Staging of Hepatic Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:539-574. [PMID: 39287864 DOI: 10.1007/978-3-031-63657-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
3
|
Targeting fibrosis, mechanisms and cilinical trials. Signal Transduct Target Ther 2022; 7:206. [PMID: 35773269 PMCID: PMC9247101 DOI: 10.1038/s41392-022-01070-3] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Fibrosis is characterized by the excessive extracellular matrix deposition due to dysregulated wound and connective tissue repair response. Multiple organs can develop fibrosis, including the liver, kidney, heart, and lung. Fibrosis such as liver cirrhosis, idiopathic pulmonary fibrosis, and cystic fibrosis caused substantial disease burden. Persistent abnormal activation of myofibroblasts mediated by various signals, such as transforming growth factor, platelet-derived growth factor, and fibroblast growh factor, has been recongized as a major event in the occurrence and progression of fibrosis. Although the mechanisms driving organ-specific fibrosis have not been fully elucidated, drugs targeting these identified aberrant signals have achieved potent anti-fibrotic efficacy in clinical trials. In this review, we briefly introduce the aetiology and epidemiology of several fibrosis diseases, including liver fibrosis, kidney fibrosis, cardiac fibrosis, and pulmonary fibrosis. Then, we summarise the abnormal cells (epithelial cells, endothelial cells, immune cells, and fibroblasts) and their interactions in fibrosis. In addition, we also focus on the aberrant signaling pathways and therapeutic targets that regulate myofibroblast activation, extracellular matrix cross-linking, metabolism, and inflammation in fibrosis. Finally, we discuss the anti-fibrotic drugs based on their targets and clinical trials. This review provides reference for further research on fibrosis mechanism, drug development, and clinical trials.
Collapse
|
4
|
Liver Protective Effect of Fenofibrate in NASH/NAFLD Animal Models. PPAR Res 2022; 2022:5805398. [PMID: 35754743 PMCID: PMC9232374 DOI: 10.1155/2022/5805398] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is initiated by excessive fat buildup in the liver, affecting around 35% of the world population. Various circumstances contribute to the initiation and progression of NAFLD, and it encompasses a wide range of disorders, from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. Although several treatments have been proposed, there is no definitive cure for NAFLD. In recent decades, several medications related to other metabolic disorders have been evaluated in preclinical studies and in clinical trials due to the correlation of NAFLD with other metabolic diseases. Fenofibrate is a fibrate drug approved for dyslipidemia that could be used for modulation of hepatic fat accumulation, targeting peroxisome proliferator-activator receptors, and de novo lipogenesis. This drug offers potential therapeutic efficacy for NAFLD due to its capacity to decrease the accumulation of hepatic lipids, as well as its antioxidant, anti-inflammatory, and antifibrotic properties. To better elucidate the pathophysiological processes underlying NAFLD, as well as to test therapeutic agents/interventions, experimental animal models have been extensively used. In this article, we first reviewed experimental animal models that have been used to evaluate the protective effects of fenofibrate on NAFLD/NASH. Next, we investigated the impact of fenofibrate on the hepatic microcirculation in NAFLD and then summarized the beneficial effects of fenofibrate, as compared to other drugs, for the treatment of NAFLD. Lastly, we discuss possible adverse side effects of fenofibrate on the liver.
Collapse
|
5
|
Mahmoudi A, Jamialahmadi T, Johnston TP, Sahebkar A. Impact of fenofibrate on NAFLD/NASH: A genetic perspective. Drug Discov Today 2022; 27:2363-2372. [PMID: 35569762 DOI: 10.1016/j.drudis.2022.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), caused by an accumulation of fat deposits in hepatocytes, prevalently affects at least one-third of the world's population. The progression of this disorder can potentially include a spectrum of consecutive stages, specifically: steatosis, steatohepatitis and cirrhosis. Fenofibrate exhibits potential therapeutic efficacy for NAFLD owing to several properties, which include antioxidant, apoptotic, anti-inflammatory and antifibrotic activity. In the present review, we discuss the direct or indirect impact of fenofibrate on genes involved at various stages in the progression of NAFLD. Moreover, we have reviewed studies that compare fenofibrate with other drugs in treating NAFLD, as well as recent clinical trials, in an attempt to identify reliable scientific and clinical evidence concerning the therapeutic effects and benefits of fenofibrate on NAFLD. Teaser.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Silva-Gaona OG, Hernández-Ortiz M, Vargas-Ortiz K, Ramírez-Emiliano J, Garay-Sevilla ME, Encarnación-Guevara S, Pérez-Vázquez V. Curcumin prevents proteins expression changes of oxidative phosphorylation, cellular stress response, and lipid metabolism proteins in liver of mice fed a high-fructose diet. J Proteomics 2022; 263:104595. [PMID: 35490921 DOI: 10.1016/j.jprot.2022.104595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/02/2022] [Accepted: 04/10/2022] [Indexed: 12/29/2022]
Abstract
Increased fructose consumption has been associated with the development of metabolic diseases due to the modification in protein expression, altering metabolic and signaling pathways. Curcumin is a natural compound with a regulatory effect on genes and metabolic pathways. To identify the fructose-induced protein expression changes and the effect of curcumin on the change of protein expression in the liver of mice fed a standard diet and a high fructose diet, to elucidate the global role of curcumin. Four groups (n = 4/group) of male mice (C57BL6J) of six-weeks-old were formed. One group received a standard diet (C); another received curcumin at 0.75% w/w in the feed (C + C); one more received 30% w/v fructose in drinking water (F); and one group received 30% w/v fructose in drinking water and 0.75% w/w curcumin in food (F + C); for 15 weeks. Proteomic analysis was performed by LC-MS/MS, using the label-free technique with the MaxQuant programs for identification and Perseus for expression change analysis. Differentially expressed proteins (fold change ≥1.5 and p < 0.5) were analyzed by gene ontology and KEGG. A total of 1047 proteins were identified, of which 113 changed their expression in mice fed fructose, compared to the control group, and curcumin modified the expression of 64 proteins in mice fed fructose and curcumin compared to mice that only received fructose. Curcumin prevented the change of expression of 13 proteins involved in oxidative phosphorylation (NDUFB8, NDUFB3, and ATP5L) in the cellular response to stress (PSMA5, HIST1H1D) and lipid metabolism (THRSP, DGAT1, ECI1, and ACOT13). Curcumin in mice fed the standard diet increased the expression of proteins related to oxidative phosphorylation, ribosomes, and PPAR pathways. In addition to fructose, increased expression of proteins involved in oxidative phosphorylation, ribosomes, lipid metabolism, and carbon metabolism. However, curcumin prevented expression change in 13 hepatic proteins of fructose-fed mice involved in oxidative phosphorylation, cellular stress response, and lipid metabolism. SIGNIFICANCE: Curcumin is a natural compound with a regulatory effect on proteins and metabolic pathways. So, curcumin prevents the change of expression in 13 hepatic proteins of fructose-fed mice involved in oxidative phosphorylation, cellular stress response and lipid metabolism, as a supplement with protector activity on fructose-induced toxic effects.
Collapse
Affiliation(s)
- Oscar Gerardo Silva-Gaona
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato 37320, Mexico
| | - Magdalena Hernández-Ortiz
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Katya Vargas-Ortiz
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato 37320, Mexico
| | - Joel Ramírez-Emiliano
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato 37320, Mexico
| | - Ma Eugenia Garay-Sevilla
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato 37320, Mexico
| | - Sergio Encarnación-Guevara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Victoriano Pérez-Vázquez
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato 37320, Mexico.
| |
Collapse
|
7
|
Lin Y, Wang Y, Li PF. PPARα: An emerging target of metabolic syndrome, neurodegenerative and cardiovascular diseases. Front Endocrinol (Lausanne) 2022; 13:1074911. [PMID: 36589809 PMCID: PMC9800994 DOI: 10.3389/fendo.2022.1074911] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that is involved in lipid metabolism of various tissues. Different metabolites of fatty acids and agonists like fibrates activate PPARα for its transactivative or repressive function. PPARα is known to affect diverse human diseases, and we focus on advanced studies of its transcriptional regulation in these diseases. In MAFLD, PPARα shows a protective function with its upregulation of lipid oxidation and mitochondrial biogenesis and transcriptional repression of inflammatory genes, which is similar in Alzheimer's disease and cardiovascular disease. Activation of PPARα also prevents the progress of diabetes complications; however, its role in diabetes and cancers remains uncertain. Some PPARα-specific agonists, such as Wy14643 and fenofibrate, have been applied in metabolic syndrome treatment, which might own potential in wider application. Future studies may further explore the functions and interventions of PPARα in cancer, diabetes, immunological diseases, and neurodegenerative disease.
Collapse
Affiliation(s)
- Yijun Lin
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Pei-feng Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| |
Collapse
|
8
|
Sen A, Anakk S. Jekyll and Hyde: nuclear receptors ignite and extinguish hepatic oxidative milieu. Trends Endocrinol Metab 2021; 32:790-802. [PMID: 34481730 PMCID: PMC8464172 DOI: 10.1016/j.tem.2021.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
Nuclear receptors (NRs) are ligand-binding transcription factors that regulate gene networks and physiological responses. Often oxidative stress precedes the onset of liver diseases, and Nrf2 is a key regulator of antioxidant pathways. NRs crosstalk with Nrf2, since NR activation can influence the oxidative milieu by modulating reductive cellular processes. Diet and xenobiotics also regulate NR expression and activity, suggesting a feedback loop. Depending on the tissue context and cues, NRs either increase or decrease toxicity and oxidative damage. Many FDA-approved drugs target NRs, and one could potentially repurpose them to ameliorate reactive oxygen species (ROS). Here, we discuss how several NRs modulate oxidative stress subsequent to diet, organic pollutants, and drug-induced injury to the liver.
Collapse
Affiliation(s)
- Anushna Sen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
9
|
Akbari R, Behdarvand T, Afarin R, Yaghooti H, Jalali MT, Mohammadtaghvaei N. Saroglitazar improved hepatic steatosis and fibrosis by modulating inflammatory cytokines and adiponectin in an animal model of non-alcoholic steatohepatitis. BMC Pharmacol Toxicol 2021; 22:53. [PMID: 34593018 PMCID: PMC8485507 DOI: 10.1186/s40360-021-00524-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have become significant global health concerns. In the present study, we aimed to investigate the effects of saroglitazar, a dual PPARα/γ agonist, fenofibrate, a PPAR-α agonist, and pioglitazone, a PPAR-γ agonist on an animal model of NASH. METHODS Male Wistar rats were fed a high-fat (HF) emulsion via gavage for 7 weeks to induce NASH. The HF-treated rats were grouped into four groups to receive saroglitazar, pioglitazone, fenofibrate, or vehicle. We measured body and liver weight, liver enzymes, serum levels of adiponectin and leptin. We also performed histopathological examinations and gene expression analysis of interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF- α), transforming growth factor-beta (TGF-β), and monocyte chemoattractant protein 1 (MCP-1). RESULTS Body weight was markedly normalized by both saroglitazar and fenofibrate, while the liver index only decreased significantly with saroglitazar. Saroglitazar corrected ALT, AST, leptin, and adiponectin levels better than pioglitazone and fenofibrate. All PPAR agonists significantly attenuated the upregulation of the proinflammatory and TGF-β genes, which correlated with the improved steatosis, inflammation of liver tissue, and fibrotic lesions. CONCLUSIONS As documented by our results, the dual activation of PPARα/γ by saroglitazar could effectively improve steatosis, fibrosis, and aspects of necro-inflammation in the HF-induced NASH model more than fenofibrate and pioglitazone, and it can be more beneficial in the management of NASH.
Collapse
Affiliation(s)
- Rasoul Akbari
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahereh Behdarvand
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Afarin
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Yaghooti
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taha Jalali
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Mohammadtaghvaei
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Abdelhamid YA, Elyamany MF, Al-Shorbagy MY, Badary OA. Effects of TNF-α antagonist infliximab on fructose-induced metabolic syndrome in rats. Hum Exp Toxicol 2020; 40:801-811. [PMID: 33118400 DOI: 10.1177/0960327120969960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Public health issues have been raised regarding fructose toxicity and its serious metabolic disorders. Deleterious effects of high fructose intake on insulin sensitivity, body weight, lipid homeostasis have been identified. The new millennium has witnessed the emergence of a modern epidemic, the metabolic syndrome (MS), in approximately 25% of the world's adult population. The current study aimed to investigate the effect of the TNF-α antagonist infliximab on fructose-induced MS in rats. Rats were administered fructose (10%) in drinking water for 12 weeks to induce the experimental MS model. infliximab (5 mg/kg) was injected once weekly intraperitoneally starting on the 13th week for 4 weeks. Increase in body weight, blood glucose level, serum triglycerides (TGs), adiponectin level and blood pressure were present in MS rats. They also prompted increases in serum of leptin, TNF-α, and malondialdehyde (MDA) levels. Treatment with infliximab did not affect body weight, hyperglycemia or hypertension, but decreased serum TGs and increased serum HDL-c levels. Infliximab also decreased adiponectin levels. Surprisingly, infliximab increased MDA above its value in the MS group. These results reflect the fact that infliximab affects the manifestations of MS in rats. Though infliximab reduced TGs, increased HDL-c levels, reversed adiponectin resistance occurred by fructose, the drug failed to combat MS-mediated hyperglycemia, hypertension, and elevated MDA above the insult.
Collapse
Affiliation(s)
| | - Mohammed F Elyamany
- Pharmacology & Toxicology Department, 110154Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Muhammad Y Al-Shorbagy
- Pharmacology & Toxicology Department, 110154Faculty of Pharmacy, Cairo University, Giza, Egypt.,Pharmacology & Toxicology Department, School of Pharmacy, Newgiza University, Egypt
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, British University in Egypt, Cairo, Egypt
| |
Collapse
|
11
|
Ozkan H, Yakan A. Dietary high calories from sunflower oil, sucrose and fructose sources alters lipogenic genes expression levels in liver and skeletal muscle in rats. Ann Hepatol 2020; 18:715-724. [PMID: 31204236 DOI: 10.1016/j.aohep.2019.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/25/2019] [Accepted: 03/19/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES The objectives of this study were to investigate the underlying mechanism of PPARα, LXRα, ChREBP, and SREBP-1c at the level of gene and protein expression with high-energy diets in liver and skeletal muscle. MATERIALS AND METHODS Metabolic changes with consumption of high fat (Hfat), high sucrose (Hsuc) and high fructose (Hfru) diets were assessed. Levels of mRNA and protein of PPARα, LXRα, ChREBP, and SREBP-1c were investigated. Body weight changes, histological structure of liver and plasma levels of some parameters were also examined. RESULTS In Hfru group, body weights were higher than other groups (P<0.05). In liver, LXRα levels of Hsuc and Hfru groups were upregulated as 1.87±0.30 (P<0.05) and 2.01±0.29 (P<0.01). SREBP-1c levels were upregulated as 4.52±1.25 (P<0.05); 4.05±1.11 (P<0.05) and 3.85±1.04 (P<0.05) in Hfat, Hsuc, and Hfru groups, respectively. In skeletal muscle, LXRα and SREBP-1c were upregulated as 1.77±0.30 (P<0.05) and 2.71±0.56 (P<0.05), in the Hfru group. Protein levels of ChREBP (33.92±8.84ng/mg protein (P<0.05)) and SREBP-1c (135.16±15.57ng/mg protein (P<0.001)) in liver were higher in Hfru group. In skeletal muscle, LXRα, ChREBP and SREBP-1c in Hfru group were 6.67±0.60, 7.11±1.29 and 43.17±6.37ng/mg, respectively (P<0.05; P<0.01; P<0.05). The rats in Hfru group had the most damaged livers. CONCLUSION Besides liver, fructose consumption significantly effects skeletal muscle and leads to weight gain, triggers lipogenesis and metabolic disorders.
Collapse
Affiliation(s)
- Huseyin Ozkan
- Department of Genetic, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey.
| | - Akin Yakan
- Department of Animal Breeding, Faculty of Veterinary Medicine, University of Erciyes, Kayseri, Turkey
| |
Collapse
|
12
|
Combination of Peroxisome Proliferator-Activated Receptor (PPAR) Alpha and Gamma Agonists Prevents Corneal Inflammation and Neovascularization in a Rat Alkali Burn Model. Int J Mol Sci 2020; 21:ijms21145093. [PMID: 32707656 PMCID: PMC7404145 DOI: 10.3390/ijms21145093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ) agonists have anti-inflammatory and anti-neovascularization effects, but few reports have tested the combination of PPARα and PPARγ agonists. In this study, we investigated the therapeutic effects of ophthalmic solutions of agonists of PPARα, PPARγ, and the combination in a rat corneal alkali burn model. After alkali injury, an ophthalmic solution of 0.05% fenofibrate (PPARα group), 0.1% pioglitazone (PPARγ group), 0.05% fenofibrate + 0.1% pioglitazone (PPARα+γ group), or vehicle (vehicle group) was topically instilled onto the rat’s cornea twice a day. After instillation, upregulation was seen of PPAR mRNA corresponding to each agonist group. Administration of agonists for PPARα, PPARγ, and PPARα+γ suppressed inflammatory cells, neovascularization, and fibrotic changes. In addition, the PPARγ agonist upregulated M2 macrophages, which contributed to wound healing, whereas the PPARα agonist suppressed immature blood vessels in the early phase. Administration of PPARα+γ agonists showed therapeutic effects in corneal wound healing, combining the characteristics of both PPARα and PPARγ agonists. The results indicate that the combination of PPARα and γ agonists may be a new therapeutic strategy.
Collapse
|
13
|
Eberhart T, Schönenberger MJ, Walter KM, Charles KN, Faust PL, Kovacs WJ. Peroxisome-Deficiency and HIF-2α Signaling Are Negative Regulators of Ketohexokinase Expression. Front Cell Dev Biol 2020; 8:566. [PMID: 32733884 PMCID: PMC7360681 DOI: 10.3389/fcell.2020.00566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
Ketohexokinase (KHK) is the first and rate-limiting enzyme of fructose metabolism. Expression of the two alternatively spliced KHK isoforms, KHK-A and KHK-C, is tissue-specific and KHK-C is predominantly expressed in liver, kidney and intestine and responsible for the fructose-catabolizing function. While KHK isoform choice has been linked to the development of disorders such as obesity, diabetes, cardiovascular disease and cancer, little is known about the regulation of total KHK expression. In the present study, we investigated how hypoxic signaling influences fructose metabolism in the liver. Hypoxia or von Hippel-Lindau (VHL) tumor suppressor loss leads to the stabilization of hypoxia-inducible factors alpha (HIF-1α and HIF-2α) and the activation of their signaling to mediate adaptive responses. By studying liver-specific Vhl, Vhl/Hif1a, and Vhl/Epas1 knockout mice, we found that KHK expression is suppressed by HIF-2α (encoded by Epas1) but not by HIF-1α signaling on mRNA and protein levels. Reduced KHK levels were accompanied by downregulation of aldolase B (ALDOB) in the livers of Vhl and Vhl/Hif1a knockout mice, further indicating inhibited fructose metabolism. HIF-1α and HIF-2α have both overlapping and distinct target genes but are differentially regulated depending on the cell type and physiologic or pathologic conditions. HIF-2α activation augments peroxisome degradation in mammalian cells by pexophagy and thereby changes lipid composition reminiscent of peroxisomal disorders. We further demonstrated that fructose metabolism is negatively regulated by peroxisome-deficiency in a Pex2 knockout Zellweger mouse model, which lacks functional peroxisomes and is characterized by widespread metabolic dysfunction. Repression of fructolytic genes in Pex2 knockout mice appeared to be independent of PPARα signaling and nutritional status. Interestingly, our results demonstrate that both HIF-2α and peroxisome-deficiency result in downregulation of Khk independent of splicing as both isoforms, Khka as well as Khkc, are significantly downregulated. Hence, our study offers new and unexpected insights into the general regulation of KHK, and therefore fructolysis. We revealed a novel regulatory function of HIF-2α, suggesting that HIF-1α and HIF-2α have tissue-specific opposing roles in the regulation of Khk expression, isoform choice and fructolysis. In addition, we discovered a previously unknown function of peroxisomes in the regulation of fructose metabolism.
Collapse
Affiliation(s)
- Tanja Eberhart
- Institute of Molecular Health Sciences, ETH Zürich, Zurich, Switzerland
| | | | | | - Khanichi N. Charles
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Phyllis L. Faust
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Werner J. Kovacs
- Institute of Molecular Health Sciences, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
14
|
Farag M, Ashour E, El-Hadidy W. Amelioration of High Fructose Diet-Induced Insulin Resistance, Hyperuricemia, and Liver Oxidative Stress by Combined Use of Selective Agonists of PPAR-α and PPAR-γ in Rats. DUBAI MEDICAL JOURNAL 2020. [DOI: 10.1159/000506899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: The use of high-fructose (Fr) corn sweeteners and sucrose in manufactured food has markedly increased recently. This excessive Fr intake has been proposed in the etiology of the metabolic syndrome, which shows an increasing prevalence throughout the world. Objective: In this study, we questioned whether fenofibrate (FF), a peroxisome proliferator-activated receptor (PPAR)-α agonist, and pioglitazone (PG), a PPAR-γ agonist, might be effective in ameliorating the metabolic syndrome in a rat model. Materials and Methods: The metabolic syndrome was induced by feeding rats a high-Fr (60%) diet for 10 weeks. The rats were divided into 5 groups: control group, fed a normal rat chow; Fr + vehicle group; Fr + FF group; Fr + PG group; and Fr + (FF + PG) group (treated with both drugs). Drug or vehicle treatment was given daily for 6 weeks (from weeks 5 to 10). Thereafter, blood and liver samples were obtained for biochemical studies. Results: Rats fed a high-Fr diet developed hyperglycemia, hyperinsulinemia, hyperuricemia, hypertriglyceridemia, and hypercholesterolemia, and had increased serum alanine aminotransferase, hepatic tumor necrosis factor-α, and malondialdehyde levels but decreases in both glutathione content and superoxide dismutase activity. Rat treatment with FF and/or PG attenuated these alterations. The improvement was greater with the combined treatment than with either drug alone, and normalization of insulin sensitivity was observed only in rats treated with the combination therapy. Conclusion: Acting on the 2 main PPAR subfamilies, the combination of FF and PG provides a more efficacious therapy for modulating the changes in serum insulin, uric acid, and lipids, as well as the accompanying hepatic inflammation and oxidative stress that characterize the Fr-induced metabolic syndrome.
Collapse
|
15
|
Shehata AHF, Ahmed ASF, Abdelrehim AB, Heeba GH. The impact of single and combined PPAR-α and PPAR-γ activation on the neurological outcomes following cerebral ischemia reperfusion. Life Sci 2020; 252:117679. [PMID: 32325134 DOI: 10.1016/j.lfs.2020.117679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
AIM The neuronal damage and accompanied functional deficits induced by cerebral ischemia are among the most common causes of disabilities in adults. Activation of subtypes of peroxisome proliferator-activated receptors (PPARs); PPAR-α and PPAR-γ have shown neuroprotective effects in different neurodegenerative diseases including stroke. Thus, this study aimed to compare the effects of two different agonists: PPAR-α (fenofibrate) and PPAR-γ (pioglitazone) as well as the effect of their combination in ameliorating post-ischemia behavioral deficits. METHODS Male Wistar rats were either pretreated with vehicle, fenofibrate (100 mg/kg/day p.o), pioglitazone (10 mg/kg/day p.o) or their combination for 14 days prior to bilateral common carotid artery occlusion followed by reperfusion for 24 hoursh. The sensory motor functions of rats were assessed, then rats were sacrificed to determine infarct volume and histopathological changes as well as oxidative stress, inflammatory and apoptotic markers in the brain tissue. KEY FINDINGS Pre-treatment with fenofibrate and pioglitazone in addition to their combination improved neurobehavioral dysfunction, reduced cerebral infarct volume, attenuated inflammatory and apoptotic markers and ameliorated histopathological changes in I/R injured rats. The effect of pioglitazone in cerebral cortex was higher than its corresponding effect in fenofibrate while the combined administration of both drugs had additive neuroprotective effect and normalized inflammatory and apoptotic mediators in ischemic rats. SIGNIFICANCE The study compared the neuroprotective effects of PPAR-α and PPAR-γ agonists, and tested the impact of their combination. We concluded that no additional benefits on the functional outcomes might be gained upon their combination.
Collapse
Affiliation(s)
- Alaa H F Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt.
| | - Amany B Abdelrehim
- Department of Biochemistry and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| | - Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| |
Collapse
|
16
|
Hu G, Xu L, Ma Y, Kohzuki M, Ito O. Chronic exercise provides renal-protective effects with upregulation of fatty acid oxidation in the kidney of high fructose-fed rats. Am J Physiol Renal Physiol 2020; 318:F826-F834. [DOI: 10.1152/ajprenal.00444.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Excessive fructose intake causes metabolic syndrome and lipid accumulation in the kidney and leads to renal dysfunction and damage. Exercise (Ex) improves lipids regulation, but the mechanisms are unclarified in the kidney. In the present study, male Sprague-Dawley rats were allocated to groups fed with control or high-fructose (HFr) diet. Part of rats in each group underwent aerobic treadmill Ex for 12 wk. Drug treatment was performed as the fenofibrate gavage during the last 4 wk on HFr diet-fed rats. Renal function, histological changes, and expression of regulators involved in fatty acid (FA) metabolism were assessed. In CON diet-fed groups, Ex did not affect renal function or histology and significantly increased renal expression of FA β-oxidation regulators including acyl-CoA dehydrogenases (CADs), acyl-CoA oxidase, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ coactivator (PGC)-1α and lipogenic factors including acetyl-CoA carboxylase (ACCα), FA synthase (FAS), and sterol regulatory element-binding protein 1c. HFr caused albuminuria, lipid accumulation, and renal pathohistological changes, which were attenuated by Ex but not by fenofibrate. HFr decreased renal expression of medium- and short-chain CADs and PPAR-α and increased renal expression of ACCα, FAS, and sterol regulatory element-binding protein 1c. Ex increased expression of CADs, carnitine palmitoyltransferase type I, acyl-CoA oxidase, PPAR-α, and PGC-1α and decreased renal expression of ACCα and FAS in HFr diet-fed rats. The Ex-induced FA metabolism alteration was similar to that in the fenofibrate-treated group. In conclusion, the present study indicates that Ex enhanced renal FA metabolism, which might protect the kidney in lipid dysregulation diseases.
Collapse
Affiliation(s)
- Gaizun Hu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Lusi Xu
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yixuan Ma
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiro Kohzuki
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Osamu Ito
- Division of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University Faculty of Medicine, Sendai, Japan
| |
Collapse
|
17
|
Integration of metabolomic and transcriptomic profiles of hiPSCs-derived hepatocytes in a microfluidic environment. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Matsumoto Y, Ishimi Y, Suzuki T, Kobayashi KI, Inoue J, Yamamoto Y. Activation of peroxisome proliferator-activated receptor gamma/small heterodimer partner pathway prevents high fat diet-induced obesity and hepatic steatosis in Sprague-Dawley rats fed soybean meal. J Nutr Biochem 2020; 75:108250. [PMID: 31707284 DOI: 10.1016/j.jnutbio.2019.108250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/07/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022]
Abstract
Soybeans are a complete nutritional resource and soybean proteins are known to affect lipid metabolism via multiple mechanisms. Soybean meal (SBM) is produced after extraction of soybean oil and in this study, we investigated the ability whether the SBM could prevent high fat diet-induced obesity and understand the underlying mechanisms. Male Sprague-Dawley rats, aged 5 weeks, were randomly divided into three groups (n=8 each) and fed one of three diets for 28 days: Cont (AIN-93G), HFD (high fat diet with 40% of calories derived from fat) and HFD+SBM (HFD with 30% SBM). White adipose tissue weight as well as plasma and hepatic triglycerides were significantly decreased in HFD+SBM rats. Expression of hepatic SREBP-1 and its target genes was significantly decreased in HFD+SBM rats. Meanwhile, expression of SHP gene expression was significantly increased in HFD+SBM, and there was a negative correlation between SHP and SREBP-1 expression. Together these results suggest that hepatic SREBP-1 gene expression is negatively regulated by SHP. Expression of PPARG, the transcriptional factor that regulates SHP expression, was increased in HFD+SBM rats. Furthermore, expression of genes controlled by PPARG/SHP, such as those involved in hepatic gluconeogenesis, was also significantly decreased in HFD+SBM rats. Therefore, in addition to the previous findings of SBM on obesity here we show an additional mechanism which by changing the expression of genes involved in lipid metabolism via the PPARG/SHP pathway in the liver.
Collapse
Affiliation(s)
- Yu Matsumoto
- Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yoshiko Ishimi
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | - Tsukasa Suzuki
- Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Ken-Ichi Kobayashi
- Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Jun Inoue
- Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuji Yamamoto
- Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
19
|
Hassan NF, Nada SA, Hassan A, El-Ansary MR, Al-Shorbagy MY, Abdelsalam RM. Saroglitazar Deactivates the Hepatic LPS/TLR4 Signaling Pathway and Ameliorates Adipocyte Dysfunction in Rats with High-Fat Emulsion/LPS Model-Induced Non-alcoholic Steatohepatitis. Inflammation 2019; 42:1056-1070. [PMID: 30737662 DOI: 10.1007/s10753-019-00967-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The most epidemic liver disorder non-alcoholic steatohepatitis (NASH) is characterized by hepatic steatosis and inflammation with hepatocellular damage. Recently, it is predictable to be the extensive cause for liver transplantation. The absence of an approved therapeutic agent for NASH is the reason for investigating saroglitazar (SAR) which showed promising effects as a dual PPAR-α/γ agonist in recent studies on NASH. Here, we aimed to investigate the effect of SAR on NASH induced in rats by the administration of high-fat emulsion (HFE) and small doses of lipopolysaccharides (LPS) for 5 weeks. Rats were divided into three groups: negative control group (saline and standard rodent chow), model group (HFE(10 ml/kg/day, oral gavage) + LPS(0.5 mg/kg/week, i.p)), and SAR-treated group (HFE(10 ml/kg/day, oral gavage) + LPS(0.5 mg/kg/week, i.p.) + SAR(4 mg/kg/day, oral gavage) starting at week 3.Treatment with SAR successfully ameliorated the damaging effects of HFE with LPS, by counteracting body weight gain and biochemically by normalization of liver function parameters activity, glucose, insulin, homeostasis model of assessment (HOMA-IR) score, lipid profile levels, and histopathological examination. Significant changes in adipokine levels were perceived, resulting in a significant decline in serum leptin and tumor necrosis factor-α (TNF-α) level concurrent with adiponectin normalization. The positive effects observed for SAR on NASH are due to the downregulation of the LPS/TLR4 pathway, as indicated by the suppression of hepatic Toll-like receptor 4 (TLR4), NF-κB, TNF-α, and transforming growth factor-β1 (TGF-β1) expression. In conclusion, this work verified that SAR ameliorates NASH through deactivation of the hepatic LPS/TLR4 pathway and inhibition of adipocyte dysfunction.
Collapse
Affiliation(s)
- Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Somaia A Nada
- Department of Pharmacology and Toxicology, National Research Centre, Giza, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Al-Mokattam, Cairo, Egypt.
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Pharmacy, Newgiza University, Giza, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
20
|
Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur J Med Chem 2019; 166:502-513. [DOI: 10.1016/j.ejmech.2019.01.067] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
|
21
|
Al-Muzafar HM, Amin KA. Thiazolidinedione induces a therapeutic effect on hepatosteatosis by regulating stearoyl-CoA desaturase-1, lipase activity, leptin and resistin. Exp Ther Med 2018; 16:2938-2948. [PMID: 30214514 PMCID: PMC6125847 DOI: 10.3892/etm.2018.6563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 04/06/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatosteatosis is a disease present worldwide, which presents a number of health problems. Recently, thiazolidinedione (TZD) has been used as a therapy for lipid disorders. The present study demonstrates the potential of TZD as a treatment for hepatosteatosis and its mechanism of action, particularly focusing on its role in lipid metabolism. A total of 60 (80-90 g) rats were divided into three groups: A normal group with a standard diet, a high-fat, high-carbohydrate diet (HFCD) group or a HFCD+TZD group (n=20/group). The HFCD induced hepatosteatosis over a period of 12 weeks and the HFCD+TZD group were administered TZD in weeks 13-16. Blood and tissue samples were collected to measure hepatic function, the lipid profile, metabolism and hormone biomarkers, including serum triglyceride (TG), lipoprotein lipase (LPL), stearoyl-CoA desaturase (SCD-1), leptin and resistin. The HFCD-fed rats exhibited a significant increase in serum TG, total cholesterol, low-density lipoproteins, alanine transaminase and bilirubin compared with the normal group as well as a significant decrease in high-density lipoprotein. In addition, serum leptin and resistin were significantly elevated in the HFCD group compared with the normal group. The administration of TZD significantly increased SCD-1 activity and significantly inhibited LPL activity. It also attenuated the changes in the lipid profiles and normalized serum leptin and resistin levels. The results of the present study indicated that HFCD induced lipid abnormalities associated with hypertriglyceridemia, hypercholesterolemia and hepatosteatosis. These changes resulted from disruption to leptin and resistin, which may be due to alterations in LPL and SCD-1 activity. TZD mitigated the effects of HFCD-induced hepatosteatosis, indicating a possible regulatory effect of TZD in the development of hepatosteatosis. The authors suggest that the manipulation of SCD-1 and lipase by TZD may be useful as a treatment for hepatosteatosis.
Collapse
Affiliation(s)
- Hessah Mohammed Al-Muzafar
- Department of Chemistry and Biochemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Kamal Adel Amin
- Department of Chemistry and Biochemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
22
|
Patel H, Giri P, Patel P, Singh S, Gupta L, Patel U, Modi N, Shah K, Jain MR, Srinivas NR, Patel P. Preclinical evaluation of saroglitazar magnesium, a dual PPAR-α/γ agonist for treatment of dyslipidemia and metabolic disorders. Xenobiotica 2017; 48:1268-1277. [DOI: 10.1080/00498254.2017.1413264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Harilal Patel
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Cadila Healthcare Limited , Ahmedabad , India ,
| | - Poonam Giri
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Cadila Healthcare Limited , Ahmedabad , India ,
| | - Prakash Patel
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Cadila Healthcare Limited , Ahmedabad , India ,
| | - Sanjay Singh
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Cadila Healthcare Limited , Ahmedabad , India ,
| | - Laxmikant Gupta
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Cadila Healthcare Limited , Ahmedabad , India ,
| | - Urvesh Patel
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Cadila Healthcare Limited , Ahmedabad , India ,
| | - Nirav Modi
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Cadila Healthcare Limited , Ahmedabad , India ,
| | - Kalpesh Shah
- Department of Medicinal Chemistry, Zydus Research Centre, Cadila Healthcare Limited , Ahmedabad , India , and
| | - Mukul R. Jain
- Department of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited , Ahmedabad , India
| | - Nuggehally R. Srinivas
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Cadila Healthcare Limited , Ahmedabad , India ,
| | - Pankaj Patel
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Cadila Healthcare Limited , Ahmedabad , India ,
- Department of Medicinal Chemistry, Zydus Research Centre, Cadila Healthcare Limited , Ahmedabad , India , and
- Department of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited , Ahmedabad , India
| |
Collapse
|
23
|
Liu Q, Lu W, Yang C, Wang Y, Li W, Chu Y, Deng J, Hou Y, Jin J. HBXIP activates the PPARδ/NF-κB feedback loop resulting in cell proliferation. Oncotarget 2017; 9:404-417. [PMID: 29416623 PMCID: PMC5787476 DOI: 10.18632/oncotarget.23057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022] Open
Abstract
Hepatitis B X-interacting protein (HBXIP, also termed as LAMTOR5) plays a crucial role in regulation of cancer progression, while the mechanism is still unclear. Here we found that HBXIP increased the expression of PPARδ (peroxisome proliferator-activated receptor-δ) in gene and protein levels of SW480 or HT-29 colonic cancer cells. Chromatin immunoprecipitation and luciferase reporter assays showed that HBXIP occupied the core promoter (−1079/−239 nt) regions of PPARδ and that HBXIP activated the transcription activity of PPARδ in an NF-κB (p65)-dependent manner. Moreover, Co-immunoprecipitation and immunofluorescence analysis showed that HBXIP bound to NF-κB/p65 in the cells. Interestingly, we found that PPARδ could conversely increase the expression of NF-κB/p65 through activating its transcription activity. In addition, the clinical observations showed that both HBXIP and PPARδ were highly expressed in colonic carcinoma, and HBXIP expression was positively associated with that of PPARδ in the clinical specimen. Importantly, HBXIP expression levels were positively correlated with the clinical pathological parameters including lymph node metastasis and advanced TNM stage. These findings suggest that HBXIP served as a co-activator to activate the positive feedback regulations of NF-κB/PPARδ, which promoted the fast proliferation of the colonic cancer cells. Therapeutically, HBXIP may serve as a potential drug target of colonic cancer cells.
Collapse
Affiliation(s)
- Qian Liu
- Department of Oncology, The Changzhou Wujin People's Hospital, Jiangsu Province, 213017, China
| | - Wenbin Lu
- Department of Oncology, The Changzhou Wujin People's Hospital, Jiangsu Province, 213017, China
| | - Chunxia Yang
- Department of Oncology, The Changzhou Wujin People's Hospital, Jiangsu Province, 213017, China
| | - Yue Wang
- Department of Oncology, The Changzhou Wujin People's Hospital, Jiangsu Province, 213017, China
| | - Wenjing Li
- Department of Oncology, The Changzhou Wujin People's Hospital, Jiangsu Province, 213017, China
| | - Ying Chu
- Department of Oncology, The Changzhou Wujin People's Hospital, Jiangsu Province, 213017, China
| | - Jianzhong Deng
- Department of Oncology, The Changzhou Wujin People's Hospital, Jiangsu Province, 213017, China
| | - Yongzhong Hou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jianhua Jin
- Department of Oncology, The Changzhou Wujin People's Hospital, Jiangsu Province, 213017, China
| |
Collapse
|
24
|
Comparison of fenofibrate and pioglitazone effects on patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2017; 29:1385-1388. [PMID: 29023319 DOI: 10.1097/meg.0000000000000981] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is known to be a health-related problem; there is no proven treatment for NAFLD. However, a wide range of possible therapies have been proposed and studied. In the current study, we aimed to compare the therapeutic effects of fenofibrate and pioglitazone on NAFLD. PATIENTS AND METHODS In this randomized clinical trial study (ethic number: ZUMS.REC.1393.133), patients with NAFLD and alanine aminotransferase in range of 1-1.5 folds of normal and BMI (25-35) were studied. Blood lipids and liver enzymes were measured. The patients were divided randomly into three groups (recipient of fenofibrate, pioglitazone, and exercise). After the patients completed the course of treatment, liver enzymes were measured. RESULTS According to the results of this study, 90 patients with NAFLD were divided into three groups of 30 patients. All variables at the beginning of the study showed no significant difference among the three groups, but after the treatment period, the results showed that the levels of alanine aminotransferase, aspartate transaminase, systolic blood pressure, diastolic blood pressure, and BMI changed significantly: the levels decreased in all groups. CONCLUSION This study showed beneficial effects of fenofibrate and pioglitazone in patients with fatty liver. Further studies with larger study populations on the effects of these drugs on fatty liver, lipid profile, blood glucose, and insulin are suggested.
Collapse
|
25
|
Patsenker E, Chicca A, Petrucci V, Moghadamrad S, de Gottardi A, Hampe J, Gertsch J, Semmo N, Stickel F. 4-O'-methylhonokiol protects from alcohol/carbon tetrachloride-induced liver injury in mice. J Mol Med (Berl) 2017; 95:1077-1089. [PMID: 28689299 DOI: 10.1007/s00109-017-1556-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/18/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) is a leading cause of liver cirrhosis, liver cancer, and related mortality. The endocannabinoid system contributes to the development of chronic liver diseases, where cannabinoid receptor 2 (CB2) has been shown to have a protecting role. Thus, here, we investigated how CB2 agonism by 4'-O-methylhonokiol (MHK), a biphenyl from Magnolia grandiflora, affects chronic alcohol-induced liver fibrosis and damage in mice. A combination of alcohol (10% vol/vol) and CCl4 (1 ml/kg) was applied to C57BL/6 mice for 5 weeks. MHK (5 mg/kg) was administered daily, and liver damage assessed by serum AST and ALT levels, histology, gene, and protein expression. Endocannabinoids (ECs) and related lipid derivatives were measured by liquid chromatography and mass spectrometry (LC-MS) in liver tissues. In vitro, MHK was studied in TGFβ1-activated hepatic stellate cells (HSC). MHK treatment alleviated hepatic fibrosis, paralleled by induced expression of matrix metalloproteinases (MMP)-2, -3, -9, and -13, and downregulation of CB1 mRNA. Necrotic lesions and hepatic inflammation were moderately improved, while IL-10 mRNA increased and IFNγ, Mcl-1, JNK1, and RIPK1 normalized by MHK. Hepatic anandamide (AEA) and related N-acetylethanolamines (NAEs) were elevated in MHK group, whereas fatty acid synthase and diacylglycerol O-acyltransferase 2 expression reduced. In vitro, MHK prevented HSC activation and induced apoptosis via induction of bak1 and bcl-2. To conclude, MHK revealed hepatoprotective effects during alcohol-induced liver damage through the induction of MMPs, AEA, and NAEs and prevention of HSC activation, indicating MHK as a potent therapeutic for liver fibrosis and ALD. KEY MESSAGES Methylhonokiol improves liver damage and survival. Methylhonokiol reduces hepatic fibrosis and necroinflammation. Methylhonokiol prevents myofibroblast activation and induces apoptosis. Methylhonokiol upregulates endocannabinoids and related N-acylethanolamines. Methylhonokiol contributes to lipid hydrolysis via PPARα/γ.
Collapse
Affiliation(s)
- Eleonora Patsenker
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Sternwartstr. 14, 8097, Zurich, Switzerland.
- Department of Clinical Research, Department of Hepatology, University of Bern, Bern, Switzerland.
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Vanessa Petrucci
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Sheida Moghadamrad
- Department of Clinical Research, Department of Hepatology, University of Bern, Bern, Switzerland
| | - Andrea de Gottardi
- Department of Clinical Research, Department of Hepatology, University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Department of Hepatology, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Nasser Semmo
- Department of Clinical Research, Department of Hepatology, University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Department of Hepatology, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Sternwartstr. 14, 8097, Zurich, Switzerland
| |
Collapse
|
26
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common and important chronic liver disease in the world. As the prevalence of obesity increases in adults and children, the incidence of NAFLD has increased rapidly, reaching 17% to 33%. NAFLD is clinically divided into two forms: simple fatty liver (SFL) and non-alcoholic steatohepatitis (NASH), with NASH accounting for 1/3-1/2 of all NAFLD cases. The probability of developing cirrhosis is 0.6%-3.0% in patients with SFL for 10-20 years, and as high as 15%-25% in patients with NASH for 10-15 years. Approximately 1% of cirrhosis cases develop hepatocellular carcinoma each year. The pathogenesis of NAFLD is still not completely clear. It is generally believed that age, sex, obesity, insulin resistance, cytokines, gene polymorphism, and intestinal microflora are involved in the pathogenesis of NAFLD. An in-depth understanding of the pathogenesis of NAFLD can provide a basis for treatment of this disease. In recent years, cytokines or genes have been reported as targets for NAFLD treatment with appreciated effects. Since there is currently no specific treatment for NAFLD, targeted therapy may have a profound impact on the prognosis of the disease.
Collapse
|
27
|
The Combination of Blueberry Juice and Probiotics Ameliorate Non-Alcoholic Steatohepatitis (NASH) by Affecting SREBP-1c/PNPLA-3 Pathway via PPAR-α. Nutrients 2017; 9:nu9030198. [PMID: 28264426 PMCID: PMC5372861 DOI: 10.3390/nu9030198] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is liver inflammation and a major threat to public health. Several pharmaceutical agents have been used for NASH therapy but their high-rate side effects limit the use. Blueberry juice and probiotics (BP) have anti-inflammation and antibacterial properties, and may be potential candidates for NASH therapy. To understand the molecular mechanism, Sprague Dawley rats were used to create NASH models and received different treatments. Liver tissues were examined using HE (hematoxylin and eosin) and ORO (Oil Red O) stain, and serum biochemical indices were measured. The levels of peroxisome proliferators-activated receptor (PPAR)-α, sterol regulatory element binding protein-1c (SREBP-1c), Patatin-like phospholipase domain-containing protein 3 (PNPLA-3), inflammatory cytokines and apoptosis biomarkers in liver tissues were measured by qRT-PCR and Western blot. HE and ORO analysis indicated that the hepatocytes were seriously damaged with more and larger lipid droplets in NASH models while BP reduced the number and size of lipid droplets (p < 0.05). Meanwhile, BP increased the levels of SOD (superoxide dismutase), GSH (reduced glutathione) and HDL-C (high-density lipoprotein cholesterol), and reduced the levels of AST (aspartate aminotransferase), ALT (alanine aminotransferase), TG (triglycerides), LDL-C (low-density lipoprotein cholesterol) and MDA (malondialdehyde) in NASH models (p < 0.05). BP increased the level of PPAR-α (Peroxisome proliferator-activated receptor α), and reduced the levels of SREBP-1c (sterol regulatory element binding protein-1c) and PNPLA-3 (Patatin-like phospholipase domain-containing protein 3) (p < 0.05). BP reduced hepatic inflammation and apoptosis by affecting IL-6 (interleukin 6), TNF-α (Tumor necrosis factor α), caspase-3 and Bcl-2 in NASH models. Furthermore, PPAR-α inhibitor increased the level of SREBP-1c and PNPLA-3. Therefore, BP prevents NASH progression by affecting SREBP-1c/PNPLA-3 pathway via PPAR-α.
Collapse
|
28
|
Karise I, Ornellas F, Barbosa-da-Silva S, Matsuura C, Del Sol M, Aguila MB, Mandarim-de-Lacerda CA. Liver and Metformin: Lessons of a fructose diet in mice. BIOCHIMIE OPEN 2017; 4:19-30. [PMID: 29450137 PMCID: PMC5801827 DOI: 10.1016/j.biopen.2017.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/27/2017] [Indexed: 12/11/2022]
Abstract
Studies show that the continuous consumption of fructose can lead to nonalcoholic fatty liver disease (NAFLD) and steatohepatitis. We aimed to investigate the role of Metformin in an animal model of liver injury caused by fructose intake, focusing on the molecular markers of lipogenesis, beta-oxidation, and antioxidant defenses. Male three months old C57BL/6 mice were divided into control group (C) and fructose group (F, 47% fructose), maintained for ten weeks. After, the groups received Metformin or vehicle for a further eight weeks: control (C), control + Metformin (CM), fructose (F), and fructose + Metformin (FM). Fructose resulted in hepatic steatosis, insulin resistance and lower insulin sensitivity in association with higher mRNA levels of proteins linked with de novo lipogenesis and increased lipid peroxidation. Fructose diminished mRNA expression of antioxidant enzymes, and of proteins responsible for mitochondrial biogenesis. Metformin reduced de novo lipogenesis and increased the expression of proteins related to mitochondrial biogenesis, thereby increasing beta-oxidation and decreasing lipid peroxidation. Also, Metformin upregulated the expression and activity of antioxidant enzymes, providing a defense against increased reactive oxygen species generation. Therefore, a significant reduction in triglyceride accumulation in the liver, steatosis and lipid peroxidation was observed in the FM group. In conclusion, fructose increases de novo lipogenesis, reduces the antioxidant defenses, and diminishes mitochondrial biogenesis. After an extended period of fructose intake, Metformin treatment, even in continuing the fructose intake, can reverse, at least partially, the liver injury and prevents NAFLD progression to more severe states. Fructose increases lipogenesis and lipid peroxidation, reduces the antioxidant defenses, and mitochondrial biogenesis. Metformin mechanism of action remains partially understood and controversial. Metformin can reverse the liver injury preventing the progression to more severe states.
Collapse
Affiliation(s)
- Iara Karise
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Fernanda Ornellas
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Cristiane Matsuura
- Laboratory of Membrane Transport, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Mariano Del Sol
- Doctoral Programing on Morphological Sciences, Universidad de La Frontera, Temuco, Chile
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.,Doctoral Programing on Morphological Sciences, Universidad de La Frontera, Temuco, Chile
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.,Doctoral Programing on Morphological Sciences, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|