1
|
Zhou Y, Chen Y, Xu M, Zhang Y, Wan X, Xia Y, Wang H, Zeng H. The effect of proteasome in heart transplantation: From mechanisms to therapeutic potential. Life Sci 2025; 364:123446. [PMID: 39920983 DOI: 10.1016/j.lfs.2025.123446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Heart transplantation is a critical treatment for end-stage heart failure. However, its clinical efficacy is hindered by some challenges, such as ischemia-reperfusion injury (IRI) and post-transplant rejection. These complications significantly contribute to graft dysfunction and compromise patient survival. Emerging evidence underscores the involvement of proteasome in the pathophysiology of both IRI and post-transplant rejection. Proteasome inhibition has demonstrated potential in attenuating IRI by limiting oxidative damage and apoptosis while also mitigating rejection through the regulation of adaptive and innate immune responses. Recent advances in the development of proteasome inhibitors, particularly in optimizing specificity and minimizing adverse effects, have further strengthened their prospects for clinical application. This review focuses on the roles of the proteasome and its inhibitors in heart transplantation, with an emphasis on their mechanisms and therapeutic applications in managing IRI and rejection.
Collapse
Affiliation(s)
- Ye Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Yu Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Mengyao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ying Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Xiaoning Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yudong Xia
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongjie Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China.
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China.
| |
Collapse
|
2
|
Jha S, Pispa J, Holmberg CI. Impairment of proteasome-associated deubiquitinating enzyme Uchl5/UBH-4 affects autophagy. Biol Open 2025; 14:bio061644. [PMID: 39912491 PMCID: PMC11832120 DOI: 10.1242/bio.061644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
The autophagy-lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are the two major intracellular proteolytic systems that mediate protein turnover in eukaryotes. Although a crosstalk exists between these two systems, it is still unclear how UPS and ALP interact in vivo. Here, we investigated how impaired function of the proteasome-associated deubiquitinating enzyme (DUB) Uchl5/UBH-4 affects autophagy in human cells and in a multicellular organism. We show that downregulation of Uchl5 by siRNA reduces autophagy by partially blocking the fusion of autophagosomes with the lysosomes in HeLa cells, which is similar to a previously reported role of the proteasome-associated DUB Usp14 on autophagy. However, exposure of Caenorhabditis elegans to ubh-4 or usp-14 RNAi, or to their pharmacological inhibitors, results in diverse effects on numbers of autophagosomes and autolysosomes, without blocking the lysosomal fusion, in the intestine, hypodermal seam cells and the pharynx. Our results reveal that impairment of Uchl5/UBH-4 and Usp14 affects autophagy in a tissue context manner. A deeper insight into the interplay between UPS and ALP in various tissues in vivo has the potential to promote development of therapeutic approaches for disorders associated with proteostasis dysfunction.
Collapse
Affiliation(s)
- Sweta Jha
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Johanna Pispa
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Carina I. Holmberg
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| |
Collapse
|
3
|
Onat B, Momenzadeh A, Haghani A, Jiang Y, Song Y, Parker SJ, Meyer JG. Cell Storage Conditions Impact Single-Cell Proteomic Landscapes. J Proteome Res 2025. [PMID: 39856491 DOI: 10.1021/acs.jproteome.4c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Single cell transcriptomics (SCT) has revolutionized our understanding of cellular heterogeneity, yet the emergence of single cell proteomics (SCP) promises a more functional view of cellular dynamics. A challenge is that not all mass spectrometry facilities can perform SCP, and not all laboratories have access to cell sorting equipment required for SCP, which together motivate an interest in sending bulk cell samples through the mail for sorting and SCP analysis. Shipping requires cell storage, which has an unknown effect on SCP results. This study investigates the impact of cell storage conditions on the proteomic landscape at the single cell level, utilizing Data-Independent Acquisition (DIA) coupled with Parallel Accumulation Serial Fragmentation (diaPASEF). Three storage conditions were compared in 293T cells: (1) 37 °C (control), (2) 4 °C overnight, and (3) -196 °C storage followed by liquid nitrogen preservation. Both cold and frozen storage induced significant alterations in the cell diameter, elongation, and proteome composition. By elucidating how cell storage conditions alter cellular morphology and proteome profiles, this study contributes foundational technical information about SCP sample preparation and data quality.
Collapse
Affiliation(s)
- Bora Onat
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Amanda Momenzadeh
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Ali Haghani
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Yuming Jiang
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Yang Song
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Sarah J Parker
- Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jesse G Meyer
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
4
|
Rahi V, Kaundal RK. Exploring the intricacies of calcium dysregulation in ischemic stroke: Insights into neuronal cell death and therapeutic strategies. Life Sci 2024; 347:122651. [PMID: 38642844 DOI: 10.1016/j.lfs.2024.122651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Calcium ion (Ca2+) dysregulation is one of the main causes of neuronal cell death and brain damage after cerebral ischemia. During ischemic stroke, the ability of neurons to maintain Ca2+ homeostasis is compromised. Ca2+ regulates various functions of the nervous system, including neuronal activity and adenosine triphosphate (ATP) production. Disruptions in Ca2+ homeostasis can trigger a cascade of events, including activation of the unfolded protein response (UPR) pathway, which is associated with endoplasmic reticulum (ER) stress and mitochondrial dysfunction. This response occurs when the cell is unable to manage protein folding within the ER due to various stressors, such as a high influx of Ca2+. Consequently, the UPR is initiated to restore ER function and alleviate stress, but prolonged activation can lead to mitochondrial dysfunction and, ultimately, cell death. Hence, precise regulation of Ca2+ within the cell is mandatory. The ER and mitochondria are two such organelles that maintain intracellular Ca2+ homeostasis through various calcium-operating channels, including ryanodine receptors (RyRs), inositol trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum calcium ATPases (SERCAs), the mitochondrial Na+/Ca2+ exchanger (NCLX), the mitochondrial calcium uniporter (MCU) and voltage-dependent anion channels (VDACs). These channels utilize Ca2+ sequestering and release mechanisms to maintain intracellular Ca2+ homeostasis and ensure proper cellular function and survival. The present review critically evaluates the significance of Ca2+ and its physiological role in cerebral ischemia. We have compiled recent findings on calcium's role and emerging treatment strategies, particularly targeting mitochondria and the endoplasmic reticulum, to address Ca2+ overload in cerebral ischemia.
Collapse
Affiliation(s)
- Vikrant Rahi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India
| | - Ravinder K Kaundal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India.
| |
Collapse
|
5
|
Guan L, Ge R, Ma S. Newsights of endoplasmic reticulum in hypoxia. Biomed Pharmacother 2024; 175:116812. [PMID: 38781866 DOI: 10.1016/j.biopha.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The endoplasmic reticulum (ER) is important to cells because of its essential functions, including synthesizing three major nutrients and ion transport. When cellular homeostasis is disrupted, ER quality control (ERQC) system is activated effectively to remove misfolded and unfolded proteins through ER-phagy, ER-related degradation (ERAD), and molecular chaperones. When unfolded protein response (UPR) and ER stress are activated, the cell may be suffering a huge blow, and the most probable consequence is apoptosis. The membrane contact points between the ER and sub-organelles contribute to communication between the organelles. The decrease in oxygen concentration affects the morphology and structure of the ER, thereby affecting its function and further disrupting the stable state of cells, leading to the occurrence of disease. In this study, we describe the functions of ER-, ERQC-, and ER-related membrane contact points and their changes under hypoxia, which will help us further understand ER and treat ER-related diseases.
Collapse
Affiliation(s)
- Lu Guan
- Qinghai University, Xining, Qinghai, China
| | - Rili Ge
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China
| | - Shuang Ma
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
6
|
Li H, Liu C, Cui Y, Chang P, Chong W. Effect of tubastatin A on NLRP3 inflammasome activation in macrophages under hypoxia/reoxygenation conditions. World J Emerg Med 2024; 15:289-296. [PMID: 39050221 PMCID: PMC11265631 DOI: 10.5847/wjem.j.1920-8642.2024.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/25/2023] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND There are currently no effective drugs to mitigate the ischemia/reperfusion injury caused by fluid resuscitation after hemorrhagic shock (HS). The aim of this study was to explore the potential of the histone deacetylase 6 (HDAC6)-specific inhibitor tubastatin A (TubA) to suppress nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation in macrophages under hypoxia/reoxygenation (H/R) conditions. METHODS The viability of RAW264.7 cells subjected to H/R after treatment with different concentrations of TubA was assessed using a cell-counting kit-8 (CCK8) assay. Briefly, 2.5 μmol/L TubA was used with RAW264.7 cells under H/R condition. RAW264.7 cells were divided into three groups, namely the control, H/R, and TubA groups. The levels of reactive oxygen species (ROS) in the cells were detected using fluorescence microscopy. The protein expression of HDAC6, heat shock protein 90 (Hsp90), inducible nitric oxide synthase (iNOS), NLRP3, gasdermin-D (GSDMD), Caspase-1, GSDMD-N, and Caspase-1 p20 was detected by western blotting. The levels of interleukin-1β (IL-1β) and IL-18 in the supernatants were detected using enzyme-linked immunosorbent assay (ELISA). RESULTS HDAC6, Hsp90, and iNOS expression levels were significantly higher (P<0.01) in the H/R group than in the control group, but lower in the TubA group than in the H/R group (P<0.05). When comparing the H/R group to the control group, ROS levels were significantly higher (P<0.01), but significantly reduced in the TubA group (P<0.05). The H/R group had higher NLRP3, GSDMD, Caspase-1, GSDMD-N, and Caspase-1 p20 expression levels than the control group (P<0.05), however, the TubA group had significantly lower expression levels than the H/R group (P<0.05). IL-1β and IL-18 levels in the supernatants were significantly higher in the H/R group compared to the control group (P<0.01), but significantly lower in the TubA group compared to the H/R group (P<0.01). CONCLUSION TubA inhibited the expression of HDAC6, Hsp90, and iNOS in macrophages subjected to H/R. This inhibition led to a decrease in the content of ROS in cells, which subsequently inhibited the activation of the NLRP3 inflammasome and the secretion of IL-1β and IL-18.
Collapse
Affiliation(s)
- Hao Li
- Department of Emergency Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| | - Chang Liu
- Department of Emergency Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| | - Ying Cui
- Department of Emergency Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| | - Panpan Chang
- Trauma Medicine Center, Peking University People’s Hospital, Beijing 100871, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100871, China
- National Center for Trauma Medicine of China, Beijing 100871, China
| | - Wei Chong
- Department of Emergency Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
7
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
8
|
Piao C, Sang J, Kou Z, Wang Y, Liu T, Lu X, Jiao Z, Wang H. Effects of Exosomes Derived from Adipose-Derived Mesenchymal Stem Cells on Pyroptosis and Regeneration of Injured Liver. Int J Mol Sci 2022; 23:12065. [PMID: 36292924 PMCID: PMC9602906 DOI: 10.3390/ijms232012065] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 09/01/2023] Open
Abstract
Although accumulating evidence indicates that exosomes have a positive therapeutic effect on hepatic ischemia-reperfusion injury (HIRI), studies focusing on the alleviation of liver injury by exosomes derived from adipose-derived mesenchymal stem cells (ADSCs-Exo) based on the inhibition of cell pyroptosis have not yet been reported. Exosomes contain different kinds of biologically active substances such as proteins, lipids, mRNAs, miRNAs, and signaling molecules. These molecules are widely involved in cell-cell communication, cell signal transmission, proliferation, migration, and apoptosis. Therefore, we investigated the positive effects exerted by ADSCs-Exo after hepatic ischemia-reperfusion with partial resection injury in rats. In this study, we found that the post-operative tail vein injection of ADSCs-Exo could effectively inhibit the expression of pyroptosis-related factors such as NLRP3, ASC, caspase-1, and GSDMD-N, and promote the expression of regeneration-related factors such as Cyclin D1 and VEGF. Moreover, we found that the above cellular activities were associated with the NF-κB and Wnt/β-catenin signaling pathways. According to the results, ADSCs and ADSCs-Exo can reduce pyroptosis in the injured liver and promote the expression of those factors related to liver regeneration, while they can inhibit the NF-κB pathway and activate the Wnt/β-catenin pathway. However, although adipose-derived mesenchymal stem cell (ADSC) transplantation can reduce liver injury, it leads to a significant increase in the pyroptosis-related protein GSDMD-N expression. In conclusion, our study shows that ADSCs-Exo has unique advantages and significance as a cell-free therapy to replace stem cells and still has a broad research prospect in the clinical diagnosis and treatment of liver injuries.
Collapse
Affiliation(s)
- Chenxi Piao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jinfang Sang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhipeng Kou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiangyu Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhihui Jiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150030, China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Wang X, Yu J, Liu X, Luo D, Li Y, Song L, Jiang X, Yin X, Wang Y, Chai L, Luo T, Jing J, Shi H. PSMG2-controlled proteasome-autophagy balance mediates the tolerance for MEK-targeted therapy in triple-negative breast cancer. Cell Rep Med 2022; 3:100741. [PMID: 36099919 PMCID: PMC9512673 DOI: 10.1016/j.xcrm.2022.100741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/21/2022] [Accepted: 08/23/2022] [Indexed: 05/29/2023]
Abstract
Although the MAPK pathway is aberrantly activated in triple-negative breast cancers (TNBCs), the clinical outcome of MEK-targeted therapy is still poor. Through a genome-wide CRISPR-Cas9 library screening, we find that inhibition of PSMG2 sensitizes TNBC cells BT549 and MB468 to the MEK inhibitor AZD6244. Mechanistically, PSMG2 knockdown impairs proteasome function, which in turn activates autophagy-mediated PDPK1 degradation. The PDPK1 degradation significantly enhances AZD6244-induced tumor cell growth inhibition by interrupting the negative feedback signals toward the AKT pathway. Consistently, co-targeting proteasomes and MEK with inhibitors synergistically suppresses tumor cell growth. The autophagy inhibitor chloroquine partially relieves the PDPK1 degradation and reverses the growth inhibition induced by combinatorial inhibition of MEK and proteasome. The combination regimen with the proteasome inhibitor MG132 plus AZD6244 synergistically inhibits tumor growth in a 4T1 xenograft mouse model. In summary, our study not only unravels the mechanism of MEK inhibitor resistance but also provides a combinatorial therapeutic strategy for TNBC in clinics.
Collapse
Affiliation(s)
- Xueyan Wang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Jing Yu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Dan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Yanchu Li
- West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linlin Song
- Department of Ultrasound and Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xian Jiang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xiaomeng Yin
- Department of Biotherapy, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Wang
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Chai
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting Luo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Jing Jing
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China.
| | - Hubing Shi
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China.
| |
Collapse
|
10
|
Intertwined Relation between the Endoplasmic Reticulum and Mitochondria in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3335887. [PMID: 35528523 PMCID: PMC9072026 DOI: 10.1155/2022/3335887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 01/01/2023]
Abstract
In ischemic stroke (IS), accumulation of the misfolded proteins in the endoplasmic reticulum (ER) and mitochondria-induced oxidative stress (OS) has been identified as the indispensable inducers of secondary brain injury. With the increasing recognition of an association between ER stress and OS with ischemic stroke and with the improved understanding of the underlying molecular mechanism, novel targets for drug therapy and new strategies for therapeutic interventions are surfacing. This review discusses the molecular mechanism underlying ER stress and OS response as both causes and consequences of ischemic stroke. We also summarize the latest advances in understanding the importance of ER stress and OS in the pathogenesis of ischemic stroke and discuss potential strategies and clinical trials explicitly aiming to restore mitochondria and ER dynamics after IS.
Collapse
|
11
|
Lv S, Wang Z, Wang J, Wang H. Exogenous Hydrogen Sulfide Plays an Important Role Through Regulating Autophagy in Ischemia/Reperfusion Injury. Front Mol Biosci 2021; 8:681676. [PMID: 34055892 PMCID: PMC8155623 DOI: 10.3389/fmolb.2021.681676] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is characterized by limiting blood supply to organs, then restoring blood flow and reoxygenation. It leads to many diseases, including acute kidney injury, myocardial infarction, circulatory arrest, ischemic stroke, trauma, and sickle cell disease. Autophagy is an important and conserved cellular pathway, in which cells transfer the cytoplasmic contents to lysosomes for degradation. It plays an important role in maintaining the balance of cell synthesis, decomposition and reuse, and participates in a variety of physiological and pathological processes. Hydrogen sulfide (H2S), along with carbon monoxide (CO) and nitric oxide (NO), is an important gas signal molecule and regulates various physiological and pathological processes. In recent years, there are many studies on the improvement of I/R injury by H2S through regulating autophagy, but the related mechanisms are not completely clear. Therefore, we summarize the related research in the above aspects to provide theoretical reference for future in-depth research.
Collapse
Affiliation(s)
- Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhu Wang
- Henan Technician College of Medicine and Health, Kaifeng, China
| | - Jie Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
12
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
13
|
Lin J, Li G, Xu C, Lu H, Zhang C, Pang Z, Liu Z. Monocyte Chemotactic Protein 1-Induced Protein 1 Is Highly Expressed in Inflammatory Bowel Disease and Negatively Regulates Neutrophil Activities. Mediators Inflamm 2020; 2020:8812020. [PMID: 33488293 PMCID: PMC7803109 DOI: 10.1155/2020/8812020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/06/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
Monocyte chemotactic protein 1-induced protein 1 (MCPIP-1) is highly expressed in activated immune cells and plays an important role in negatively regulating immune responses. However, its role in regulating neutrophil functions in the pathogenesis of inflammatory bowel disease (IBD) is still unclear. Here, we found that MCPIP-1 was markedly increased at both the transcriptional and translational levels in inflamed mucosa of IBD patients compared with healthy controls, which was mainly expressed in neutrophils. Interestingly, MG-132, a proteasome inhibitor reducing the degradation of MCPIP-1, further facilitated neutrophils to express MCPIP-1 in vitro. Importantly, MCPIP-1 markedly downregulated the production of ROS, MPO, and proinflammatory cytokines (e.g., interleukin-1β, interleukin-6, tumor necrosis factor-α, interleukin-8, and interferon-γ) and suppressed the migration of IBD neutrophils. Consistently, the same functional changes were observed in neutrophils from mice with myeloid-targeted overexpression of MCPIP-1 as MG-132 did. Altogether, these findings suggest that MCPIP-1 plays a negative role in regulating neutrophil activities through suppressing the production of ROS, MPO, and proinflammatory cytokines and inhibiting the migration. MG-132 may partially modulate the function of neutrophils via the induction of MCPIP-1. Therefore, targeting MCPIP-1 or exogenous supplementation of MG-132 may provide a therapeutic approach in the treatment of IBD.
Collapse
Affiliation(s)
- Jian Lin
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
- Department of Gastroenterology, Affiliated Hospital of Putian University, Putian, China
| | - Gengfeng Li
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Chunjin Xu
- Department of Gastroenterology, The First People's Hospital of Shangqiu City Affiliated to Xinxiang Medical University, Shangqiu, China
| | - Huiying Lu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Cui Zhang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhi Pang
- Department of Gastroenterology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
He GQ, Chen Y, Liao HJ, Xu WM, Zhang W, He GL. Associations between Huwe1 and autophagy in rat cerebral neuron oxygen‑glucose deprivation and reperfusion injury. Mol Med Rep 2020; 22:5083-5094. [PMID: 33173969 PMCID: PMC7646962 DOI: 10.3892/mmr.2020.11611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Autophagy and the ubiquitin proteasome system (UPS) are two major protein degradation pathways involved in brain ischemia. Autophagy can compensate for UPS impairment-induced cellular dysfunction. HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1 (Huwe1), an E3 ubiquitin ligase, serves critical roles in nervous system plasticity, regeneration and disease. However, the role of Huwe1 in autophagy in brain ischemia/reperfusion (I/R) injury remains unknown. The aim of the present study was to investigate the crosstalk between autophagy and the UPS in brain ischemia. The present study established an oxygen-glucose deprivation and reperfusion (OGD/R) model in rat primary cortex neurons in vitro. Lentiviral interference was used to silence the expression of Huwe1. An autophagy promoter (rapamycin), an autophagy inhibitor (wortmannin) and a JNK pathway inhibitor (SP600125) were also used in the current study. Cellular autophagy-related proteins, including Beclin-1, autophagy related (ATG) 7, ATG5, ATG3 and microtubule associated protein 1 light chain 3 α, and apoptosis-related proteins, such as P53, cleaved caspase 3, Bax and Bcl2, were detected via western blotting and immunocytochemistry. Neuronal apoptosis was evaluated using a TUNEL assay. The results demonstrated that silencing Huwe1 increased the expression levels of autophagy-related proteins at 24 h after OGD/R. Treatment with a JNK inhibitor or cotreatment with Huwe1 shRNA significantly increased autophagy. Rapamycin increased apoptosis under OGD/R conditions. However, treatment with Huwe1 shRNA decreased the number of TUNEL-positive cells at 24 h after OGD/R. Cotreatment with Huwe1 shRNA and wortmannin alleviated neuronal apoptosis under OGD/R conditions compared with cotreatment with DMSO. Collectively, the present results suggested that silencing Huwe1 was accompanied by a compensatory induction of autophagy under OGD/R conditions. Furthermore, the JNK pathway may be a key mediator of the interaction between Huwe1 and autophagy in response to UPS impairment.
Collapse
Affiliation(s)
- Guo-Qian He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Yan Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Hui-Juan Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Wen-Ming Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Wei Zhang
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to School of Medicine, Chengdu, Sichuan 610041, P.R. China
| | - Guo-Lin He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
15
|
Liu J, Guo ZN, Yan XL, Huang S, Ren JX, Luo Y, Yang Y. Crosstalk Between Autophagy and Ferroptosis and Its Putative Role in Ischemic Stroke. Front Cell Neurosci 2020; 14:577403. [PMID: 33132849 PMCID: PMC7566169 DOI: 10.3389/fncel.2020.577403] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a conserved process to maintains homeostasis via the degradation of toxic cell contents, which can either promote cell survival or accelerate cellular demise. Ferroptosis is a recently discovered iron-dependent cell death pathway associated with the accumulation of lethal reactive lipid species. In the past few years, an increasing number of studies have suggested the crosstalk between autophagy and ferroptosis. Ischemic stroke is a complex brain disease regulated by several cell death pathways, including autophagy and ferroptosis. However, the potential links between autophagy and ferroptosis in ischemic stroke have not yet been explored. In this review, we briefly overview the mechanisms of ferroptosis and autophagy, as well as their possible connections in ischemic stroke. The elucidation of crosstalk between different cell death pathways may provide insight into new future ischemic stroke therapies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Jia-Xin Ren
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
| | - Yun Luo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
16
|
Tissue-Specific Impact of Autophagy Genes on the Ubiquitin-Proteasome System in C. elegans. Cells 2020; 9:cells9081858. [PMID: 32784405 PMCID: PMC7464313 DOI: 10.3390/cells9081858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) and the autophagy–lysosomal pathway (ALP) are the two main eukaryotic intracellular proteolytic systems involved in maintaining proteostasis. Several studies have reported on the interplay between the UPS and ALP, however it remains largely unknown how compromised autophagy affects UPS function in vivo. Here, we have studied the crosstalk between the UPS and ALP by investigating the tissue-specific effect of autophagy genes on the UPS at an organismal level. Using transgenic Caenorhabditis elegans expressing fluorescent UPS reporters, we show that the downregulation of the autophagy genes lgg-1 and lgg-2 (ATG8/LC3/GABARAP), bec-1 (BECLIN1), atg-7 (ATG7) and epg-5 (mEPG5) by RNAi decreases proteasomal degradation, concomitant with the accumulation of polyubiquitinated proteasomal substrates in a tissue-specific manner. For some of these genes, the changes in proteasomal degradation occur without a detectable alteration in proteasome tissue expression levels. In addition, the lgg-1 RNAi-induced reduction in proteasome activity in intestinal cells is not dependent on sqst-1/p62 accumulation. Our results illustrate that compromised autophagy can affect UPS in a tissue-specific manner, and demonstrate that UPS does not function as a direct compensatory mechanism in an animal. Further, a more profound understanding of the multilayered crosstalk between UPS and ALP can facilitate the development of therapeutic options for various disorders linked to dysfunction in proteostasis.
Collapse
|
17
|
Zhu N, Cao X, Hao P, Zhang Y, Chen Y, Zhang J, Li J, Gao C, Li L. Berberine attenuates mitochondrial dysfunction by inducing autophagic flux in myocardial hypoxia/reoxygenation injury. Cell Stress Chaperones 2020; 25:417-426. [PMID: 32088907 PMCID: PMC7193011 DOI: 10.1007/s12192-020-01081-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Berberine (BBR) is routinely prescribed in many Asian countries to treat diarrhea. Evidence from both animal and clinical investigations suggests that BBR exerts diverse pharmacological activities, including antidiabetic, antineoplastic, antihypertensive, and antiatherosclerotic effects. This study aimed to explore the cardioprotective mechanisms of BBR and to elucidate the modulations between autophagy and mitochondrial function during hypoxia/reoxygenation (H/R) in H9c2 cells. The degree of autophagic flux was assessed by pretreating H9c2 cells with BBR prior to H/R exposure and measuring the expression levels of Beclin-1 and green fluorescent protein (GFP)-labeled LC3B fusion proteins as well as the LC3II/LC3I ratio. The mitochondrial membrane potential (△Ψm) in H9c2 cells was evaluated by detecting rhodamine-123 fluorescence using flow cytometry. The results revealed that pretreatment with BBR upregulated autophagic flux and protected against the loss of the △Ψm in H9c2 cells subjected to H/R. We conclude that BBR attenuates mitochondrial dysfunction by inducing autophagic flux.
Collapse
Affiliation(s)
- Na Zhu
- Department of Health Management, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, People's Republic of China
| | - Xueming Cao
- Department of Cardiology, Henan Provincial Key Lab For Control of Coronary Heart Disease, Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University Central China Fuwai Hospital, Henan University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Peiyuan Hao
- Department of Cardiology, Henan Provincial Key Lab For Control of Coronary Heart Disease, Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University Central China Fuwai Hospital, Henan University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Yuwei Zhang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou university people's hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Yan Chen
- Department of Cardiology, Henan Provincial Key Lab For Control of Coronary Heart Disease, Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University Central China Fuwai Hospital, Henan University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Jing Zhang
- Department of Cardiology, Henan Provincial Key Lab For Control of Coronary Heart Disease, Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University Central China Fuwai Hospital, Henan University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Jiang Li
- Henan Provincial Research Center of Natural Medicine Extraction and Medical Technology Application Engineering, Zhengzhou Railway Vocational Technical College, Zhengzhou, 451460, China
| | - Chuanyu Gao
- Department of Cardiology, Henan Provincial Key Lab For Control of Coronary Heart Disease, Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University Central China Fuwai Hospital, Henan University People's Hospital, Zhengzhou, 450003, People's Republic of China.
| | - Li Li
- Department of Scientific Research and Discipline Construction, Henan Provincial People's Hospital, Zhengzhou university people's hospital, Henan University People's Hospital, Zhengzhou, 450003, China.
| |
Collapse
|
18
|
The Role of Ubiquitin-Proteasome Pathway and Autophagy-Lysosome Pathway in Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5457049. [PMID: 32089771 PMCID: PMC7016479 DOI: 10.1155/2020/5457049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome pathway and autophagy-lysosome pathway are two major routes for clearance of aberrant cellular components to maintain protein homeostasis and normal cellular functions. Accumulating evidence shows that these two pathways are impaired during cerebral ischemia, which contributes to ischemic-induced neuronal necrosis and apoptosis. This review aims to critically discuss current knowledge and controversies on these two pathways in response to cerebral ischemic stress. We also discuss molecular mechanisms underlying the impairments of these protein degradation pathways and how such impairments lead to neuronal damage after cerebral ischemia. Further, we review the recent advance on the understanding of the involvement of these two pathways in the pathological process during many therapeutic approaches against cerebral ischemia. Despite recent advances, the exact role and molecular mechanisms of these two pathways following cerebral ischemia are complex and not completely understood, of which better understanding will provide avenues to develop novel therapeutic strategies for ischemic stroke.
Collapse
|
19
|
Fan T, Yang S, Huang Z, Wang W, Guo X, Pan S, Zhang B, Xu Y, Fang Y, Mao Z, Hu H, Geng Q. Autophagy decreases alveolar epithelial cell injury by regulating the release of inflammatory mediators. J Cell Physiol 2020; 235:7982-7995. [PMID: 31960959 DOI: 10.1002/jcp.29453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/08/2020] [Indexed: 11/07/2022]
Abstract
To research the impact of autophagy on alveolar epithelial cell inflammation and its possible mechanism in the early stages of hypoxia, we established a cell hypoxia-reoxygenation model and orthotopic left lung ischemia-reperfusion model. Rat alveolar epithelial cells stably expressing GFP-LC3 were treated with an autophagy inhibitor (3-MA) or an autophagy promoter (rapamycin), followed by hypoxia-reoxygenation treatment for 2, 4, and 6 hr in vitro. In vivo, 20 male Sprague Dawley rats were randomly divided into four groups (model group: No blocking of the hilum in the left lung; control group: Blocking of the hilum in the left lung for 1 hr with dimethyl sulfoxide lavage; 3-MA group: Blocking of the hilum in the left lung for 1 hr with 100 ml/kg of 3-MA (5 μmol/L) solution lavage; and rapamycin group: Blocking of the hilum in the left lung for 1 hr with 100 ml/kg of rapamycin (250 nmol/L) solution lavage) to establish an orthotopic left lung ischemia model. This study demonstrated that rapamycin significantly suppressed the nuclear factor kappa B signaling pathway and limited the expression of proinflammatory factors. A contrary result was found after the 3-MA pretreatment. These findings indicate that autophagy reduces ischemia-reperfusion injury by repressing inflammatory signaling pathways in the early stages of hypoxia in vitro and in vivo. Autophagy could be a new protective method for application in lung ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Tao Fan
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Shuo Yang
- Department of Cardiology, Renmin Hospital, Cardiovascular Research Institute of Wuhan University, Wuhan University, Wuhan, China
| | - Zhixin Huang
- Department of Gynecology and Obstetrics, Renmin Hospital, Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xiaobo Guo
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Shize Pan
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Boyou Zhang
- Department of Emergency, Beijing Ji Shui Tan Hospital, Beijing, China
| | - Yao Xu
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yifan Fang
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zhangfan Mao
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Hao Hu
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Yang HX, Wang P, Wang NN, Li SD, Yang MH. Tongxinluo Ameliorates Myocardial Ischemia-Reperfusion Injury Mainly via Activating Parkin-Mediated Mitophagy and Downregulating Ubiquitin-Proteasome System. Chin J Integr Med 2019; 27:542-550. [PMID: 31227964 DOI: 10.1007/s11655-019-3166-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To investigate the protective effects and mechanism of Chinese herbal compound Tongxinluo Capsule (, TXL) on the Parkin-mediated mitophagy and the ubiquitin-proteasome system in a rat model of myocardial ischemia-reperfusion injury (MIRI). METHODS Seventy adult male Sprague-Dawley rats were randomly divided into 7 groups: sham group, MIRI group, low- and high-dose TXL (0.5 and 1 g·kg-1·d-1, respectively) groups, atorvastatin (ATV) group (7.2 g·kg-1·d-1), chloroquine (CQ) group (10 g·kg-1·d-1), and highdose TXL + CQ group. After pharmacological administration for 7 days, rats underwent left anterior descending artery ligation surgery to establish the MIRI models with 50 min ischemia followed by 4 h reperfusion. Blood was taken for cardiac troponin I (cTnI) detection and hearts were harvested for infarct staining and apoptosis detection. The autophagy or mitophagy proteins and ubiquitinated proteins were detected by Western blotting. RESULTS Compared with the sham group, the MIRI group exhibited a larger infarcted area (27.13%±0.01%, P<0.01), a higher apoptotic index (34.33%±2.03% vs.1.81%±0.03%, P<0.01), and higher cTnI expression (14.18±1.01 vs. 7.96±0.32, P<0.01). The mitochondrial integrity was damaged in the MIRI group, while TXL and ATV alleviated the damage of MIRI. More autophagosomes were observed in the high-dose TXL group than in the MIRI group (7.00±0.58 vs. 4.33±1.15, P<0.05). More amounts of PTEN-induced putative kinase protein 1 (PINK1) and Parkin translocated onto the mitochondria were detected in the high-dose TXL group than in the MIRI group (P<0.05). The ubiquitin response was signifificantly downregulated in the high-dose TXL group relative to the MIRI group (P<0.05). CQ administration abolished the activation of autophagy flux and the PINK1/ Parkin pathway induced by high-dose of TXL. CONCLUSIONS TXL ameliorates MIRI via activating Parkin-mediated mitophagy in rats. The downregulation of the ubiquitin-proteasome system is also involved.
Collapse
Affiliation(s)
- Hong-Xing Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Peng Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ning-Ning Wang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Shao-Dan Li
- Department of Traditional Chinese Medicine, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Ming-Hui Yang
- Department of Traditional Chinese Medicine, Chinese People's Liberation Army General Hospital, Beijing, 100853, China.
| |
Collapse
|
21
|
Yang L, Zhao L, Cui L, Huang Y, Ye J, Zhang Q, Jiang X, Zhang D, Huang Y. Decreased α-tubulin acetylation induced by an acidic environment impairs autophagosome formation and leads to rat cardiomyocyte injury. J Mol Cell Cardiol 2019; 127:143-153. [DOI: 10.1016/j.yjmcc.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/02/2018] [Accepted: 12/20/2018] [Indexed: 11/26/2022]
|
22
|
Dang M, Zeng X, Chen B, Wang H, Li H, Liu Y, Zhang X, Cao X, Du F, Guo C. Soluble receptor for advance glycation end-products inhibits ischemia/reperfusion-induced myocardial autophagy via the STAT3 pathway. Free Radic Biol Med 2019; 130:107-119. [PMID: 30367996 DOI: 10.1016/j.freeradbiomed.2018.10.437] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 11/24/2022]
Abstract
The pathogenesis of myocardial ischemia/reperfusion (I/R) is poorly understood, but recent evidence suggests that autophagy plays crucial roles in I/R injuries. Soluble receptor for advanced glycation end-products (sRAGE) exerts protective effects during I/R by decreasing cardiac apoptosis, which is mediated via increasing the ubiquitin proteasome system (UPS) and signal transducer and activator of transcription 3 (STAT3). The present study examined the effects and mechanisms of sRAGE on I/R-triggered cardiac autophagy. I/R was performed in mice or primary neonatal cardiomyocytes with or without sRAGE administration or overexpression. Cardiac function and infarct size were detected in mouse hearts. Apoptosis, autophagy and autophagy-related signaling pathways were detected in mouse hearts and cardiomyocytes. The results demonstrated that sRAGE significantly improved cardiac function and reduced infarct size during I/R in mice. sRAGE inhibited I/R-induced apoptosis, which correlated with a reduction in autophagy-associated proteins, including ATG7, Beclin-1 and microtubule-associated protein 1 light chain 3 (LC3). sRAGE reduced autophagosome formation during I/R in vivo and in vitro. sRAGE significantly activated STAT3, but not mammalian target of rapamycin (mTOR), during I/R in vivo and in vitro, and suppression of STAT3 abolished the sRAGE inhibition of autophagy during I/R in vitro. Activation of autophagy using ATG7 overexpression with an adenovirus significantly abolished the sRAGE-induced reduction of cardiac apoptosis during I/R. These results suggest that sRAGE inhibits I/R injuries in the heart via a decrease in autophagy, a process that is dependent on STAT3 activation.
Collapse
Affiliation(s)
- Mengqiu Dang
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Buxing Chen
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Hongxia Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Huihua Li
- Department of Cardiology, Institute of cardiovascular Disease, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yu Liu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Xiuling Zhang
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Xianxian Cao
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Fenghe Du
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China; Department of Geriatrics, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Caixia Guo
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China.
| |
Collapse
|
23
|
He GQ, Xu WM, Liao HJ, Jiang C, Li CQ, Zhang W. Silencing Huwe1 reduces apoptosis of cortical neurons exposed to oxygen-glucose deprivation and reperfusion. Neural Regen Res 2019; 14:1977-1985. [PMID: 31290456 PMCID: PMC6676871 DOI: 10.4103/1673-5374.259620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HECT, UBA and WWE domain-containing 1 (Huwe1), an E3 ubiquitin ligase involved in the ubiquitin-proteasome system, is widely expressed in brain tissue. Huwe1 is involved in the turnover of numerous substrates, including p53, Mcl-1, Cdc6 and N-myc, thereby playing a critical role in apoptosis and neurogenesis. However, the role of Huwe1 in brain ischemia and reperfusion injury remains unclear. Therefore, in this study, we investigated the role of Huwe1 in an in vitro model of ischemia and reperfusion injury. At 3 days in vitro, primary cortical neurons were transduced with a control or shRNA-Huwe1 lentiviral vector to silence expression of Huwe1. At 7 days in vitro, the cells were exposed to oxygen-glucose deprivation for 3 hours and reperfusion for 24 hours. To examine the role of the c-Jun N-terminal kinase (JNK)/p38 pathway, cortical neurons were pretreated with a JNK inhibitor (SP600125) or a p38MAPK inhibitor (SB203508) for 30 minutes at 7 days in vitro, followed by ischemia and reperfusion. Neuronal apoptosis was assessed by TUNEL assay. Protein expression levels of JNK and p38MAPK and of apoptosis-related proteins (p53, Gadd45a, cleaved caspase-3, Bax and Bcl-2) were measured by western blot assay. Immunofluorescence labeling for cleaved caspase-3 was performed. We observed a significant increase in neuronal apoptosis and Huwe1 expression after ischemia and reperfusion. Treatment with the shRNA-Huwe1 lentiviral vector markedly decreased Huwe1 levels, and significantly decreased the number of TUNEL-positive cells after ischemia and reperfusion. The silencing vector also downregulated the pro-apoptotic proteins Bax and cleaved caspase-3, and upregulated the anti-apoptotic proteins Gadd45a and Bcl-2. Silencing Huwe1 also significantly reduced p-JNK levels and increased p-p38 levels. Our findings show that downregulating Huwe1 affects the JNK and p38MAPK signaling pathways as well as the expression of apoptosis-related genes to provide neuroprotection during ischemia and reperfusion. All animal experiments and procedures were approved by the Animal Ethics Committee of Sichuan University, China in January 2018 (approval No. 2018013).
Collapse
Affiliation(s)
- Guo-Qian He
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wen-Ming Xu
- Joint Laboratory of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui-Juan Liao
- Joint Laboratory of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chuan Jiang
- Joint Laboratory of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chang-Qing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhang
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| |
Collapse
|
24
|
Li M, Pan B, Shi Y, Fu J, Xue X. Increased expression of CHOP and LC3B in newborn rats with bronchopulmonary dysplasia. Int J Mol Med 2018; 42:1653-1665. [PMID: 29901175 DOI: 10.3892/ijmm.2018.3724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 05/09/2018] [Indexed: 11/06/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) seriously affects the health and prognosis of children, but the efficacy of treatments is poor. The present study aimed to examine the effects of C/EBP homologous protein (CHOP), activating transcription factor 4 (ATF4) and microtubule‑associated protein light chain 3β (LC3B), and the interaction between CHOP and LC3B, in newborn rats with BPD. At 1, 7, 14 and 21 days, the rats in the model [fraction of inspired oxygen (FiO2)=80‑85%] and control groups (FiO2=21%) were randomly sacrificed, and lung samples were collected. Alveolar development was evaluated according to the radial alveolar count (RAC) and alveolar septum thickness. Ultrastructural changes were observed by transmission electron microscopy (TEM), the expression levels of CHOP, ATF4 and LC3B were determined by immunohistochemistry, and western blot and reverse transcription‑quantitative polymerase chain reaction analyses. The co‑localization of CHOP and LC3B in lung tissues was determined by immunofluorescence. The results showed that, compared with the control group, alveolarization arrest was present in the model group. The TEM observations revealed that, at 14 days, type II alveolar epithelial cell (AECII) lamellar bodies were damaged, with an apparent dilation of the endoplasmic reticulum (ER) and autophagy in cells within the model group. Between days 7 and 14, the protein levels of ATF4, CHOP and LC3B were significantly increased in the model group. The mRNA levels of CHOP and LC3B were lower at days 7‑21. CHOP and LC3B were co‑localized in the cells of the lung tissues at day 14 in the model group. Pearson's correlation analysis showed that the protein levels of CHOP and LC3B‑II were positively correlated in the model groups. As in previous studies, the present study demonstrated that BPD damaged the AECII cells, which exhibited detached and sparse microvilli and the vacuolization of lamellar bodies. In addition, it was found that the ER was dilated, with autophagosomes containing ER and other organelles in AECII cells; the expression levels of CHOP and LC3B‑II were upregulated. CHOP and LC3B‑II may have joint involvement in the occurrence and development of BPD.
Collapse
Affiliation(s)
- Mengyun Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bingting Pan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
25
|
Li P, Hao L, Guo YY, Yang GL, Mei H, Li XH, Zhai QX. Chloroquine inhibits autophagy and deteriorates the mitochondrial dysfunction and apoptosis in hypoxic rat neurons. Life Sci 2018; 202:70-77. [DOI: 10.1016/j.lfs.2018.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 01/28/2023]
|
26
|
Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY. Autophagy in ischemic stroke. Prog Neurobiol 2018; 163-164:98-117. [DOI: 10.1016/j.pneurobio.2018.01.001] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/04/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
|
27
|
Jiang WW, Huang BS, Han Y, Deng LH, Wu LX. Sodium hydrosulfide attenuates cerebral ischemia/reperfusion injury by suppressing overactivated autophagy in rats. FEBS Open Bio 2017; 7:1686-1695. [PMID: 29123977 PMCID: PMC5666398 DOI: 10.1002/2211-5463.12301] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/11/2017] [Accepted: 08/14/2017] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, and autophagy may be involved in the pathological process of cerebral ischemia/reperfusion injury. Hydrogen sulfide (H2S) is an endogenous gasotransmitter with protective effects against multiple diseases. Here, we tested the effect of H2S on cerebral ischemia/reperfusion injury in rats. Sodium hydrosulfide (NaHS), an H2S donor, improved neurological function and reduced the size of the infarcts induced by transient middle cerebral artery occlusion (MCAO) followed by reperfusion in rats. NaHS treatment reduced the lactate dehydrogenase (LDH) activity in the serum (a marker of cellular membrane integrity) and the expression of cleaved caspase-3 (a marker for apoptosis) in the brains of MCAO rats. We also found that autophagy was overactivated in the brains of MCAO rats, as indicated by an increased ratio of LC3 II to I, decreased expression of p62, and transmission electron microscope detection. NaHS treatment significantly inhibited the autophagic activity in the brains of MCAO rats. Furthermore, PC12 cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic MCAO in vitro. We found that NaHS treatment reduced cellular injury and suppressed overactivated autophagy induced by OGD/R in PC12 cells. An autophagy stimulator (rapamycin) eliminated the protective effect of NaHS against LDH release and caspase-3 activity induced by OGD/R in PC12 cells. An autophagy inhibitor (3-methyladenine, 3-MA) also reduced the cellular injury induced by OGD/R in PC12 cells. In conclusion, the results indicate that overactivated autophagy accelerates cellular injury after MCAO in rats and that exogenous H2S attenuates cerebral ischemia/reperfusion injury via suppressing overactivated autophagy in rats.
Collapse
Affiliation(s)
- Wen-Wu Jiang
- Department of Physiology Xiangya School of Medicine Central South University Changsha China.,Department of Neurosurgery the First Affiliated Hospital of University of South China Hengyang China
| | - Bai-Sheng Huang
- Department of Physiology Xiangya School of Medicine Central South University Changsha China
| | - Yang Han
- Department of Physiology Xiangya School of Medicine Central South University Changsha China
| | - Lv-Hong Deng
- The First Affiliated Hospital of University of South China Hengyang China
| | - Li-Xiang Wu
- Department of Physiology Xiangya School of Medicine Central South University Changsha China
| |
Collapse
|
28
|
Mei JM, Niu CS. How does conserved dopamine neurotrophic factor protect against and rescue neurodegeneration of PC12 cells? Neural Regen Res 2017; 12:1145-1151. [PMID: 28852398 PMCID: PMC5558495 DOI: 10.4103/1673-5374.211195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Conserved dopamine neurotrophic factor protects and rescues dopaminergic neurodegeneration induced by 6-hydroxydopamine in vivo, but its potential value in treating Parkinson's disease remains controversial. Here, we used the proteasome inhibitors lactacystin and MG132 to induce neurodegeneration of PC12 cells. Afterwards, conserved dopamine neurotrophic factor was administrated as a therapeutic factor, both pretreatment and posttreatment. Our results showed that (1) conserved dopamine neurotrophic factor enhanced lactacystin/MG132-induced cell viability and morphology, and attenuated alpha-synuclein accumulation in differentiated PC12 cells. (2) Enzyme linked immunosorbent assay showed up-regulated 26S proteasomal activity in MG132-induced PC12 cells after pre- and posttreatment with conserved dopamine neurotrophic factor. Similarly, 26S proteasome activity was upregulated in lactacystin-induced PC12 cells pretreated with conserved dopamine neurotrophic factor. (3) With regard proteolytic enzymes (specifically, glutamyl peptide hydrolase, chymotrypsin, and trypsin), glutamyl peptide hydrolase activity was up-regulated in lactacystin/MG132-administered PC12 cells after pre- and posttreatment with conserved dopamine neurotrophic factor. However, upregulation of chymotrypsin activity was only observed in MG132-administered PC12 cells pretreated with conserved dopamine neurotrophic factor. There was no change in trypsin expression. We conclude that conserved dopamine neurotrophic factor develops its neurotrophic effects by modulating proteasomal activities, and thereby protects and rescues PC12 cells against neurodegeneration.
Collapse
Affiliation(s)
- Jia-Ming Mei
- Shandong University, Jinan, Shandong Province, China.,Department of Neurosurgery, Anhui Provincial Hospital, Hefei, Anhui Province, China
| | - Chao-Shi Niu
- Shandong University, Jinan, Shandong Province, China.,Department of Neurosurgery, Anhui Provincial Hospital, Hefei, Anhui Province, China
| |
Collapse
|
29
|
Interaction between autophagy and senescence is required for dihydroartemisinin to alleviate liver fibrosis. Cell Death Dis 2017; 8:e2886. [PMID: 28617435 PMCID: PMC5520911 DOI: 10.1038/cddis.2017.255] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/17/2016] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
Autophagy and cellular senescence are stress responses essential for homeostasis. Therefore, they may represent new pharmacologic targets for drug development to treat diseases. In this study, we sought to evaluate the effect of dihydroartemisinin (DHA) on senescence of activated hepatic stellate cells (HSCs), and to further elucidate the underlying mechanisms. We found that DHA treatment induced the accumulation of senescent activated HSCs in rat fibrotic liver, and promoted the expression of senescence markers p53, p16, p21 and Hmga1 in cell model. Importantly, our study identified the transcription factor GATA6 as an upstream molecule in the facilitation of DHA-induced HSC senescence. GATA6 accumulation promoted DHA-induced p53 and p16 upregulation, and contributed to HSC senescence. By contrast, siRNA-mediated knockdown of GATA6 dramatically abolished DHA-induced upregulation of p53 and p16, and in turn inhibited HSC senescence. Interestingly, DHA also appeared to increase autophagosome generation and autophagic flux in activated HSCs, which was underlying mechanism for DHA-induced GATA6 accumulation. Autophagy depletion impaired GATA6 accumulation, while autophagy induction showed a synergistic effect with DHA. Attractively, p62 was found to act as a negative regulator of GATA6 accumulation. Treatment of cultured HSCs with various autophagy inhibitors, led to an inhibition of DHA-induced p62 degradation, and in turn, prevented DHA-induced GATA6 accumulation and HSC senescence. Overall, these results provide novel implications to reveal the molecular mechanism of DHA-induced senescence, by which points to the possibility of using DHA based proautophagic drugs for the treatment of liver fibrosis.
Collapse
|
30
|
Shao BZ, Ke P, Xu ZQ, Wei W, Cheng MH, Han BZ, Chen XW, Su DF, Liu C. Autophagy Plays an Important Role in Anti-inflammatory Mechanisms Stimulated by Alpha7 Nicotinic Acetylcholine Receptor. Front Immunol 2017; 8:553. [PMID: 28559895 PMCID: PMC5432615 DOI: 10.3389/fimmu.2017.00553] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Alpha7 nicotinic acetylcholine receptor (α7nAChR) has been reported to alleviate neuroinflammation. Here, we aimed to determine the role of autophagy in α7nAChR-mediated inhibition of neuroinflammation and its underlying mechanism. Experimental autoimmune encephalomyelitis (EAE) mice and lipopolysaccharide-stimulated BV2 microglia were used as in vivo and in vitro models of neuroinflammation, respectively. The severity of EAE was evaluated with neurological scoring. Autophagy-related proteins (Beclin 1, LC3-II/I, p62/SQSTM1) were detected by immunoblot. Autophagosomes were observed using transmission electron microscopy and tandem fluorescent mRFP-GFP-LC3 plasmid was applied to test autophagy flux. The mRNA levels of interleukin-6 (IL-6), IL-1β, IL-18, and tumor necrosis factor-α (TNF-α) were detected by real-time PCR. We used 3-methyladenine (3-MA) and autophagy-related gene 5 small interfering RNA (Atg5 siRNA) to block autophagy in vivo and in vitro, respectively. Activating α7nAChR with PNU282987 ameliorates EAE severity and spinal inflammatory infiltration in EAE mice. PNU282987 treatment also enhanced monocyte/microglia autophagy (Beclin 1, LC3-II/I ratio, p62/SQSTM1, colocalization of CD45- or CD68-positive cells with LC3) both in spinal cord and spleen from EAE mice. The beneficial effects of PNU282987 on EAE mice were partly abolished by 3-MA, an autophagy inhibitor. In vitro, PNU282987 treatment increased autophagy and promoted autophagy flux. Blockade of autophagy by Atg5 siRNA or bafilomycin A1 attenuated the inhibitory effect of PNU282987 on IL-6, IL-1β, IL-18, and TNF-α mRNA. Our results demonstrate for the first time that activating α7nAChR enhances monocyte/microglia autophagy, which suppresses neuroinflammation and thus plays an alleviative role in EAE.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ping Ke
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Zhe-Qi Xu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Wei Wei
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ming-He Cheng
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Bin-Ze Han
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xiong-Wen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chong Liu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
31
|
Ye M, Qiu H, Cao Y, Zhang M, Mi Y, Yu J, Wang C. Curcumin Improves Palmitate-Induced Insulin Resistance in Human Umbilical Vein Endothelial Cells by Maintaining Proteostasis in Endoplasmic Reticulum. Front Pharmacol 2017; 8:148. [PMID: 28377722 PMCID: PMC5359258 DOI: 10.3389/fphar.2017.00148] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/08/2017] [Indexed: 01/08/2023] Open
Abstract
Dysfunction of proteasome and autophagy will result in disturbance of endoplasmic reticulum (ER) proteostasis, and thus lead to long-term and chronic ER stress and subsequent unfolded protein response (UPR), which is implicated in the occurrence and development of insulin resistance. Curcumin exerts beneficial metabolic effects in in vitro cells and in vivo animal models of diabetes and diabetic complications including cardiovascular diseases, due to its powerful anti-oxidative and anti-inflammatory properties. However, its impacts on insulin resistance of endothelial cells and its underlying mechanism(s) remain ill-defined. Herein, we tested the hypothesis that curcumin action in ER protein quality control was related to improvement of insulin resistance in human umbilical vein endothelial cells (HUVECs) cultured with saturated fatty acid palmitate. We found that palmitate treatment induced insulin resistance of HUVECs and activated both the ubiquitin-proteasome system (UPS) and autophagy. Palmitate-stimulated activation of the UPS and autophagy was attenuated by pharmacological inhibition of ER stress. In addition, curcumin supplementation mitigated palmitate-induced insulin resistance, inhibited the UPS, and activated autophagy. Furthermore, curcumin administration suppressed palmitate-induced protein aggregation and ER stress. Genetic inhibition of autophagy by silencing autophagy protein 5 (Atg5) completely restored total protein ubiquitination and protein aggregation in HUVECs treated with combined curcumin and palmitate. Atg5-knockdown also abolished the beneficial effects of curcumin on palmitate-induced ER stress, JNK/IRS-1 pathway as well as insulin signaling. Our results reveal that curcumin-activated autophagy could maintain proteostasis in ER leading to attenuation of ER stress and subsequent inhibition of JNK/IRS-1 pathway and improvement of insulin resistance.
Collapse
Affiliation(s)
- Mao Ye
- Department of Endocrinology, The Central Hospital of Enshi Autonomous PrefectureEnshi, China; Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan UniversityWuhan, China
| | - Hong Qiu
- Department of Laboratory, Dongfeng General Hospital of Hubei Medical University Shiyan, China
| | - Yingkang Cao
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University Wuhan, China
| | - Min Zhang
- Department of Endocrinology, The Central Hospital of Enshi Autonomous Prefecture Enshi, China
| | - Yan Mi
- Department of Endocrinology, The Central Hospital of Enshi Autonomous Prefecture Enshi, China
| | - Jing Yu
- Department of Endocrinology, The Central Hospital of Enshi Autonomous Prefecture Enshi, China
| | - Changhua Wang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University Wuhan, China
| |
Collapse
|
32
|
Chirumbolo S, Bjørklund G. PERM Hypothesis: The Fundamental Machinery Able to Elucidate the Role of Xenobiotics and Hormesis in Cell Survival and Homeostasis. Int J Mol Sci 2017; 18:ijms18010165. [PMID: 28098843 PMCID: PMC5297798 DOI: 10.3390/ijms18010165] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 02/07/2023] Open
Abstract
In this article the Proteasome, Endoplasmic Reticulum and Mitochondria (PERM) hypothesis is discussed. The complex machinery made by three homeostatic mechanisms involving the proteasome (P), endoplasmic reticulum (ER) and mitochondria (M) is addressed in order to elucidate the beneficial role of many xenobiotics, either trace metals or phytochemicals, which are spread in the human environment and in dietary habits, exerting their actions on the mechanisms underlying cell survival (apoptosis, cell cycle regulation, DNA repair and turnover, autophagy) and stress response. The "PERM hypothesis" suggests that xenobiotics can modulate this central signaling and the regulatory engine made fundamentally by the ER, mitochondria and proteasome, together with other ancillary components such as peroxisomes, by acting on the energetic balance, redox system and macromolecule turnover. In this context, reactive species and stressors are fundamentally signalling molecules that could act as negative-modulating signals if PERM-mediated control is offline, impaired or dysregulated, as occurs in metabolic syndrome, degenerative disorders, chronic inflammation and cancer. Calcium is an important oscillatory input of this regulation and, in this hypothesis, it might play a role in maintaining the correct rhythm of this PERM modulation, probably chaotic in its nature, and guiding cells to a more drastic decision, such as apoptosis. The commonest effort sustained by cells is to maintain their survival balance and the proterome has the fundamental task of supporting this mechanism. Mild stress is probably the main stimulus in this sense. Hormesis is therefore re-interpreted in the light of this hypothetical model and that experimental evidence arising from flavonoid and hormesis reasearch.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona 37134, Italy.
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana 8610, Norway.
| |
Collapse
|