1
|
Dabbaghi MM, Soleimani Roudi H, Safaei R, Baradaran Rahimi V, Fadaei MR, Askari VR. Unveiling the Mechanism of Protective Effects of Tanshinone as a New Fighter Against Cardiovascular Diseases: A Systematic Review. Cardiovasc Toxicol 2024; 24:1467-1509. [PMID: 39306819 DOI: 10.1007/s12012-024-09921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/08/2024] [Indexed: 11/15/2024]
Abstract
Tanshinone, a natural compound found in the roots of Salvia miltiorrhiza, has been shown to possess various pharmacological properties, including anti-inflammatory, antioxidant, and cardiovascular protective effects. This article aims to review the literature on the cardiovascular protective effects of tanshinone and its underlying mechanisms. Tanshinone has been demonstrated to improve cardiac function, reduce oxidative stress, and inhibit inflammation in various animal models of cardiovascular diseases. Additionally, it has been shown to regulate multiple signaling pathways involved in the pathogenesis of cardiovascular diseases, such as the PI3K/AKT, MAPK, and NF-κB pathways. Clinical studies have also suggested that tanshinone may have therapeutic potential for treating cardiovascular diseases. In conclusion, tanshinone has emerged as a promising natural compound with significant cardiovascular protective effects, and further research is warranted to explore its potential clinical applications.
Collapse
Affiliation(s)
- Mohammad Mahdi Dabbaghi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Hesan Soleimani Roudi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Rozhan Safaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran.
| |
Collapse
|
2
|
Xing-Xing C, Ri-Jin H, Xin-Ge W, Cai-Ying Y, Qing Y, Ying C, Qi L, Xiao-Xin Z, Lihong Y, Long C, Yu D. Mechanistic exploration of the shenlian formula in the suppression of atherosclerosis progression via network pharmacology and in vivo experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118347. [PMID: 38801914 DOI: 10.1016/j.jep.2024.118347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/21/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Shenlian formula (SL) is a Chinese medicine formula used to curb the development of atherosclerosis (AS) and cardiovascular disease in clinical practice. However, owing to the complexity of compounds and their related multiple targets in traditional Chinese medicine (TCM), it remains difficult and urgent to elucidate the underlying mechanisms at a holistic level. AIM To investigate the intrinsic mechanisms by which SL suppresses AS progression and to gain new insight into its clinical use. METHODS We proposed a network pharmacology-based workflow to evaluate the mechanism by which SL affects AS via data analysis, target prediction, PPI network construction, GO and KEGG analyses, and a "drug-core ingredient-potential target-key pathway" network. Then, non-targeted lipidomic analysis was performed to explore the differential lipid metabolites in AS rats, revealing the possible mechanism by which SL affects atherosclerotic progression. Moreover, an AS rabbit model was constructed and gavaged for SL intervention. Serum lipid profiles and inflammatory cytokine indices were tested as an indication of the mitigating effect of SL on AS. RESULTS A total of 89 bioactive compounds and 298 targets related to SL and AS, which play essential roles in this process, were identified, and a component-target-disease network was constructed. GO and KEGG analyses revealed that SL regulated metabolic pathway, lipids and atherosclerosis, the PI3K-Akt pathway, the MAPK pathway and so on. In vivo experimental validation revealed that a total of 43 different lipid metabolites regulated by SL were identified by non-targeted lipidomics, and glycerophospholipid metabolism was found to be an important mechanism for SL to interfere with AS. SL reduced the plaque area and decreased the levels of inflammatory cytokines (TNF-α and IL-4) and blood lipids (TC, TG, LDL-C, and ApoB) in HFD-induced AS models. In addition, HDL and ApoA1 levels are increased. PLA2 and Lipin1 are highly expressed in AS model, indicating their role in destabilizing glycerophosphatidylcholine metabolism and contributing to the onset and progression of ankylosing spondylitis. Moreover, SL intervention significantly reduced the level of pro-inflammatory cytokines; significantly down-regulated NF-kB/p65 expression, exhibiting anti-inflammatory activity. CONCLUSION The Shenlian formula (SL) plays a pivotal role in the suppression of AS progression by targeting multiple pathways and mechanisms. This study provides novel insights into the essential genes and pathways associated with the prognosis and pathogenesis of AS.
Collapse
Affiliation(s)
- Chen Xing-Xing
- Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New Area, Honghuagang District, Zunyi, 563003, PR China.
| | - Hao Ri-Jin
- Shanxi Pharmaceuticals Vocational College, No. 16, Minhangnanlu, Taiyuan, 030031, PR China.
| | - Wang Xin-Ge
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053, No. 5, Beixiange, Xicheng District, Beijing, PR China; Chengdu University of Traditional Chinese Medicine, No. 1166, West Liutai Avenue, Chengdu, 611137, PR China.
| | - Yan Cai-Ying
- Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New Area, Honghuagang District, Zunyi, 563003, PR China.
| | - Yang Qing
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Dongcheng District, Beijing, 100700, PR China.
| | - Chen Ying
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Dongcheng District, Beijing, 100700, PR China.
| | - Li Qi
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Dongcheng District, Beijing, 100700, PR China.
| | - Zhu Xiao-Xin
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Dongcheng District, Beijing, 100700, PR China.
| | - Yang Lihong
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Dongcheng District, Beijing, 100700, PR China.
| | - Cheng Long
- College of Nursing, Chifeng University, 024000, No. 1, Yingbing Road, Hongshan District, Chifeng, PR China.
| | - Dong Yu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053, No. 5, Beixiange, Xicheng District, Beijing, PR China.
| |
Collapse
|
3
|
Xie L, Mao T, Gao Q, Pan Y, Yang Z, Qu X, Feng R, Xia J, Lin Q, Wan J. Comparative efficacy of the five most common traditional Chinese medicine monomers in reducing intimal hyperproliferation in arterial balloon injury models: A network meta-analysis. Heliyon 2024; 10:e36327. [PMID: 39263082 PMCID: PMC11387273 DOI: 10.1016/j.heliyon.2024.e36327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Objective This study utilized network meta-analysis (NMA) to compare the efficacy of five commonly used traditional Chinese medicine monomers in reducing intimal hyperproliferation in arterial balloon injury models. Methods Relevant literature up to January 2024 was systematically retrieved from seven major databases. The intima-to-media (I/M) ratio was chosen as the primary outcome measure. The risk of bias in animal studies was assessed using the SYstematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool. Statistical analysis was conducted using Stata 17 software. Results A total of 43 studies were included in this meta-analysis. NMA results showed that in the rat model, compared to the control group, GS (SMD: 0.99, 95%CI: 1.25 to -0.73), ASIV (SMD: 1.16, 95%CI: 1.65 to -0.67), TMP (SMD: 0.68, 95%CI: 1.31 to -0.05), and TPNS (SMD: 1.36, 95%CI: 1.91 to -0.80) exhibited inhibitory effects on postoperative intimal hyperproliferation, reducing the I/M ratio. In the rabbit model, compared to the control group, TPNS (SMD: 1.23, 95%CI: 1.97 to -0.49) inhibited postoperative intimal hyperproliferation and reduced the I/M ratio. Superiority ranking analysis suggested that total Panax notoginseng saponin (TPNS) might be the most effective traditional Chinese medicine monomer in reducing intimal hyperproliferation in arterial balloon injury models, lowering the I/M ratio. Conclusion NMA indicates that traditional Chinese medicine monomers can effectively reduce postoperative intimal hyperproliferation in arterial balloon injury models, lowering the I/M ratio, with TPNS showing optimal efficacy. However, the research on TIIA is insufficient, and the limited sample size may affect the robustness of the results. Furthermore, the majority of research on traditional Chinese medicine monomers is currently limited to the experimental stage, lacking further clinical validation. Conducting standardized animal experiments and reporting their findings can enhance the quality of evidence from animal studies, laying the foundation for future clinical trials.
Collapse
Affiliation(s)
- Long Xie
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tianshi Mao
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qun Gao
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yi Pan
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhifei Yang
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinyan Qu
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruli Feng
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Junyan Xia
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie Wan
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
4
|
Hsu YC, Shih YH, Ho C, Liu CC, Liaw CC, Lin HY, Lin CL. Ethyl Acetate Fractions of Salvia miltiorrhiza Bunge (Danshen) Crude Extract Modulate Fibrotic Signals to Ameliorate Diabetic Kidney Injury. Int J Mol Sci 2024; 25:8986. [PMID: 39201671 PMCID: PMC11354680 DOI: 10.3390/ijms25168986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Diabetic nephropathy, a leading cause of end-stage renal disease, accounts for significant morbidity and mortality. It is characterized by microinflammation in the glomeruli and myofibroblast activation in the tubulointerstitium. Salvia miltiorrhiza Bunge, a traditional Chinese medicine, is shown to possess anti-inflammatory and anti-fibrotic properties, implying its renal-protective potential. This study investigates which type of component can reduce the damage caused by diabetic nephropathy in a single setting. The ethyl acetate (EtOAc) layer was demonstrated to provoke peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ activities in renal mesangial cells by dual luciferase reporter assay. In a high glucose (HG)-cultured mesangial cell model, the EtOAc layer substantially inhibited HG-induced elevations of interleukin-1β, transforming growth factor-β1 (TGF-β1), and fibronectin, whereas down-regulated PPAR-γ was restored. In addition, among the extracts of S. miltiorrhiza, the EtOAc layer effectively mitigated TGF-β1-stimulated myofibroblast activation. The EtOAc layer also showed a potent ability to attenuate renal hypertrophy, proteinuria, and fibrotic severity by repressing diabetes-induced proinflammatory factor, extracellular matrix accumulation, and PPAR-γ reduction in the STZ-induced diabetes mouse model. Our findings, both in vitro and in vivo, indicate the potential of the EtOAc layer from S. miltiorrhiza for future drug development targeting diabetic nephropathy.
Collapse
Affiliation(s)
- Yung-Chien Hsu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-C.H.); (Y.-H.S.); (C.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333423, Taiwan
| | - Ya-Hsueh Shih
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-C.H.); (Y.-H.S.); (C.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Cheng Ho
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Cheng-Chi Liu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-C.H.); (Y.-H.S.); (C.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Chia-Ching Liaw
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112304, Taiwan;
| | - Hui-Yi Lin
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Chun-Liang Lin
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-C.H.); (Y.-H.S.); (C.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
5
|
Wei W, Heng YY, Wu FF, Dong HY, Zhang PF, Li JX, Liu CY, Yang BJ, Fu JN, Liang XY. Sodium Tanshinone IIA Sulfonate alleviates vascular senescence in diabetic mice by modulating the A20-NFκB-NLRP3 inflammasome-catalase pathway. Sci Rep 2024; 14:17665. [PMID: 39085294 PMCID: PMC11291694 DOI: 10.1038/s41598-024-68169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Diabetes accelerates vascular senescence, which is the basis for atherosclerosis and stiffness. The activation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and oxidative stress are closely associated with the deteriorative senescence in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). For decades, Sodium Tanshinone IIA Sulfonate (STS) has been utilized as a cardiovascular medicine with acknowledged anti-inflammatory and anti-oxidative properties. Nevertheless, the impact of STS on vascular senescence remains unexplored in diabetes. Diabetic mice, primary ECs and VSMCs were transfected with the NLRP3 overexpression/knockout plasmid, the tumor necrosis factor alpha-induced protein 3 (TNFAIP3/A20) overexpression/knockout plasmid, and treated with STS to detect senescence-associated markers. In diabetic mice, STS treatment maintained catalase (CAT) level and vascular relaxation, reduced hydrogen peroxide probe (ROSgreen) fluorescence, p21 immunofluorescence, Senescence β-Galactosidase Staining (SA-β-gal) staining area, and collagen deposition in aortas. Mechanistically, STS inhibited NLRP3 phosphorylation (serine 194), NLRP3 dimer formation, NLRP3 expression, and NLRP3-PYCARD (ASC) colocalization. It also suppressed the phosphorylation of IkappaB alpha (IκBα) and NFκB, preserved A20 and CAT levels, reduced ROSgreen density, and decreased the expression of p21 and SA-β-gal staining in ECs and VSMCs under HG culture. Our findings indicate that STS mitigates vascular senescence by modulating the A20-NFκB-NLRP3 inflammasome-CAT pathway in hyperglycemia conditions, offering novel insights into NLRP3 inflammasome activation and ECs and VSMCs senescence under HG culture. This study highlights the potential mechanism of STS in alleviating senescence in diabetic blood vessels, and provides essential evidence for its future clinical application.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Inflammasomes/metabolism
- Mice
- NF-kappa B/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Phenanthrenes/pharmacology
- Cellular Senescence/drug effects
- Signal Transduction/drug effects
- Catalase/metabolism
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/drug effects
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
Collapse
Affiliation(s)
- Wei Wei
- Department of Pharmacology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China.
- Department of Endocrinology and Institute of Endocrinology and Metabolic Disease, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yanan Road South, Changzhi, 046000, Shanxi, China.
- Department of Clinical Central Laboratory, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, Shanxi, China.
| | - Yan-Yan Heng
- Department of Nephrology Heping Hospital, Affiliated to Changzhi Medical College, No.110, Yanan Road South, Changzhi, Shanxi, China
| | - Fei-Fei Wu
- Department of Endocrinology and Institute of Endocrinology and Metabolic Disease, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yanan Road South, Changzhi, 046000, Shanxi, China
| | - Hao-Yu Dong
- Department of Endocrinology and Institute of Endocrinology and Metabolic Disease, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yanan Road South, Changzhi, 046000, Shanxi, China
| | - Peng-Fei Zhang
- Department of Nephrology Heping Hospital, Affiliated to Changzhi Medical College, No.110, Yanan Road South, Changzhi, Shanxi, China
| | - Jing-Xia Li
- Department of Anesthesia, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, Shanxi, China
| | - Chun-Yan Liu
- Department of Anesthesia, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, Shanxi, China
| | - Bing-Jie Yang
- Department of Stomatology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, Shanxi, China
| | - Jia-Ning Fu
- Department of Stomatology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, Shanxi, China
| | - Xin-Yue Liang
- Department of Medical Imageology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, Shanxi, China
| |
Collapse
|
6
|
Liu J, Lin C, Li B, Huang Q, Chen X, Tang S, Luo X, Lu R, Liu Y, Liao S, Ding X. Biochanin A inhibits endothelial dysfunction induced by IL‑6‑stimulated endothelial microparticles in Perthes disease via the NFκB pathway. Exp Ther Med 2024; 27:137. [PMID: 38476892 PMCID: PMC10928846 DOI: 10.3892/etm.2024.12425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/15/2023] [Indexed: 03/14/2024] Open
Abstract
Endothelial dysfunction caused by the stimulation of endothelial microparticles (EMPs) by the inflammatory factor IL-6 is one of the pathogenic pathways associated with Perthes disease. The natural active product biochanin A (BCA) has an anti-inflammatory effect; however, whether it can alleviate endothelial dysfunction in Perthes disease is not known. The present in vitro experiments on human umbilical vein endothelial cells showed that 0-100 pg/ml IL-6-EMPs could induce endothelial dysfunction in a concentration-dependent manner, and the results of the Cell Counting Kit 8 assay revealed that, at concentrations of <20 µM, BCA had no cytotoxic effect. Reverse transcription-quantitative PCR demonstrated that BCA reduced the expression levels of the endothelial dysfunction indexes E-selectin and intercellular cell adhesion molecule-1 (ICAM-1) in a concentration-dependent manner. Immunofluorescence and western blotting illustrated that BCA increased the expression levels of zonula occludens-1 and decreased those of ICAM-1. Mechanistic studies showed that BCA inhibited activation of the NFκB pathway. In vivo experiments demonstrated that IL-6 was significantly increased in the rat model of ischemic necrosis of the femoral head, whereas BCA inhibited IL-6 production. Therefore, in Perthes disease, BCA may inhibit the NFκB pathway to suppress IL-6-EMP-induced endothelial dysfunction, and could thus be regarded as a potential treatment for Perthes disease.
Collapse
Affiliation(s)
- Jianhong Liu
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chengsen Lin
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Boxiang Li
- Department of Orthopedics, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530001, P.R. China
| | - Qian Huang
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xianxiang Chen
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shengping Tang
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaolin Luo
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rongbin Lu
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun Liu
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shijie Liao
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaofei Ding
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
7
|
Su W, Lv M, Wang D, He Y, Han H, Zhang Y, Zhang X, Lv S, Yao L. Tanshinone IIA Alleviates Traumatic Brain Injury by Reducing Ischemia‒Reperfusion via the miR-124-5p/FoxO1 Axis. Mediators Inflamm 2024; 2024:7459054. [PMID: 38549714 PMCID: PMC10978079 DOI: 10.1155/2024/7459054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/22/2023] [Accepted: 11/27/2023] [Indexed: 04/02/2024] Open
Abstract
Background Cerebral ischemia-reperfusion injury is a common complication of ischemic stroke that affects the prognosis of patients with ischemic stroke. The lipid-soluble diterpene Tanshinone IIA, which was isolated from Salvia miltiorrhiza, has been indicated to reduce cerebral ischemic injury. In this study, we investigated the molecular mechanism of Tanshinone IIA in alleviating reperfusion-induced brain injury. Methods Middle cerebral artery occlusion animal models were established, and neurological scores, tetrazolium chloride staining, brain volume quantification, wet and dry brain water content measurement, Nissl staining, enzyme-linked immunosorbent assay, flow cytometry, western blotting, and reverse transcription-quantitative polymerase chain reaction were performed. The viability of cells was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assays, while cell damage was measured by lactate dehydrogenase release in the in vitro oxygen glucose deprivation model. In addition, enzyme-linked immunosorbent assay, flow cytometry, western blotting, and reverse transcription-quantitative polymerase chain reaction were used to evaluate the therapeutic effect of Tanshinone IIA on ischemia/reperfusion (I/R) induced brain injury, as well as its effects on the inflammatory response and neuronal apoptosis, in vivo and in vitro. Furthermore, this study validated the targeting relationship between miR-124-5p and FoxO1 using a dual luciferase assay. Finally, we examined the role of Tanshinone IIA in brain injury from a molecular perspective by inhibiting miR-124-5p or increasing FoxO1 levels. Results After treatment with Tanshinone IIA in middle cerebral artery occlusion-reperfusion (MCAO/R) rats, the volume of cerebral infarction was reduced, the water content of the brain was decreased, the nerve function of the rats was significantly improved, and the cell damage was significantly reduced. In addition, Tanshinone IIA effectively inhibited the I/R-induced inflammatory response and neuronal apoptosis, that is, it inhibited the expression of inflammatory cytokines IL-1β, IL-6, TNF-α, decreased the expression of apoptotic protein Bax and Cleaved-caspase-3, and promoted the expression of antiapoptotic protein Bcl-2. In vitro oxygen-glucose deprivation/reoxygenation (OGD/R) cell model, Tanshinone IIA also inhibited the expression of inflammatory factors in neuronal cells and inhibited the occurrence of neuronal apoptosis. In addition, Tanshinone IIA promoted the expression of miR-124-5p. Transfection of miR-124-5p mimic has the same therapeutic effect as Tanshinone IIA and positive therapeutic effect on OGD cells, while transfection of miR-124-5p inhibitor has the opposite effect. The targeting of miR-124-5p negatively regulates FoxO1 expression. Inhibition of miR-124-5p or overexpression of FoxO1 can weaken the inhibitory effect of Tanshinone IIA on brain injury induced by I/R, while inhibition of miR-124-5p and overexpression of FoxO1 can further weaken the effect of Tanshinone IIA. Conclusion Tanshinone IIA alleviates ischemic-reperfusion brain injury by inhibiting neuroinflammation through the miR-124-5p/FoxO1 axis. This finding provides a theoretical basis for mechanistic research on cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Wenbing Su
- Rehabilitation Medicine of Qujing No. 1 Hospital, Qujing 655000, Yunnan, China
| | - Meifen Lv
- Rehabilitation Medicine of Qujing No. 1 Hospital, Qujing 655000, Yunnan, China
| | - Dayu Wang
- Rehabilitation Medicine of Qujing No. 1 Hospital, Qujing 655000, Yunnan, China
| | - Yinghong He
- Rehabilitation Medicine of Qujing No. 1 Hospital, Qujing 655000, Yunnan, China
| | - Hui Han
- Rehabilitation Medicine of Qujing No. 1 Hospital, Qujing 655000, Yunnan, China
| | - Yu Zhang
- Rehabilitation Medicine of Qujing No. 1 Hospital, Qujing 655000, Yunnan, China
| | - Xiuying Zhang
- Rehabilitation Medicine of Qujing No. 1 Hospital, Qujing 655000, Yunnan, China
| | - Shaokun Lv
- Rehabilitation Medicine of Qujing No. 1 Hospital, Qujing 655000, Yunnan, China
| | - Liqing Yao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan, China
| |
Collapse
|
8
|
Lv N, Zhang Y, Wang L, Suo Y, Zeng W, Yu Q, Yu B, Jiang X. LncRNA/CircRNA-miRNA-mRNA Axis in Atherosclerotic Inflammation: Research Progress. Curr Pharm Biotechnol 2024; 25:1021-1040. [PMID: 37842894 DOI: 10.2174/0113892010267577231005102901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou People's Hospital, Ganzhou, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou People's Hospital, Ganzhou, China
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Xu C, Zhu J, Gong G, Guo L, Zhang Y, Zhang Z, Ma C. Anthocyanin attenuates high salt-induced hypertension via inhibiting the hyperactivity of the sympathetic nervous system. Clin Exp Hypertens 2023; 45:2233717. [PMID: 37454306 DOI: 10.1080/10641963.2023.2233717] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Anthocyanin plays a protective role in cardiovascular disease through antioxidant effect. Whether anthocyanin can reduce salt-induced hypertension and the related mechanisms remain unclear. METHODS Chronic infusion of vehicle (artificial cerebrospinal fluid, aCSF, 0.4 μL/h) or anthocyanin (10 mg/kg, 0.4 μL/h) into bilateral paraventricular nucleus (PVN) of Sprague-Dawley rats was performed. Then, the rats were fed a high salt diet (8% NaCl, HS) or normal salt diet (0.9%, NaCl, NS) for 4 weeks. RESULTS High salt diet induced an increase in blood pressure and peripheral sympathetic nerve activity (increased LF/HF and decreased SDNN and RMSSD), which was accompanied by increased reactive oxygen species (ROS) production and angiotensin II type-1 receptor (AT1R) expression and function in the PVN. Moreover, the NOD-like receptor protein 3 (NLRP3) and related inflammatory proteins (caspase-1) expression, the pro-inflammatory cytokine levels including IL-1β and TNF-α were higher in PVN of rats with a high salt diet. Bilateral PVN infusion of anthocyanin attenuated NLRP3-dependent inflammation (NLRP3, caspase-1, IL-1β and TNF-α) and ROS production, reduced AT1R expression and function in PVN and lowered peripheral sympathetic nerve activity and blood pressure in rats with salt-induced hypertension. CONCLUSIONS Excessive salt intake activates NLRP3-dependent inflammation and oxidative stress and increased AT1R expression and function in the PVN. Bilateral PVN infusion of anthocyanin lowers peripheral sympathetic nerve activity and blood pressure in rats with salt-induced hypertension by improvement of expression and function of AT1R in the PVN through inhibiting NLRP3 related inflammatory and oxidative stress.
Collapse
Affiliation(s)
- Chunmei Xu
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Zhu
- Department of Cardiology, Shanghai Hospital, Chongqing, China
| | - Guangyuan Gong
- Department of Intensive Care Unit, Qijiang People's Hospital, Chongqing, China
| | - Li Guo
- Department of Endocrinology, The Southwest Hospital of Army Medical University, Chongqing, China
| | - Ye Zhang
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziyue Zhang
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Chunlan Ma
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
10
|
Xu J, Tian Z, Li Z, Du X, Cui Y, Wang J, Gao M, Hou Y. Puerarin-Tanshinone IIA Suppresses atherosclerosis inflammatory plaque via targeting succinate/HIF-1α/IL-1β axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116675. [PMID: 37257708 DOI: 10.1016/j.jep.2023.116675] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory injury is an important pathological factor for the formation of atherosclerotic plaque. It is well known that Puerarin and Tanshinone IIA (Pue-Tan) can significantly reduce interleukin-1β (IL-1β) levels and delay the atherosclerosis (AS) process clinically in China. Previous evidence has shown that the Succinate/HIF-1α/IL-1β inflammatory signaling axis (Succinate axis) promotes the progression of atherosclerotic inflammatory plaques. It is not clear whether Pue-Tan inhibits inflammatory plaques by reducing the level of IL-1β through the succinate signaling axis. AIM OF STUDY Find out the interaction between Pue-Tan targets and the succinate axis by means of network pharmacology and bioinformatics analysis and to further confirm whether Pue-Tan can inhibit vascular inflammation and delay the formation of atherosclerotic inflammatory plaques by targeting the succinate signaling axis. MATERIALS AND METHODS Firstly, animal experiments were conducted to verify the changing relationship between Succinate and IL-1β under Pue-Tan intervention. Secondly, network pharmacology approach was employed to uncover the specific targets of Pue-Tan in the intervention of AS from multiple levels of components, proteins, and pathways, and at the same time, the target must be a key factor of the succinate signaling axis. Autodock vina1.5.6 was applied to molecular docking for Pue-Tan and target protein. Subsequently, cells experiment and animal experiment were performed to verify Pue-Tan inhibiting the inflammatory progression of atherosclerosis by targeting succinate signaling axis. RESULTS Firstly, we first found that the reduction of IL-1β was positively correlated with succinate in the serum of Pue-Tan-treated mice. Secondly, network pharmacology compared with molecular docking showed that hypoxia-induced factor-1α (HIF-1α) was the key target of Pue-Tan and the key node of succinate singling axis. Finally, in vitro study, Pue-Tan significantly reduced the factors of succinate axis just as HIF-1α siRNA; in vivo study, we confirmed a decreased expression of succinate axis and ICAM-1 in the aorta of ApoE-/- mice under Pue-Tan intervention, which was consistent with the in vitro results. CONCLUSION This study confirmed that Pue-Tan blocked the succinate axis by targeting HIF-1α to prevent the formation of atherosclerotic inflammatory plaques and delay the pathological process of AS. Network Pharmacology, Bioinformatics of Molecular Docking, and Molecular Biology Validation can be used as a effective way to discover and verify the pharmacological mechanism of TCM.
Collapse
Affiliation(s)
- Jingwen Xu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenhua Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhe Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Xiaoshi Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yansong Cui
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiangrong Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Mei Gao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yinglong Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
11
|
Yang C, Mu Y, Li S, Zhang Y, Liu X, Li J. Tanshinone IIA: a Chinese herbal ingredient for the treatment of atherosclerosis. Front Pharmacol 2023; 14:1321880. [PMID: 38108067 PMCID: PMC10722201 DOI: 10.3389/fphar.2023.1321880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Tanshinone IIA (Tan IIA) is a fat-soluble compound extracted from Salvia miltiorrhiza, which has a protective effect against atherosclerosis (AS). Tan IIA can inhibit oxidative stress and inflammatory damage of vascular endothelial cells (VECs) and improve endothelial cell dysfunction. Tan IIA also has a good protective effect on vascular smooth muscle cells (VSMCs). It can reduce vascular stenosis by inhibiting the proliferation and migration of vascular smooth muscle cells (VSMCs), and improve the stability of the fibrous cap of atherosclerotic plaque by inhibiting apoptosis and inflammation of VSMCs. In addition, Tan IIA inhibits the inflammatory response of macrophages and the formation of foam cells in atherosclerotic plaques. In summary, Tan IIA improves AS through a complex pathway. We propose to further study the specific molecular targets of Tan IIA using systems biology methods, so as to fundamentally elucidate the mechanism of Tan IIA. It is worth mentioning that there is a lack of high-quality evidence-based medical data on Tan IIA treatment of AS. We recommend that a randomized controlled clinical trial be conducted to evaluate the exact efficacy of Tan IIA in improving AS. Finally, sodium tanshinone IIA sulfonate (STS) can cause adverse drug reactions in some patients, which needs our attention.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Shuanghong Li
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yang Zhang
- Weifang People’s Hospital, Weifang, China
| | - Xiaoyuan Liu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jun Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Wan H, Li Y, Qin Y, An Y, Yan H, Liu X, Zhang H, Hu C, Li L, Fu D, Yang Y, Dai Y, Luo R, Yang L, Zhang B, Wang Y. Polyphenol-mediated sandwich-like coating promotes endothelialization and vascular healing. Biomaterials 2023; 302:122346. [PMID: 37832504 DOI: 10.1016/j.biomaterials.2023.122346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Drug-eluting stents have become one of the most effective methods to treat cardiovascular diseases. However, this therapeutic strategy may lead to thrombosis, stent restenosis, and intimal hyperplasia and prevent re-endothelialization. In this study, we selected 3-aminophenylboronic acid-modified hyaluronic acid and carboxylate chitosan as polyelectrolyte layers and embedded an epigallocatechin-3-gallate-tanshinone IIA sulfonic sodium (EGCG-TSS) complex to develop a sandwich-like layer-by-layer coating. The introduction of a functional molecular EGCG-TSS complex improved not only the biocompatibility of the coating but also its stability by enriching the interaction between the polyelectrolyte coatings through electrostatic interactions, hydrogen bonding, π-π stacking, and covalent bonding. We further elucidated the effectiveness of sandwich-like coatings in regulating the inflammatory response, smooth muscle cell growth behavior, stent thrombosis and restenosis suppression, and vessel re-endothelialization acceleration via in vivo and in vitro. Conclusively, we demonstrated that sandwich-like coating assisted by an EGCG-TSS complex may be an effective surface modification strategy for cardiovascular therapeutic applications.
Collapse
Affiliation(s)
- Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yongqi An
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Hui Yan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiyu Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Hao Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Linhua Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Daihua Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yuan Yang
- Sichuan Xingtai Pule Medical Technology Co Ltd, Chengdu, Sichuan, 610045, China
| | - Yan Dai
- Sichuan Xingtai Pule Medical Technology Co Ltd, Chengdu, Sichuan, 610045, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
13
|
Ma Z, Wu Y, Xu J, Cao H, Du M, Jiang H, Qiu F. Sodium Tanshinone IIA Sulfonate Ameliorates Oxygen-glucose Deprivation/Reoxygenation-induced Neuronal Injury via Protection of Mitochondria and Promotion of Autophagy. Neurochem Res 2023; 48:3378-3390. [PMID: 37436612 DOI: 10.1007/s11064-023-03985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/04/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
Sodium tanshinone IIA sulfonate (STS) has shown significant clinical therapeutic effects in cerebral ischemic stroke (CIS), but the molecular mechanisms of neuroprotection remain partially known. The purpose of this study was to explore whether STS plays a protective role in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal injury by regulating microglia autophagy and inflammatory activity. Co-cultured microglia and neurons were subjected to OGD/R injury, an in vitro model of ischemia/reperfusion (I/R) injury with or without STS treatment. Expression of protein phosphatase 2 A (PP2A) and autophagy-associated proteins Beclin 1, autophagy related 5 (ATG5), and p62 in microglia was determined by Western blotting. Autophagic flux in microglia was observed with confocal laser scanning microscopy. Neuronal apoptosis was measured by flow cytometric and TUNEL assays. Neuronal mitochondrial function was determined via assessments of reactive oxygen species generation and mitochondrial membrane potential integrity. STS treatment markedly induced PP2A expression in microglia. Forced overexpression of PP2A increased levels of Beclin 1 and ATG5, decreased the p62 protein level, and induced autophagic flux. Silencing of PP2A or administration of 3-methyladenine inhibited autophagy and decreased the production of anti-inflammatory factors (IL-10, TGF-β and BDNF) and induced the release of proinflammatory cytokines (IL-1β, IL-2 and TNF-α) by STS-treated microglia, thereby inducing mitochondrial dysfunction and apoptosis of STS-treated neurons. STS exerts protection against neuron injury, and the PP2A gene plays a crucial role in improving mitochondrial function and inhibiting neuronal apoptosis by regulating autophagy and inflammation in microglia.
Collapse
Affiliation(s)
- Zhi Ma
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Rd, Nanjing, 210029, Jiangsu, P.R. China
| | - Yue Wu
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China
| | - Juan Xu
- Department of Immunology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Hui Cao
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Rd, Nanjing, 210029, Jiangsu, P.R. China
| | - Mingyang Du
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Rd, Nanjing, 210029, Jiangsu, P.R. China
| | - Haibo Jiang
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Rd, Nanjing, 210029, Jiangsu, P.R. China
| | - Feng Qiu
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Rd, Nanjing, 210029, Jiangsu, P.R. China.
| |
Collapse
|
14
|
Valipour M. Therapeutic prospects of naturally occurring p38 MAPK inhibitors tanshinone IIA and pinocembrin for the treatment of SARS-CoV-2-induced CNS complications. Phytother Res 2023; 37:3724-3743. [PMID: 37282807 DOI: 10.1002/ptr.7902] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
P38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is closely related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication and hyperinflammatory responses in coronavirus disease 2019 (COVID-19). Therefore, blood-brain barrier-penetrating p38 MAPK inhibitors have good potential for the treatment of central nervous system (CNS) complications of COVID-19. The aim of the present study is the characterization of the therapeutic potential of tanshinone IIA and pinocembrin for the treatment of CNS complications of COVID-19. Studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so forth were used to review the therapeutic capabilities of selected compounds. In continuation of our previous efforts to identify agents with favorable activity/toxicity profiles for the treatment of COVID-19, tanshinone IIA and pinocembrin were identified with a high ability to penetrate the CNS. Considering the nature of the study, no specific time frame was determined for the selection of studies, but the focus was strongly on studies published after the emergence of COVID-19. By describing the association of COVID-19-induced CNS disorders with p38 MAPK pathway disruption, this study concludes that tanshinone IIA and pinocembrin have great potential for better treatment of these complications. The inclusion of these compounds in the drug regimen of COVID-19 patients requires confirmation of their effectiveness through the conduction of high-quality clinical trials.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Alur V, Raju V, Vastrad B, Vastrad C, Kavatagimath S, Kotturshetti S. Bioinformatics Analysis of Next Generation Sequencing Data Identifies Molecular Biomarkers Associated With Type 2 Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231155635. [PMID: 36844983 PMCID: PMC9944228 DOI: 10.1177/11795514231155635] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is the most common metabolic disorder. The aim of the present investigation was to identify gene signature specific to T2DM. Methods The next generation sequencing (NGS) dataset GSE81608 was retrieved from the gene expression omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs) between T2DM and normal controls. Then, Gene Ontology (GO) and pathway enrichment analysis, protein-protein interaction (PPI) network, modules, miRNA (micro RNA)-hub gene regulatory network construction and TF (transcription factor)-hub gene regulatory network construction, and topological analysis were performed. Receiver operating characteristic curve (ROC) analysis was also performed to verify the prognostic value of hub genes. Results A total of 927 DEGs (461 were up regulated and 466 down regulated genes) were identified in T2DM. GO and REACTOME results showed that DEGs mainly enriched in protein metabolic process, establishment of localization, metabolism of proteins, and metabolism. The top centrality hub genes APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1 were screened out as the critical genes. ROC analysis provides prognostic value of hub genes. Conclusion The potential crucial genes, especially APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1, might be linked with risk of T2DM. Our study provided novel insights of T2DM into genetics, molecular pathogenesis, and novel therapeutic targets.
Collapse
Affiliation(s)
- Varun Alur
- Department of Endocrinology, J.J.M
Medical College, Davanagere, Karnataka, India
| | - Varshita Raju
- Department of Obstetrics and
Gynecology, J.J.M Medical College, Davanagere, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry,
K.L.E. College of Pharmacy, Gadag, Karnataka, India
| | | | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E.
College of Pharmacy, Belagavi, Karnataka, India
| | | |
Collapse
|
16
|
Wei M, Li F, Guo K, Yang T. Exploring the Active Compounds of Traditional Mongolian Medicine Baolier Capsule (BLEC) in Patients with Coronary Artery Disease (CAD) Based on Network Pharmacology Analysis, Molecular Docking and Experimental Validation. Drug Des Devel Ther 2023; 17:459-476. [PMID: 36819991 PMCID: PMC9938670 DOI: 10.2147/dddt.s395207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023] Open
Abstract
Objective Baolier Capsule (BLEC) is a Traditional Mongolian Medicine comprising fifteen herbs. This study aims to illustrate the synergistic mechanism of BLEC in the treatment of Coronary Artery Disease (CAD) by using network pharmacology method, molecular docking and experimental validation. Methods Searching and screening the active ingredients of different herbs in BLEC and target genes related to CAD in multiple databases. Subsequently, Protein-Protein Interactions Network (PPI-Net), gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment were used to identify the key targets. AutoDock was used to verify the binding ability between the active ingredient and key target through molecular docking. Reverse Transcription-Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) was used to verify the effect of active ingredient of BLEC on the key target gene. Finally, effect of BLEC on the degree of blood lipids and atherosclerosis was validated by animal experiment. Results There are 144 active components and 80 CAD-related targets that are identified in BLEC in the treatment of CAD. What is more, 8 core genes were obtained by clustering and topological analysis of PPI-Net. Further, GO and KEGG analysis showed that fluid shear stress and atherosclerosis are the key pathways for BLEC to treat CAD. These results were validated by molecular docking method. In vitro, active compounds of BLEC (Quercetin, luteolin, kaempferol, naringenin, tanshinone IIA, β-carotene, 7-O-methylisomucronulatol, piperine, isorhamnetin and Xyloidone) can inhibit 8 core gene (AKT1, EGFR, FOS, MAPK1, MAPK14, STAT3, TP53 and VEGFA) expression. Moreover, BLEC not only improve blood lipid levels but also inhibit the development of atherosclerosis in ApoE-knockout mice. Conclusion Our research first revealed the basic pharmacological effects and related mechanisms of in the treatment of CAD. The predicted results provide some theoretical support for BLEC or its important active ingredients to treat CAD.
Collapse
Affiliation(s)
- Mengqiu Wei
- Intensive Care Unit, Zhongshan City People’s Hospital, Zhongshan, 528400, People’s Republic of China
| | - Fengjin Li
- Department of Gynecology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 36400, People’s Republic of China
| | - Kai Guo
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, 510000, People’s Republic of China,Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, People’s Republic of China,Correspondence: Kai Guo; Tianxiao Yang, Email ;
| | - Tianxiao Yang
- Department of Cardiology, Shandong University Zibo Central Hospital, Zibo, 255000, People’s Republic of China
| |
Collapse
|
17
|
Kong J, Li S, Li Y, Chen M. Effects of Salvia miltiorrhiza active compounds on placenta-mediated pregnancy complications. Front Cell Dev Biol 2023; 11:1034455. [PMID: 36711034 PMCID: PMC9880055 DOI: 10.3389/fcell.2023.1034455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Placenta-mediated pregnancy complications (PMPCs), including preeclampsia (PE), fetal growth restriction (FGR), and recurrent spontaneous abortion (RSA), occur in approximately 5% of pregnancies and are caused by abnormal placenta development. The development of effective therapies for PMPCs is still challenging due to the complicated pathogenesis, such as disrupted vascular homeostasis and subsequent abnormal placentation. Synthetic drugs have been recommended for treating PMPCs; however, they tend to cause adverse reactions in the mother and fetus. Salvia miltiorrhiza (S. miltiorrhiza) has potential effects on PMPCs owing to its advantages in treating cardiovascular disorders. S. miltiorrhiza and its active compounds could attenuate the symptoms of PMPCs through anticoagulation, vasodilation, antioxidation, and endothelial protection. Thus, in this review, we summarize the literature and provide comprehensive insights on S. miltiorrhiza and its phytochemical constituents, pharmacological activities, and on PMPCs, which would be valuable to explore promising drugs.
Collapse
Affiliation(s)
- Jingyin Kong
- Department of Prenatal Diagnosis and Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Songjun Li
- Department of Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yingting Li
- Department of Prenatal Diagnosis and Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Chen
- Department of Prenatal Diagnosis and Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Min Chen,
| |
Collapse
|
18
|
Ganekal P, Vastrad B, Vastrad C, Kotrashetti S. Identification of biomarkers, pathways, and potential therapeutic targets for heart failure using next-generation sequencing data and bioinformatics analysis. Ther Adv Cardiovasc Dis 2023; 17:17539447231168471. [PMID: 37092838 PMCID: PMC10134165 DOI: 10.1177/17539447231168471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Heart failure (HF) is the most common cardiovascular diseases and the leading cause of cardiovascular diseases related deaths. Increasing molecular targets have been discovered for HF prognosis and therapy. However, there is still an urgent need to identify novel biomarkers. Therefore, we evaluated biomarkers that might aid the diagnosis and treatment of HF. METHODS We searched next-generation sequencing (NGS) dataset (GSE161472) and identified differentially expressed genes (DEGs) by comparing 47 HF samples and 37 normal control samples using limma in R package. Gene ontology (GO) and pathway enrichment analyses of the DEGs were performed using the g: Profiler database. The protein-protein interaction (PPI) network was plotted with Human Integrated Protein-Protein Interaction rEference (HiPPIE) and visualized using Cytoscape. Module analysis of the PPI network was done using PEWCC1. Then, miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed by Cytoscape software. Finally, we performed receiver operating characteristic (ROC) curve analysis to predict the diagnostic effectiveness of the hub genes. RESULTS A total of 930 DEGs, 464 upregulated genes and 466 downregulated genes, were identified in HF. GO and REACTOME pathway enrichment results showed that DEGs mainly enriched in localization, small molecule metabolic process, SARS-CoV infections, and the citric acid tricarboxylic acid (TCA) cycle and respiratory electron transport. After combining the results of the PPI network miRNA-hub gene regulatory network and TF-hub gene regulatory network, 10 hub genes were selected, including heat shock protein 90 alpha family class A member 1 (HSP90AA1), arrestin beta 2 (ARRB2), myosin heavy chain 9 (MYH9), heat shock protein 90 alpha family class B member 1 (HSP90AB1), filamin A (FLNA), epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), cullin 4A (CUL4A), YEATS domain containing 4 (YEATS4), and lysine acetyltransferase 2B (KAT2B). CONCLUSIONS This discovery-driven study might be useful to provide a novel insight into the diagnosis and treatment of HF. However, more experiments are needed in the future to investigate the functional roles of these genes in HF.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, #253, Bharthinagar, Dharwad 580001, India
| | | |
Collapse
|
19
|
Grewal J, Kumar V, Gandhi Y, Rawat H, Singh R, Singh A, Narasimhaji CV, Acharya R, Mishra SK. Current Perspective and Mechanistic Insights on Bioactive Plant Secondary Metabolites for the Prevention and Treatment of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2023; 23:157-176. [PMID: 37921163 DOI: 10.2174/011871529x262371231009132426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/31/2023] [Indexed: 11/04/2023]
Abstract
Cardiovascular diseases (CVDs) are one of the most prevalent medical conditions of modern era and are one of the primary causes of adult mortality in both developing and developed countries. Conventional medications such as use of aspirin, beta-blockers, statins and angiotensin- converting enzyme inhibitors involve use of drugs with many antagonistic effects. Hence, alternative therapies which are safe, effective, and relatively cheap are increasingly being investigated for the treatment and prevention of CVDs. The secondary metabolites of medicinal plants contain several bioactive compounds which have emerged as alternatives to toxic modern medicines. The detrimental effects of CVDs can be mitigated via the use of various bioactive phytochemicals such as catechin, isoflavones, quercetin etc. present in medicinal plants. Current review intends to accumulate previously published data over the years using online databases concerning herbal plant based secondary metabolites that can help in inhibition and treatment of CVDs. An in-depth review of various phytochemical constituents with therapeutic actions such as antioxidant, anti-inflammatory, vasorelaxant, anti-hypertensive and cardioprotective properties has been delineated. An attempt has been made to provide a probable mechanistic overview for the pertinent phytoconstituent which will help in achieving a better prognosis and effective treatment for CVDs.
Collapse
Affiliation(s)
- Jyotika Grewal
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Vijay Kumar
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Yashika Gandhi
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Hemant Rawat
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Ravindra Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Arjun Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Ch V Narasimhaji
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Rabinarayan Acharya
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Sujeet K Mishra
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| |
Collapse
|
20
|
Kan Z, Yan W, Yang M, Gao H, Meng D, Wang N, Fang Y, Wu L, Song Y. Effects of sodium tanshinone IIA sulfonate injection on inflammatory factors and vascular endothelial function in patients with acute coronary syndrome undergoing percutaneous coronary intervention: A systematic review and meta-analysis of randomized clinical trials. Front Pharmacol 2023; 14:1144419. [PMID: 36959861 PMCID: PMC10027702 DOI: 10.3389/fphar.2023.1144419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Background: Patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) therapy may experience further damage to the vascular endothelium, leading to increased inflammatory response and in-stent thrombosis. In many clinical studies, sodium tanshinone IIA sulfonate injection (STS) has been found to reduce inflammatory factors and enhance vascular endothelial function in patients with ACS while improving the prognosis of PCI. However, to date, there has been no systematic review assessing the effectiveness and safety of STS on inflammatory factors and vascular endothelial function. Purpose: The aim of this study is to systematically review the effects of STS on inflammatory factors and endothelial function in patients with ACS treated with PCI. Methods: Until October 2022, eight literature databases and two clinical trial registries were searched for randomized controlled trials (RCTs) investigating STS treatment for ACS patients undergoing PCI. The quality of the included studies was assessed using the Cochrane Risk Assessment Tool 2.0. Meta-analysis was performed using RevMan 5.4 software. Results: Seventeen trials met the eligibility criteria, including 1,802 ACS patients undergoing PCI. The meta-analysis showed that STS significantly reduced high-sensitivity C-reactive protein (hs-CRP) levels (mean difference [MD = -2.35, 95% CI (-3.84, -0.86), p = 0.002], tumor necrosis factor-alpha (TNF-α) levels (standard mean difference [SMD = -3.29, 95%CI (-5.15, -1.42), p = 0,006], matrix metalloproteinase-9 (MMP-9) levels [MD = -16.24, 95%CI (-17.24, -15.24), p < 0.00001], and lipid peroxidation (LPO) levels [MD = -2.32, 95%CI (-2.70, -1.93), p < 0.00001], and increased superoxide dismutase (SOD) levels [SMD = 1.46, 95%CI (0.43, 2.49), p = 0,006] in patients with ACS. In addition, STS significantly decreased the incidence of major adverse cardiovascular events (relative risk = 0.54, 95%CI [0.44, 0.66], p < 0.00001). The quality of evidence for the outcomes was assessed to be very low to medium. Conclusion: STS can safely and effectively reduce the levels of hs-CRP, TNF-α, MMP-9, and LPO and increase the level of SOD in patients with ACS treated with PCI. It can also reduce the incidence of adverse cardiovascular events. However, these findings require careful consideration due to the small number of included studies, high risk of bias, and low to moderate evidence. In the future, more large-scale and high-quality RCTs will be needed as evidence in clinical practice.
Collapse
Affiliation(s)
- Zunqi Kan
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenli Yan
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mengqi Yang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huanyu Gao
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dan Meng
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ning Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuqing Fang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lingyu Wu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yongmei Song
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Yongmei Song,
| |
Collapse
|
21
|
Fu K, Sun Y, Wang J, Cao R. Tanshinone IIa alleviates LPS-induced oxidative stress in dairy cow mammary epithelial cells by activating the Nrf2 signalling pathway. Res Vet Sci 2022; 151:149-155. [PMID: 36027684 DOI: 10.1016/j.rvsc.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Mastitis is the most prevalent disease in dairy cows worldwide. Evidence has emerged that oxidative stress plays a crucial role in the development of mastitis. This study aimed to investigate the antioxidative effects of tanshinone IIa (Tan IIa) on LPS-induced oxidative stress in dairy cow mammary epithelial cells (CMECs). METHODS AND RESULTS We examined the levels of ROS and MDA in LPS-treated CMECs after supplementation with Tan IIa using detection kits and found that Tan IIa significantly inhibited the upregulation of these factors. In addition, we also found that Tan IIa significantly reversed the decrease in mitochondrial membrane potential induced by LPS. Moreover, Tan IIa improved the activities of antioxidant enzymes, which were decreased by LPS. Finally, we examined the probable pathway in which Tan IIa exerted its antioxidant effects using qPCR and western blotting and found that Tan IIa significantly activated the Keap1/Nrf2 signalling pathway. CONCLUSION These results suggest that Tan IIa might become a possible therapeutic agent for the treatment of dairy cow mastitis by weakening oxidative stress induced by LPS in CMECs.
Collapse
Affiliation(s)
- Kaiqiang Fu
- Qingdao Agricultural University, Shandong, Qingdao 266109, PR China.
| | - Yuning Sun
- Qingdao Agricultural University, Shandong, Qingdao 266109, PR China; Qingdao Hengxing University of Science and Technology, Shandong, Qingdao 266100, PR China
| | - Junbo Wang
- Qingdao Agricultural University, Shandong, Qingdao 266109, PR China
| | - Rongfeng Cao
- Qingdao Agricultural University, Shandong, Qingdao 266109, PR China.
| |
Collapse
|
22
|
Zhu J, Chen H, Guo J, Zha C, Lu D. Sodium Tanshinone IIA Sulfonate Inhibits Vascular Endothelial Cell Pyroptosis via the AMPK Signaling Pathway in Atherosclerosis. J Inflamm Res 2022; 15:6293-6306. [PMID: 36408328 PMCID: PMC9673812 DOI: 10.2147/jir.s386470] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/03/2022] [Indexed: 11/15/2022] Open
Abstract
Introduction Atherosclerosis (AS) is the underlying cause of cardiovascular events. Endothelial cell mitochondrial damage and pyroptosis are important factors contributing to AS. Changes in internal mitochondrial conformation and increase in reactive oxygen species (ROS) lead to the disruption of mitochondrial energy metabolism, activation of the NLRP3 inflammasome and pyroptosis, which in turn affect atherogenesis by impairing endothelial function. AMPK is a core player in the regulation of cellular metabolism, not only by regulating mitochondrial homeostasis but also by regulating cellular inflammatory responses. Sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of tanshinone IIA, has significant antioxidant and anti-inflammatory effects, and roles in cardiovascular protection. Purpose In this study, we investigated whether STS plays a protective role in AS by regulating endothelial cell mitochondrial function and pyroptosis through an AMPK-dependent mitochondrial pathway. Methods and Results Male ApoE−/− mice and HUVECs were used for the experiments. We found that STS treatment largely abrogated the upregulation of key proteins in aortic vessel wall plaques and typical pyroptosis signaling in ApoE−/− mice fed a western diet, consequently enhancing pAMPK expression, plaque stabilization, and anti-inflammatory responses. Consistently, STS pretreatment inhibited cholesterol crystallization (CC) -induced cell pyroptosis and activated pAMPK expression. In vitro, using HUVECs, we further found that STS treatment ameliorated mitochondrial ROS caused by CC, as evidenced by the finding that STS inhibited mitochondrial damage caused by CC. The improvement of endothelial cell mitochondrial function by STS is blocked by dorsomorphin (AMPK inhibitor). Consistently, the blockade of endothelial cell pyroptosis by STS is disrupted by dorsomorphin. Conclusion Our results suggest that STS enhances maintenance of mitochondrial homeostasis and inhibits mitochondrial ROS overproduction via AMPK, thereby improving endothelial cell pyroptosis during AS.
Collapse
Affiliation(s)
- Ji Zhu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, People’s Republic of China
| | - Hang Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Chen Zha
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, People’s Republic of China
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Correspondence: Dezhao Lu, Email
| |
Collapse
|
23
|
Hou J, Yuan Y, Chen P, Lu K, Tang Z, Liu Q, Xu W, Zheng D, Xiong S, Pei H. Pathological Roles of Oxidative Stress in Cardiac Microvascular Injury. Curr Probl Cardiol 2022; 48:101399. [PMID: 36103941 DOI: 10.1016/j.cpcardiol.2022.101399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 01/06/2023]
Abstract
Cardiac microvascular injury can be a fundamental pathological process that causes high incidence cardiovascular diseases such heart failure, diabetic cardiomyopathy, and hypertension. It is also an independent risk factor for cardiovascular disease. Oxidative stress is a significant pathological process in which the body interferes with the balance of the endogenous antioxidant defense system by producing reactive oxygen species, leading to property changes and dysfunction. It has been demonstrated that oxidative stress is one of the major causes of cardiac microvascular disease. Therefore, additional investigation into the relationship between oxidative stress and cardiac microvascular injury will direct clinical management in the future. In order to give suggestions and support for future in-depth studies, we give a basic overview of the cardiac microvasculature in relation to physiopathology in this review. We also summarize the role of oxidative stress of mitochondrial and non-mitochondrial origin in cardiac microvascular injury and related drug studies.
Collapse
Affiliation(s)
- Jun Hou
- Department of Cardiology, Chengdu Third People's Hospital/Affiliated Hospital of Southwest Jiao Tong University, Chengdu 610031, China
| | - Yuan Yuan
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Peiwen Chen
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu 611130, China
| | - Keji Lu
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu 611130, China
| | - Zhaobing Tang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Qing Liu
- Department of medical engineering, The 950th Hospital of PLA, Yecheng 844900, China
| | - Wu Xu
- Department of Urology, The Fifth Afliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Dezhi Zheng
- Department of Cardiovascular Surgery, the 960th Hospital of the PLA Joint Logistic Support Force, Jinan 250031, China
| | - Shiqiang Xiong
- Department of Cardiology, Chengdu Third People's Hospital/Affiliated Hospital of Southwest Jiao Tong University, Chengdu 610031, China
| | - Haifeng Pei
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China.
| |
Collapse
|
24
|
Zhou Y, Zhang H, Huang Y, Wu S, Liu Z. Tanshinone IIA regulates expression of glucose transporter 1 via activation of the HIF‑1α signaling pathway. Mol Med Rep 2022; 26:328. [PMID: 36069225 PMCID: PMC9727584 DOI: 10.3892/mmr.2022.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 12/30/2022] Open
Abstract
Tanshinone IIA (Tan 2A) is a lipid‑soluble compound extracted from the Chinese herb Danshen (Salvia miltiorrhiza Bunge). It protects neuron and microvascular endothelial cells against hypoxia/ischemia both in vitro and in vivo however the mechanism is not fully known. Glucose transporter 1 (GLUT‑1) is ubiquitously expressed in all types of tissue in the human body and serves important physiological functions due to its glucose uptake ability. The present study evaluated the role of Tan 2A in regulating GLUT‑1 expression and its potential mechanism. RT‑PCR and western Blot were used to detect the expression of GLUT‑1. Si RNA mediated knockdown and CHIP assay were used to explore the mechanism of Tan 2A on GLUT‑1expression. Tan 2A treatment induced expression of GLUT‑1 and subsequently increased glucose uptake in endothelial cells (ECs). Furthermore, mRNA expression levels of vascular endothelial cell growth factor, BCL2 interacting protein 3 and enolase 2, which are target genes for hypoxia‑inducible factor‑1α (HIF‑1α), were significantly upregulated by Tan 2A. Co‑immunoprecipitation demonstrated that Tan 2A markedly increased the association of HIF‑1α with recombination signal‑binding protein for immunoglobulin κJ region (RBPJκ). Moreover, knockdown of HIF‑1α and RBPJκ significantly reversed the regulatory effect of Tan 2A on mRNA expression levels of these genes in ECs. The results of the present study suggested that HIF‑1α partially mediated the regulatory effect of Tan 2A on GLUT‑1 expression in ECs. Therefore, GLUT‑1 may be a potential therapeutic target for Tan 2A.
Collapse
Affiliation(s)
- Yanyun Zhou
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China,Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Hong Zhang
- Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yitong Huang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Shengyun Wu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Zongjun Liu
- Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China,Correspondence to: Dr Zongjun Liu, Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Putuo, Shanghai 200062, P.R. China, E-mail:
| |
Collapse
|
25
|
Tanshinone IIA Accomplished Protection against Radiation-Induced Cardiomyocyte Injury by Regulating the p38/p53 Pathway. Mediators Inflamm 2022; 2022:1478181. [PMID: 36046762 PMCID: PMC9424041 DOI: 10.1155/2022/1478181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Radiotherapy is one of the major strategies for treating tumors, and it inevitably causes damage to relevant tissues and organs during treatment. Radiation-induced heart disease (RIHD) refers to radiation-induced cardiovascular adverse effects caused by thoracic radiotherapy. Currently, there is no uniform standard in the treatment of RIHD. Methods In our group study, by administering a dose of 4 Gy radiation, we established a radiation injured cardiomyocyte model and explored the regulatory relationship between tanshinone IIA and p38 MAPK in cardiomyocyte injury. We assessed cell damage and proliferation using clonogenic assay and lactate dehydrogenase (LDH) release assay. The measures of antioxidant activity and oxidative stress were conducted using superoxide dismutase (SOD) and reactive oxygen species (ROS). The apoptosis rate and the relative expression of apoptotic proteins were conducted using flow cytometry and western blot. To assess p38 and p53 expressions and phosphorylation levels, western blot was performed. Results Experimental results suggested that tanshinone IIA restored cell proliferation in radiation-induced cardiomyocyte injury (∗∗P < 0.01), and the level of LDH release decreased (∗P < 0.05). Meanwhile, tanshinone IIA could decrease the ROS generation induced by radiation (∗∗P < 0.01) and upregulate the SOD level (∗∗P < 0.01). Again, tanshinone IIA reduced radiation-induced cardiomyocyte apoptosis (∗∗P < 0.01). Finally, tanshinone IIA downregulated radiation-induced p38/p53 overexpression (∗∗∗P < 0.001). Conclusions The treatment effects of tanshinone IIA against radiation-induced myocardial injury may be through the regulation of the p38/p53 pathway.
Collapse
|
26
|
Li X, Lou Y, Shang JJ, Liu HX, Chen JP, Zhou HW. Traditional Chinese medicine injections with activating blood circulation, equivalent effect of anticoagulation or antiplatelet, for acute myocardial infarction: A protocol for the systematic review and meta-analysis of randomized clinical trials. Medicine (Baltimore) 2022; 101:e29089. [PMID: 35713425 PMCID: PMC9276191 DOI: 10.1097/md.0000000000029089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/26/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In spite of a growing number in the use of percutaneous coronary intervention (PCI) in China, the mortality of acute myocardial infarction (AMI) has not decreased. Traditional Chinese medicine injections for Activating Blood Circulation (TCMi-ABC), equivalent effect of anticoagulation or antiplatelet, are widely used in China; however, the improvement of fatality towards AMI is unclear. Therefore, we intend to conduct a systematic review and meta-analysis to evaluate the efficacy and safety of TCMi-ABC in treatment with AMI. METHODS Based on the "National Medical Products Administration of China," TCMi-ABC with AMI treatment indication will be selected, including Danhong injection, Sodium Tanshinone IIA Sulfonate injection, Danshen Chuanxiongqin injection, and Puerarin injection. Randomized controlled studies will be searched from as follows: PubMed, Embase, the CENTRAL in Cochrane Library, Chinese Biomedical Literature Database (SinoMed), China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (VIP), and Wanfang Data Knowledge Service Platform. Two researchers will work independently on literature selection, data extraction, and quality assessment. The outcomes focus on the effects of TCMi-ABC on fatality of patients with AMI in hospitalization and in the long term, the incidence of malignant arrhythmia, left ventricular ejection fraction, and adverse events. RevMan 5.4.1 software was used for mate analysis. RESULTS This study will conduct a comprehensive literature search and provide a systematic synthesis of current published data to explore the efficacy and safety of TCMi-ABC for AMI. CONCLUSION This study will provide high-quality evidence for treatment of AMI with TCMi-ABC in terms of efficacy and safety, which may help clinicians make a better complementary treatment schedule of patients with AMI.
Collapse
|
27
|
Chen H, Zhu J, Le Y, Pan J, Liu Y, Liu Z, Wang C, Dou X, Lu D. Salidroside inhibits doxorubicin-induced cardiomyopathy by modulating a ferroptosis-dependent pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153964. [PMID: 35180677 DOI: 10.1016/j.phymed.2022.153964] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Doxorubicin-induced cardiotoxicity (DIC) limits the clinical application of the drug in treatment of cancers and imposes a severe health burden on the patients. Therefore, there is an urgent need to develop alternative therapeutic strategies or drugs to minimize DIC. Salidroside is a phenylpropanoid glycoside extracted from Rhodiola rosea with multiple biological effects such as anti-inflammation and antioxidant properties. However, its mechanism of action in DIC is still poorly understood. PURPOSE The present study was aimed to investigate the role of salidroside in DIC and associated mechanism of action for the described effects. METHODS Cardiac dysfunction was induced through treatment of mice with doxorubicin in vivo and in vitro. The mechanism of action of salidroside was investigated using western blot assay, qPCR, immunofluorescence, histochemistry, echocardiography, and high-content imaging system. RESULTS Results of the current study found that treatment of mice with salidroside significantly improved doxorubicin-induced cardiac dysfunction, ferroptosis-like cell damage, and fibrosis in vivo. Further, it was noted that salidroside inhibited ferroptosis in vivo and in vitro by limiting iron accumulation, restoring GPX4-dependent antioxidant capacity, and preventing lipid peroxidation at the cellular or mitochondrial levels. Mechanistically, salidroside inhibited DOX-induced mitochondrial ROS, Fe2+, and lipid peroxidation as well as restored mitochondrial membrane potential by promoting mitochondrial biogenesis, improving mitochondrial iron-sulfur clusters, and restoring mitochondrial OXPHOS complexes, thereby improving mitochondrial function. In addition, AMPK is a key protein that coordinates mitochondria, metabolism, and ferroptosis. Therefore, it was found that compound C (CC), an AMPK inhibitor, disrupted the regulation of cellular lipid metabolism and mitochondrial function of salidroside as well as led to failure of the protective effect of salidroside against ferroptotic cell death. CONCLUSIONS The present study evidently demonstrated the cardioprotective effects of salidroside against doxorubicin-induced cardiomyopathy. Further, salidroside markedly down-regulated ferroptotic cell death by activating AMPK-dependent signaling pathways including regulating abnormal fatty acid metabolism and maintaining mitochondrial function. Therefore, salidroside is can be exploited to develop a novel medication for clinical DIC and salidroside may represent a novel treatment that improves recovery from DIC by targeting ferroptosis.
Collapse
Affiliation(s)
- Hang Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ji Zhu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou 330106, China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jieli Pan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhijun Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cui Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
28
|
Bai L, He G, Gao C, Yang H, Li M, Huang Y, Moussa M, Xu C. Tanshinone IIA enhances the ovarian reserve and attenuates ovarian oxidative stress in aged mice. Vet Med Sci 2022; 8:1617-1625. [PMID: 35451235 PMCID: PMC9297741 DOI: 10.1002/vms3.811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background Tanshinone IIA (TSA), a major lipophilic component extracted from the roots of Salvia miltiorrhiza Bunge, has been widely used in China for its various biological activities. However, its effect on ovarian reserve in aged mice was not studied elsewhere. Objectives This study aimed to explore the effect of TSA on the ovarian reserve of aged mice as well as young mice. Forty weeks old mice (N = 40) were considered as aged group compared to 4 weeks old mice (N = 40), and these groups were subdivided into four subgroups (N = 10) to receive different doses of TSA (0, 10, 20, and 40 μg/g/day). Methods The effect of TSA was evaluated by counting follicular number by histological examination. Basal serum levels of FSH, LH, E2, and anti‐Mullerian hormone (AMH) were measured by ELISA. Moreover, the expression levels of antioxidant genes (CAT, Nrf2, GPX1), gap junction (Cx37), ERK1/2, and Smad5 family gene were examined at both mRNA (qPCR) and protein levels (western blot). Results Follicular number, level of AMH and E2, and the expression of CAT, Nrf2, and GPX1 genes increased significantly (p < 0.05) in aged mice administrated with medium (20 μg/g/day) and high (40 μg/g/day) doses of TSA, whereas FSH and LH levels were significantly low compared to low dose (10 μg/g/day) and control (0 μg/g/day) aged subgroups. However, we did not observe any effect of all doses of TSA on young mice. Conclusions Administration of TSA with medium and high doses up‐regulates the expression of antioxidative genes, reduces the oxidative injury, increases levels of AMH, and E2 levels that are relatively comparable to those in young mice, and consequently results in a healthy oocyte development.
Collapse
Affiliation(s)
- Lin Bai
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Guozhen He
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Chenghai Gao
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Hua Yang
- Nanning Second People's Hospital, Nanning, China
| | - Mingxing Li
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Yulin Huang
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Mahmoud Moussa
- Department of Theriogenology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Changlong Xu
- Nanning Second People's Hospital, Nanning, China
| |
Collapse
|
29
|
Targeting Oxidative Stress and Endothelial Dysfunction Using Tanshinone IIA for the Treatment of Tissue Inflammation and Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2811789. [PMID: 35432718 PMCID: PMC9010204 DOI: 10.1155/2022/2811789] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/29/2022] [Accepted: 02/23/2022] [Indexed: 12/29/2022]
Abstract
Salvia miltiorrhiza Burge (Danshen), a member of the Lamiaceae family, has been used in traditional Chinese medicine for many centuries as a valuable medicinal herb with antioxidative, anti-inflammatory, and antifibrotic potential. Several evidence-based reports have suggested that Salvia miltiorrhiza and its components prevent vascular diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy, and cardiac fibrosis. Tanshinone IIA (TanIIA), a lipophilic component of Salvia miltiorrhiza, has gained attention because of its possible preventive and curative activity against cardiovascular disorders. TanIIA, which possesses antioxidative, anti-inflammatory, and antifibrotic properties, could be a key component in the therapeutic potential of Salvia miltiorrhiza. Vascular diseases are often initiated by endothelial dysfunction, which is accompanied by vascular inflammation and fibrosis. In this review, we summarize how TanIIA suppresses tissue inflammation and fibrosis through signaling pathways such as PI3K/Akt/mTOR/eNOS, TGF-β1/Smad2/3, NF-κB, JNK/SAPK (stress-activated protein kinase)/MAPK, and ERK/Nrf2 pathways. In brief, this review illustrates the therapeutic value of TanIIA in the alleviation of oxidative stress, inflammation, and fibrosis, which are critical components of cardiovascular disorders.
Collapse
|
30
|
Li ZH, Cheng L, Wen C, Ding L, You QY, Zhang SB. Activation of CNR1/PI3K/AKT Pathway by Tanshinone IIA Protects Hippocampal Neurons and Ameliorates Sleep Deprivation-Induced Cognitive Dysfunction in Rats. Front Pharmacol 2022; 13:823732. [PMID: 35295327 PMCID: PMC8920044 DOI: 10.3389/fphar.2022.823732] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Sleep deprivation is commonplace in modern society, Short periods of continuous sleep deprivation (SD) may negatively affect brain and behavioral function and may lead to vehicle accidents and medical errors. Tanshinone IIA (Tan IIA) is an important lipid-soluble component of Salvia miltiorrhiza, which could exert neuroprotective effects. The aim of this study was to investigate the mechanism of neuroprotective effect of Tan IIA on acute sleep deprivation-induced cognitive dysfunction in rats. Tan IIA ameliorated behavioral abnormalities in sleep deprived rats, enhanced behavioral performance in WMW and NOR experiments, increased hippocampal dendritic spine density, and attenuated atrophic loss of hippocampal neurons. Tan IIA enhanced the expression of CB1, PI3K, AKT, STAT3 in rat hippocampus and down-regulated the expression ratio of Bax to Bcl-2. These effects were inhibited by cannabinoid receptor 1 antagonist (AM251). In conclusion, Tan IIA can play a neuroprotective role by activating the CNR1/PI3K/AKT signaling pathway to antagonize apoptosis in the hippocampus and improve sleep deprivation-induced spatial recognition and learning memory dysfunction in rats. Our study suggests that Tan IIA may be a candidate for the prevention of sleep deprivation-induced dysfunction in spatial recognition and learning memory.
Collapse
Affiliation(s)
- Zi-Heng Li
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Cheng
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Chun Wen
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Ding
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiu-Yun You
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shun-Bo Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
31
|
Lan J, Li K, Gresham A, Miao J. Tanshinone IIA sodium sulfonate attenuates inflammation by upregulating circ-Sirt1 and inhibiting the entry of NF-κB into the nucleus. Eur J Pharmacol 2022; 914:174693. [PMID: 34896110 DOI: 10.1016/j.ejphar.2021.174693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023]
Abstract
Inflammation is a biological process that exists in a large number of diseases. NF-κB has been proven to play a pivotal role in the development of inflammation. New drugs aimed at inhibiting the expression of NF-κB have gained attention from researchers. Sirt1 has an anti-inflammatory function, and the circRNA encoded by the Sirt1 gene may also play roles in the anti-inflammatory reaction of Sirt1. In the present study, LPS-treated RAW264.7 cells were used as an inflammatory cell model, and tanshinone IIA sodium sulfonate (TSS) was used as a therapeutic drug. We found that TSS downregulated LPS-induced TNF-α and IL-1β expression nearly threefold. LPS reduced Circ-sirt1 mRNA expression by one-third, while TSS started this phenomenon. In addition, overexpression/knockdown of Circ-sirt1 neutralized the function of TSS by regulating the translocation of NF-κB. Thus, we proved that TSS has an anti-inflammatory function by upregulating circ-Sirt1 and subsequently inhibiting the translocation of NF-κB. An in vivo experiment was also performed to confirm the protective function of TSS on inflammation. These results indicated that TSS is a potential treatment for inflammation.
Collapse
Affiliation(s)
- Jiao Lan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Ke Li
- Henan General Hospital,Zhengzhou, China
| | | | - Jifei Miao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen, Graduate School, Shenzhen, China.
| |
Collapse
|
32
|
Zhang B, Yu P, Su E, Jia J, Zhang C, Xie S, Huang Z, Dong Y, Ding J, Zou Y, Jiang H, Ge J. Sodium tanshinone IIA sulfonate improves adverse ventricular remodeling post MI by reducing myocardial necrosis, modulating inflammation and promoting angiogenesis. Curr Pharm Des 2021; 28:751-759. [PMID: 34951571 DOI: 10.2174/1381612828666211224152440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Myocardial infarction (MI) leads to pathological cardiac remodeling and heart failure. Sodium tanshinone IIA sulfonate (STS) shows therapeutic values. The present study aimed to explore the potential role of STS in ventricular remodeling post-MI. METHODS Mice were randomly divided into sham, MI + normal saline (NS) and MI + STS (20.8 mg/kg/day intraperitoneally) groups. MI was established following left anterior descending artery ligation. Cardiac function was evaluated using echocardiography. Scar size and myocardial fibrosis-associated markers were detected using Masson's trichrome staining and western blot analysis (WB). Necrosis and inflammation were assessed using H&E staining, lactate dehydrogenase (LDH) detection, ELISA, immunohistochemical staining, and WB. Furthermore, angiogenesis markers and associated proteins were detected using immunohistochemical staining and WB. RESULTS Mice treated with STS exhibited significant improvements in cardiac function, smaller scar size, and low expression levels of α-smooth muscle actin and collagen I and III at 28 days following surgery, compared with the NS-treated group. Moreover, treatment with STS reduced eosinophil necrosis, the infiltration of inflammatory cells, plasma levels of LDH, high mobility group protein B1, interleukin-1β and tumor necrosis factor-α, and protein expression of these cytokines at 3 days. Macrophage infiltration was also decreased in the STS group in the early phase. Additionally, CD31+ vascular density, protein levels of hypoxia-inducible factor-1α, and vascular endothelial growth factor were elevated in the STS-treated mice at 28 days. CONCLUSION STS improved pathological remodeling post-MI, and the associated therapeutic effects may result from a decrease in myocardial necrosis, modulation of inflammation, and an increase in angiogenesis.
Collapse
Affiliation(s)
- Baoli Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Enyong Su
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Jianguo Jia
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Chunyu Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Shiyao Xie
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhenhui Huang
- R&D Center, SPH No.1 Biochemical & Pharmaceutical Co., Ltd, Shanghai 200240, China
| | - Ying Dong
- R&D Center, SPH No.1 Biochemical & Pharmaceutical Co., Ltd, Shanghai 200240, China
| | - Jinguo Ding
- R&D Center, SPH No.1 Biochemical & Pharmaceutical Co., Ltd, Shanghai 200240, China
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hong Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| |
Collapse
|
33
|
Luo D, Li X, Hou Y, Hou Y, Luan J, Weng J, Zhan J, Lin D. Sodium tanshinone IIA sulfonate promotes spinal cord injury repair by inhibiting blood spinal cord barrier disruption in vitro and in vivo. Drug Dev Res 2021; 83:669-679. [PMID: 34842291 DOI: 10.1002/ddr.21898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) leads to microvascular damage and the destruction of the blood spinal cord barrier (BSCB), which can progress into secondary injuries, such as apoptosis and necrosis of neurons and glia, culminating in permanent neurological deficits. BSCB restoration is the primary goal of SCI therapy, although very few drugs can repair damaged barrier structure and permeability. Sodium tanshinone IIA sulfonate (STS) is commonly used to treat cardiovascular disease. However, the therapeutic effects of STS on damaged BSCB during the early stage of SCI remain uncertain. Therefore, we exposed spinal cord microvascular endothelial cells to H2 O2 and treated them with different doses of STS. In addition to protecting the cells from H2 O2 -induced apoptosis, STS also reduced cellular permeability. In the in vivo model of SCI, STS reduced BSCB permeability, relieved tissue edema and hemorrhage, suppressed MMP activation and prevented the loss of tight junction and adherens junction proteins. Our findings indicate that STS treatment promotes SCI recovery, and should be investigated further as a drug candidate against traumatic SCI.
Collapse
Affiliation(s)
- Dan Luo
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Li
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonghui Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiyao Luan
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Second College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxian Weng
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiheng Zhan
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dingkun Lin
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
34
|
Li S, Li Z, Tan T, Dai S, Wu Y, Xu F. Tanshinone IIA improves degranulation of mast cells and allergic rhinitis induced by ovalbumin by inhibiting the PLCγ1/PKC/IP3R pathway. Hum Exp Toxicol 2021; 40:S702-S710. [PMID: 34792426 DOI: 10.1177/09603271211058884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Allergic rhinitis (AR) is a common allergic inflammatory and chronic reactive disease caused by allergen-induced immunoglobulin E (IgE). Tanshinone IIA (Tan IIA) is one of the active ingredients in Salvia miltiorrhiza Bunge (Danshen) and plays a vital role in inhibiting inflammation. Thus, we hypothesized that Tan IIA has anti-allergic effects and studied the function of Tan IIA in mast cells and an AR animal model. We induced RBL-2H3 cell sensitization with monoclonal anti-2,4,6-dinitrophenyl-immunoglobulin (Ig) E/human serum albumin (DNP-IgE/HSA) and constructed an ovalbumin (OVA)-induced AR model in mice. The role of Tan IIA in AR progression was studied using the MTT assay, ELISA, western blot, toluidine blue staining, HE staining, and Alcian blue and safranin O (A&S) staining. Tan IIA treatment significantly increased IgE/HSA-induced cell viability. However, Tan IIA treatment markedly downregulated the expression levels of β-hexosaminidase, histamine, tumor necrosis factor (TNF-α), interleukin 1β (IL-1β), IL-4, and IL-5 in IgE/HSA-induced cells. Furthermore, Tan IIA improved typical symptoms in the OVA-induced AR model mice by inhibiting the phospholipase Cγ1 (PLCγ1)/protein kinase C (PKC)/IP3R pathway. Additionally, Tan IIA effectively improved the degranulation of RBL-2H3 cells and OVA-induced AR in mice. Together, these results suggest that Tan IIA may be a potential drug for the treatment of AR in the future.
Collapse
Affiliation(s)
- Shouye Li
- College of Pharmacy, 117839Hangzhou Medical College, Hangzhou, China
| | - Zheming Li
- College of Pharmacy, 117839Hangzhou Medical College, Hangzhou, China
| | - Tao Tan
- Internal Medicine Department, Zhejiang Provincial General Team Hospital of the Chinese People's Armed Police Force, Hangzhou, China
| | - Shijie Dai
- College of Pharmacy, 117839Hangzhou Medical College, Hangzhou, China
| | - Yangsheng Wu
- College of Pharmacy, 117839Hangzhou Medical College, Hangzhou, China
| | - Faying Xu
- School of Medical Imaging, 117839Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
35
|
Salvia miltiorrhiza Protects Endothelial Dysfunction against Mitochondrial Oxidative Stress. Life (Basel) 2021; 11:life11111257. [PMID: 34833133 PMCID: PMC8622679 DOI: 10.3390/life11111257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Salvia miltiorrhiza (SM) is a common traditional Chinese medicine used in the treatment of cardiovascular and cerebrovascular diseases. Endothelial dysfunction plays an important role in the pathology of cardiovascular diseases. Endothelial dysfunction may induce inflammation and change vascular tone and permeability. The main pathological mechanism of endothelial dysfunction is the formation of reactive oxygen species (ROS). Mitochondria are the main source of energy and can also produce large amounts of ROS. Recent studies have shown that extracts of SM have antioxidative, anti-inflammatory, and antithrombus properties. In this review, we discuss the mechanism of oxidative stress in the mitochondria, endothelial dysfunction, and the role of SM in these oxidative events.
Collapse
|
36
|
Chen P, An Q, Huang Y, Zhang M, Mao S. Prevention of endotoxin-induced cardiomyopathy using sodium tanshinone IIA sulfonate: Involvement of augmented autophagy and NLRP3 inflammasome suppression. Eur J Pharmacol 2021; 909:174438. [PMID: 34437885 DOI: 10.1016/j.ejphar.2021.174438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
Increasing evidence indicates that patients or experimental animals exposure to endotoxin (lipopolysaccharides, LPS) exert deleterious cardiac functions that greatly contribute to morbidity and mortality. The pathophysiologic processes, including NLRP3 inflammasome overactivation and cardiac inflammatory injury, are complicated. Sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of tanshinone IIA, is a naturally occurring compound extracted from Salvia miltiorrhiza and has anti-inflammatory and cardioprotective properties. In this study we examined the effect of STS on endotoxin-induced cardiomyopathy and investigated the underlying mechanisms. An endotoxemic mouse model was established by injecting LPS (10 mg/kg). Different doses of STS were administered intraperitoneally (5, 10, or 50 mg/kg) at different time points (2/12 h, 4/12 h, and 8/12 h) after LPS challenge to assess its effect on survival of mice with endotoxemia. In parallel, cardiac function, myocardial inflammatory cytokines, cardiomyocyte pyroptosis and autophagy were evaluated to determine the extent of myocardial damage due to sepsis in the presence and absence of STS at the optimal dose (10 mg/kg) and time-point (2/12 h). The results demonstrated that STS increased the survival rates, improved the compromised cardiac function and reduced myocardial inflammatory injury associated with enhanced autophagy and mitigated NLRP3 inflammasome activation. Moreover, inhibiting of autophagy or blocking the AMPK pathway reversed STS-elicited prevention of cardiomyopathy and activated the NLRP3 inflammasome in endotoxemic mice. Collectively, our study demonstrates that STS attenuates endotoxemia-induced mortality and cardiomyopathy, which may be associated with promotion of autophagy and inhibition of NLRP3 inflammasome overactivation.
Collapse
Affiliation(s)
- Peipei Chen
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Qiyuan An
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China; Southern Medical University, Guangzhou, 510515, China
| | - Yuxin Huang
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Minzhou Zhang
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Shuai Mao
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China; Guangdong Provincial Branch of National Clinical Research Centre for Chinese Medicine Cardiology, Guangzhou, 510120, China.
| |
Collapse
|
37
|
Mahalakshmi B, Huang CY, Lee SD, Maurya N, kiefer R, Bharath Kumar V. Review of Danshen: From its metabolism to possible mechanisms of its biological activities. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
38
|
Bordean L, Chis M, Raica M, Cotoi OS, Ceausu AR, Avram C, Cimpean AM. CLIC1 Expression in Skin Biopsies from Patients With Rheumatoid and Psoriatic Arthritis as a Potential Tool to Predict Therapy Response. In Vivo 2021; 35:2559-2567. [PMID: 34410943 DOI: 10.21873/invivo.12538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Chloride intracellular channel protein 1 (CLIC1) activates inflammasomes in rheumatoid (RA) and psoriatic (PsA) arthritis. We studied CLIC1 expression in RA and PsA patients' skin with vasculitis and its variability depending on the therapy used. MATERIALS AND METHODS CLIC1 immunoexpression was evaluated in the vascular (CLIC1-V) and stromal (CLIC1-S) compartments of the RA and PsA skin biopsies of patients treated with methotrexate (MTX), leflunomid (LFN), corticotherapy (CT), or biological therapies. RESULTS MTX significantly reduced CLIC1-S expression (p=0.016), whereas LFN decreased CLIC1-V (p<0.001). LFN therapy duration also correlated with CLIC1-V (p<0.001). CT decreased CLIC1-S expression (p=0.006). CLIC1-S expression persisted in skin biopsies despite of erythrocyte sedimentation rate (ESR, p=0.018) and C reactive protein (CRP, p=0.0026) normalisation. For PsA, CLIC1-S expression significantly related to MTX (p<0.022). Both CLIC1-S (p<0.001) and CLIC1-V (p=0.007) decreased by biological therapies in RA. CONCLUSION CLIC1 expression is strongly influenced by the therapy used. Our data strongly support the extensive evaluation of CLIC1 in RA as a potential marker of inflammation and tool to predict therapy response.
Collapse
Affiliation(s)
- Liliana Bordean
- Department ME2/Rheumatology, Rehabilitation, Physical Medicine and Balneology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş (UMPhST), Târgu Mureș, Romania.,Clinic of Rheumatology, Emergency County Hospital of Târgu Mureş, Târgu Mureș, Romania.,Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Monica Chis
- Department ME2/Rheumatology, Rehabilitation, Physical Medicine and Balneology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş (UMPhST), Târgu Mureș, Romania; .,Clinic of Rheumatology, Emergency County Hospital of Târgu Mureş, Târgu Mureș, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Ovidiu Simion Cotoi
- Department M2/Physiopathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş (UMPhST), Târgu Mureș, Romania
| | - Amalia Raluca Ceausu
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Claudiu Avram
- Physical Therapy and Special Motricity Department, West University of Timisoara, Timisoara, Romania
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
39
|
Estolano-Cobián A, Alonso MM, Díaz-Rubio L, Ponce CN, Córdova-Guerrero I, Marrero JG. Tanshinones and their Derivatives: Heterocyclic Ring-Fused Diterpenes of Biological Interest. Mini Rev Med Chem 2021; 21:171-185. [PMID: 32348220 DOI: 10.2174/1389557520666200429103225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/06/2020] [Accepted: 02/03/2020] [Indexed: 11/22/2022]
Abstract
The available scientific literature regarding tanshinones is very abundant, and after its review, it is noticeable that most of the articles focus on the properties of tanshinone I, cryptotanshinone, tanshinone IIA, sodium tanshinone IIA sulfonate and the dried root extract of Salvia miltiorrhiza (Tan- Shen). However, although these products have demonstrated important biological properties in both in vitro and in vivo models, their poor solubility and bioavailability have limited their clinical applications. For these reasons, many studies have focused on the search for new pharmaceutical formulations for tanshinones, as well as the synthesis of new derivatives that improve their biological properties. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2015) on tanshinones in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we offer an update on the last five years of new research on these quinones, focusing on their synthesis, biological activity on noncommunicable diseases and drug delivery systems, to support future research on its clinical applications.
Collapse
Affiliation(s)
- Arturo Estolano-Cobián
- Facultad de Ciencias Quiımicas e Ing, Universidad Autonoma de Baja California, Clz. Universidad 14418, Parque Industrial Internacional, Tijuana, B. C. CP 22390, Mexico
| | - Mariana Macías Alonso
- Instituto Politecnico Nacional, UPIIG, Av. Mineral de Valenciana, No. 200, Col. Fracc, Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico
| | - Laura Díaz-Rubio
- Facultad de Ciencias Quiımicas e Ing, Universidad Autonoma de Baja California, Clz. Universidad 14418, Parque Industrial Internacional, Tijuana, B. C. CP 22390, Mexico
| | - Cecilia Naredo Ponce
- Instituto Politecnico Nacional, UPIIG, Av. Mineral de Valenciana, No. 200, Col. Fracc, Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico
| | - Iván Córdova-Guerrero
- Facultad de Ciencias Quiımicas e Ing, Universidad Autonoma de Baja California, Clz. Universidad 14418, Parque Industrial Internacional, Tijuana, B. C. CP 22390, Mexico
| | - Joaquín G Marrero
- Instituto Politecnico Nacional, UPIIG, Av. Mineral de Valenciana, No. 200, Col. Fracc, Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico
| |
Collapse
|
40
|
Lai Z, He J, Zhou C, Zhao H, Cui S. Tanshinones: An Update in the Medicinal Chemistry in Recent 5 Years. Curr Med Chem 2021; 28:2807-2827. [PMID: 32436817 DOI: 10.2174/0929867327666200521124850] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/22/2022]
Abstract
Tanshinones are an important type of natural products isolated from Salvia miltiorrhiza Bunge with various bioactivities. Tanshinone IIa, cryptotanshinone and tanshinone I are three kinds of tanshinones which have been widely investigated. Particularly, sodium tanshinone IIa sulfonate is a water-soluble derivative of tanshinone IIa and it is used in clinical in China for treating cardiovascular diseases. In recent years, there are increasing interests in the investigation of tanshinones derivatives in various diseases. This article presents a review of the anti-atherosclerotic effects, cardioprotective effects, anticancer activities, antibacterial activities and antiviral activities of tanshinones and structural modification work in recent years.
Collapse
Affiliation(s)
- Zhencheng Lai
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jixiao He
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Changxin Zhou
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Sodium Tanshinone IIA Sulfonate Ameliorates Injury-Induced Oxidative Stress and Intervertebral Disc Degeneration in Rats by Inhibiting p38 MAPK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5556122. [PMID: 34122723 PMCID: PMC8172320 DOI: 10.1155/2021/5556122] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023]
Abstract
Objective Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivative of tanshinone IIA, a representative traditional Chinese medicine. The aim of the study was to investigate the capability of STS to reverse injury-induced intervertebral disc degeneration (IDD) and explore the potential mechanisms. Methods Forty adult rats were randomly allocated into groups (control, IDD, STS10, and STS20). An IDD model was established by puncturing the Co8-9 disc using a needle. Rats in the STS groups were administered STS by daily intraperitoneal injection (10 or 20 mg/kg body weight) while rats in the control and IDD groups received the same quantity of normal saline. After four weeks, the entire spine from each rat was scanned for X-ray and MRI analysis. Each Co8-9 IVD underwent histological analysis (H&E, Safranin-O Fast green, and alcian blue staining). A tissue was analyzed by immunohistochemical (IHC) staining to determine the expression levels of collagen II (COL2), aggrecan, matrix metalloproteinase-3/13 (MMP-3/13), interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α). Levels of oxidative stress were measured using an ELISA while activity of the p38 MAPK pathway was assessed using Western blot analysis. Results Compared with the control group, needle puncture significantly decreased IVD volume and T-2 weighted MR signal intensity, confirming disc degeneration. These alterations were significantly attenuated by treatment with 10 or 20 mg/kg STS. Lower COL2 and aggrecan and higher MMP-3/13, IL-1β, IL-6, and TNF-α levels in the IDD group were substantially reversed by STS. In addition, treatment with STS increased antioxidative enzyme activity and decreased levels of oxidative stress induced by needle puncture. Furthermore, STS inhibited the p38 MAPK pathway in the rat model of IDD. Conclusions STS ameliorated injury-induced intervertebral disc degeneration and displayed anti-inflammatory and antioxidative properties in a rat model of IDD, possibly via inhibition of the p38 MAPK signaling pathway.
Collapse
|
42
|
Pei L, Le Y, Chen H, Feng J, Liu Z, Zhu J, Wang C, Chen L, Dou X, Lu D. Cynaroside prevents macrophage polarization into pro-inflammatory phenotype and alleviates cecal ligation and puncture-induced liver injury by targeting PKM2/HIF-1α axis. Fitoterapia 2021; 152:104922. [PMID: 33984439 DOI: 10.1016/j.fitote.2021.104922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
The treatment of sepsis is still challenging and the liver is an important target of sepsis-related injury. Macrophages are important innate immune cells in liver, and modulation of macrophages M1/M2 polarization may be a promising strategy for septic liver injury treatment. Macrophage polarization and inflammation of liver tissue has been shown regulated by pyruvate kinase M2 (PKM2)-mediated aerobic glycolysis and immune inflammatory pathways. Therefore, modulating PKM2-mediated immunometabolic reprogramming presents a novel strategy for inflammation-associated diseases. In this study, cynaroside, a flavonoid compound, promoted macrophage phenotypic transition from pro-inflammatory M1 to anti-inflammatory M2, and mitigated sepsis-associated liver inflammatory damage. We established that cynaroside reduced binding of PKM2 to hypoxia-inducible factor-1α (HIF-1α) by abolishing translocation of PKM2 to the nucleus and promoting PKM2 tetramer formation, as well as suppressing phosphorylation of PKM2 at Y105 in vivo and in vitro. Moreover, cynaroside restored pyruvate kinase activity, inhibited glycolysis-related proteins including PFKFB3, HK2 and HIF-1α, and inhibited glycolysis-related hyperacetylation of HMGB1 in septic liver. Therefore, this study reports a novel function of cynaroside in hepatic macrophage polarization, and cecum ligation and puncture-induced liver injury in septic mice. The findings provide crucial information with regard to therapeutic efficacy of cynaroside in the treatment of sepsis.
Collapse
Affiliation(s)
- Liuhua Pei
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Yifei Le
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Hang Chen
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Jiafan Feng
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Zhijun Liu
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Ji Zhu
- Clinical Laboratory, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 330106 Hangzhou, China
| | - Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Lin Chen
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Xiaobing Dou
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China.
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China.
| |
Collapse
|
43
|
Song Z, Feng J, Zhang Q, Deng S, Yu D, Zhang Y, Li T. Tanshinone IIA Protects Against Cerebral Ischemia Reperfusion Injury by Regulating Microglial Activation and Polarization via NF-κB Pathway. Front Pharmacol 2021; 12:641848. [PMID: 33953677 PMCID: PMC8090935 DOI: 10.3389/fphar.2021.641848] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Tanshinone IIA, a fat-soluble diterpenoid isolated from Salvia miltiorrhiza Bunge, has been shown to attenuate the cerebral ischemic injury. The aim of this study was to examine the effects on neuroprotection and microglia activation of Tanshinone IIA. Male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO). We found that Tanshinone IIA significantly reduced infarction volume, alleviated neuronal injuries, reduced the release of TNF-α, IL-1β, and IL-6, increased SOD activity, and decrease the content of MDA in MCAO rats. Hematoxylin and eosin staining, Nissl staining, TUNEL staining and immunofluorescence staining showed that Tanshinone IIA improved the distribution and morphology of neurons in brain tissues and reduced apoptosis. In addition, Co-immunofluorescence staining of rat brain tissues and the mRNA expression levels of CD11b, CD32, iNOS, and Arg-1, CD206, IL-10 in BV2 cells indicated that Tanshinone IIA can downregulate M1 microglia and upregulate M2 microglia in MCAO rats. Further, BV2 microglial cells were subjected to oxygen-glucose deprivation, the protein expression levels were detected by western blot. Tanshinone IIA inhibited the expression levels of NF-κB signaling pathway related proteins. Taken together, this study suggested that Tanshinone IIA modulated microglial M1/M2 polarization via the NF-κB signaling pathway to confer anti-neuroinflammatory effects.
Collapse
Affiliation(s)
- Zhibing Song
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, China.,College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Jingjing Feng
- College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Qian Zhang
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, China
| | - Shanshan Deng
- School of Medicine, Shanghai University, Shanghai, China
| | | | - Yuefan Zhang
- School of Medicine, Shanghai University, Shanghai, China
| | - Tiejun Li
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, China
| |
Collapse
|
44
|
Saleh HA, Yousef MH, Abdelnaser A. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Front Immunol 2021; 12:606069. [PMID: 33868227 PMCID: PMC8044831 DOI: 10.3389/fimmu.2021.606069] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Innate immune response induces positive inflammatory transducers and regulators in order to attack pathogens, while simultaneously negative signaling regulators are transcribed to maintain innate immune homeostasis and to avoid persistent inflammatory immune responses. The gene expression of many of these regulators is controlled by different epigenetic modifications. The remarkable impact of epigenetic changes in inducing or suppressing inflammatory signaling is being increasingly recognized. Several studies have highlighted the interplay of histone modification, DNA methylation, and post-transcriptional miRNA-mediated modifications in inflammatory diseases, and inflammation-mediated tumorigenesis. Targeting these epigenetic alterations affords the opportunity of attenuating different inflammatory dysregulations. In this regard, many studies have identified the significant anti-inflammatory properties of distinct naturally-derived phytochemicals, and revealed their regulatory capacity. In the current review, we demonstrate the signaling cascade during the immune response and the epigenetic modifications that take place during inflammation. Moreover, we also provide an updated overview of phytochemicals that target these mechanisms in macrophages and other experimental models, and go on to illustrate the effects of these phytochemicals in regulating epigenetic mechanisms and attenuating aberrant inflammation.
Collapse
Affiliation(s)
- Haidy A. Saleh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed H. Yousef
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Public Health, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
45
|
Feng J, Liu L, Yao F, Zhou D, He Y, Wang J. The protective effect of tanshinone IIa on endothelial cells: a generalist among clinical therapeutics. Expert Rev Clin Pharmacol 2021; 14:239-248. [PMID: 33463381 DOI: 10.1080/17512433.2021.1878877] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Tanshinone IIa (TSA) has been approved to treat cardiovascular diseases by the China State Food and Drug Administration. TSA has exhibited a variety of pharmacological effects, including vasodilator, antioxidant, anti-inflammatory, and anti-tumor properties. Endothelial cells play an important physiological role in vascular homeostasis and control inflammation, coagulation, and thrombosis. Accumulating studies have shown that TSA can improve endothelial function through various pathways. AREAS COVERED The PubMed database was reviewed for relevant papers published up to 2020. This review summarizes the current clinical and pharmaceutical studies to provide a systemic overview of the pharmacological and therapeutic effects of TSA on endothelial cells. EXPERT OPINION TSA is a representative monomeric compound extracted from Danshen and it exhibits significant pharmacological and therapeutic properties to improve endothelial cell function, including alleviating oxidative stress, attenuating inflammatory injury, modulating ion channels and so on. TSA represents a spectrum of agents that are extracted from plants and can restore the endothelial function to establish the beneficial and harmless molecular therapeutics. This also suggests the possible detection of endothelial cells for very early diagnosis of diseases. In future, precise therapeutic methods will be developed to repair endothelial cells injury and recover endothelial dysfunction.
Collapse
Affiliation(s)
- Jun Feng
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Yao
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Lu D, Le Y, Ding J, Dou X, Mao W, Zhu J. CLIC1 Inhibition Protects Against Cellular Senescence and Endothelial Dysfunction Via the Nrf2/HO-1 Pathway. Cell Biochem Biophys 2021; 79:239-252. [PMID: 33432550 DOI: 10.1007/s12013-020-00959-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 02/02/2023]
Abstract
Chloride intracellular channel 1 (CLIC1) is a sensor of oxidative stress in endothelial cells (EC). However, the mechanism by which CLIC1 mediate the regulation of endothelial dysfunction has not been established. In this study, overexpressed CLIC1 impaired the ability of the vascular cells to resist oxidative damage and promoted cellular senescence. Besides, suppressed CLIC1 protected against cellular senescence and dysfunction in Human Umbilical Vein Endothelial Cells (HUVECs) through the Nrf2/HO-1 pathway. We also found that ROS-activated CLIC1-induced oxidative stress in HUVECs. Nrf2 nuclear translocation was inhibited by CLIC1 overexpression, but was enhanced by IAA94 (CLICs inhibitor) treatment or knockdown of CLIC1. The Nrf2/HO-1 pathway plays a critical role in the anti-oxidative effect of suppressing CLIC1. And inhibition of CLIC1 decreases oxidative stress injury by downregulating the levels of ROS, MDA, and the expression of EC effectors (ICAM1 and VCAM1) protein expression and promotes the activity of superoxide dismutase (SOD). The AMPK-mediated signaling pathway activates Nrf2 through Nrf2 phosphorylation and nuclear translocation, which is also regulated by CLIC1. Moreover, the activation of CLIC1 contributes to H2O2-induced mitochondrial dysfunction and activation of mitochondrial fission. Therefore, elucidation of the mechanisms by which CLIC1 is involved in these pivotal pathways may uncover its therapeutic potential in alleviating ECs oxidative stress and age-related cardiovascular disease development.
Collapse
Affiliation(s)
- Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Yifei Le
- College of Life Science, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Jiali Ding
- College of Life Science, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Xiaobing Dou
- College of Life Science, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Wei Mao
- Cardiovascular department, The First Affiliated Hospital of Zhejiang Chinese Medicine University, 310006, Hangzhou, China.
| | - Ji Zhu
- Clinical Laboratory, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
47
|
Guo R, Li L, Su J, Li S, Duncan SE, Liu Z, Fan G. Pharmacological Activity and Mechanism of Tanshinone IIA in Related Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4735-4748. [PMID: 33192051 PMCID: PMC7653026 DOI: 10.2147/dddt.s266911] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
Salvia miltiorrhiza: (Danshen) is a significant (traditional Chinese medication) natural remedy, enhancing blood circulation and clear blood stasis. In this view, it is widely used against several heart diseases, eg, cardiomyopathy, arrhythmia, and congenital heart defects. Tanshinone IIA (tan-IIA) is the main fat-soluble component of Salvia miltiorrhiza. Modern pharmacological study shows that tan-IIA has anti-inflammatory and anti-oxidant activities. Tan-IIA induces remarkable cardioprotective effects via enhancing angiogenesis which may serve as an effective treatment against cardiovascular diseases (CVD). There is also evidence that tan-IIA has extensive immunomodulatory effects and plays a significant role in the development and function of immune cells. Tan-IIA reduces the production of inflammatory mediators and restores abnormal signaling pathways via regulating the function and activation of immune cells. It can also regulate signal transduction pathways, ie, TLR/NF-κB pathway and MAPKs/NF-κB pathway, thereby tan-IIA has an anti-inflammatory, anticoagulant, antithrombotic and neuroprotective role. It plays a protective role in the pathogenesis of cardiovascular disorders (ie, atherosclerosis, hypertension) and Alzheimer’s disease. It has also been revealed that tan-IIA has an anti-tumor role by killing various tumor cells, inducing differentiation and apoptosis, and has potential activity against carcinoma progression. In the review of this fact, the tan-IIA role in different diseases and its mechanism have been summarized while its clinical applications are also explored to provide a new perspective of Salvia miltiorrhiza. An extensive study on the mechanism of action of tan-IIA is of great significance for the effective use of Chinese herbal medicine and the promotion of its status and influence on the world.
Collapse
Affiliation(s)
- Rui Guo
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Lan Li
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jing Su
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Sheng Li
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Sophia Esi Duncan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Zhihao Liu
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Guanwei Fan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
48
|
Qian J, Cao Y, Zhang J, Li L, Wu J, Wei G, Yu J, Huo J. Tanshinone IIA induces autophagy in colon cancer cells through MEK/ERK/mTOR pathway. Transl Cancer Res 2020; 9:6919-6928. [PMID: 35117300 PMCID: PMC8797932 DOI: 10.21037/tcr-20-1963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Background Colon cancer is a common malignancy of the digestive tract. The search for effective drugs to treat colon cancer has become the focus of current researches. Tanshinone IIA (Tan IIA) is a fat-soluble component extracted from tanshinone, a traditional Chinese medicine. Tan IIA can modulate the occurrence and development of tumors, but its effect on autophagy in colon cancer cells has not been reported. Methods Two types of colon cancer cell lines were selected and different concentrations of Tan IIA were used to treat cells at different time points. Cell Counting Kit-8 assay (CCK-8) was used to detect the effect of Tan IIA on cell proliferation; transmission electron microscopy was used to observe the formation of autophagosomes; reverse transcription-polymerase chain reaction (RT-qPCR) and western blot were used to detect the expression of autophagy related genes and proteins. Cell transfection was used to interfere with MEK (mitogen-activated extracellular signal-regulated kinase) expression, and RT-qPCR and western blot were used to detect the expression of MEK/ERK/mTOR pathway-related proteins. Results Tan IIA resulted in a significant reduction in the viability of the two kinds of colon cancer cells. The number of autophagosomes increased significantly after the treatment of Tan IIA into these cells. Addition of autophagy inhibitor 3-MA (3-Methyladenine) improved the increase of autophagosomes in cells induced by Tan IIA. At the same time, Tan IIA induced the expression of autophagy-related proteins in the two colon cancer cell lines. When Tan IIA induced autophagy in colon cancer cells, the expression of MEK/ERK/mTOR pathway-related proteins increased significantly. After interfering with the expression of MEK, the expression of autophagy decreased significantly, indicating that Tan IIA promoted autophagy of colon cancer cells through MEK/ERK/mTOR pathway. Conclusions Tan IIA stimulates autophagy in colon cancer cells through MEK/ERK/mTOR pathway, hence inhibiting the growth of colon cancer cells.
Collapse
Affiliation(s)
- Jun Qian
- Department of Diagnostics of Chinese Medicine, School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Cao
- Research Office of Herbal Literature, Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfeng Zhang
- Department of Pathogen and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingchang Li
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Wu
- Department of Public health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoli Wei
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jialin Yu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiege Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
49
|
Pharmacological basis of tanshinone and new insights into tanshinone as a multitarget natural product for multifaceted diseases. Biomed Pharmacother 2020; 130:110599. [PMID: 33236719 DOI: 10.1016/j.biopha.2020.110599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Drug development has long included the systematic exploration of various resources. Among these, natural products are one of the most important resources from which novel agents are developed due to the multiple pharmacologic effects of these natural products on diseases. Tanshinone, a representative natural product, is the main compound extracted from the dried root and rhizome of Salvia miltiorrhiza Bge. Research on tanshinone began in the early 1930s. With the in-depth investigation of an increasing number of identified analogs, tanshinone has demonstrated a wide variety of bioactivities and contradicted the saying, 'You can't teach an old dog new tricks'. This review is focused on the pharmacological action of tanshinone and status of research on tanshinone in recent years. The mechanism of tanshinone has also drawn much attention, with the findings of representative targets and pathways of tanshinone. The most recent studies have comprehensively shown that tanshinone can be used to treat leukemia and solid carcinoma, protect against cardiovascular and cerebrovascular diseases, and alleviate liver- and kidney-related diseases, among its other effects. Multiple signaling pathways, including antiproliferative, antiapoptotic, anti-inflammatory, and antioxidative stress pathways, are involved in its actions.
Collapse
|
50
|
Huang Y, Ma S, Wang Y, Yan R, Wang S, Liu N, Chen B, Chen J, Liu L. The Role of Traditional Chinese Herbal Medicines and Bioactive Ingredients on Ion Channels: A Brief Review and Prospect. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:257-265. [PMID: 30370864 DOI: 10.2174/1871527317666181026165400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022]
Abstract
Traditional Chinese Medicines (TCMs), particularly the Chinese herbal medicines, are valuable sources of medicines and have been used for centuries. The term "TCMs" both represents to the single drug agent like Salvia miltiorrhiza, Ligusticum chuanxiong and Angelica sinensis, and those herbal formulas like Jingshu Keli, Wenxin Keli and Danzhen powder. In recent years, the researches of TCMs developed rapidly to understand the scientific basis of these herbs. In this review, we collect the studies of TCM and their containing bioactive compounds, and attempt to provide an overview for their regulatory effects on different ion channels including Ca2+, K+, Na+, Cl- channels and TRP, P2X receptors. The following conditions are used to limit the range of our review. (i) Only the herbal materials are included in this review and the animal- and mineral-original TCMs are excluded. (ii) The major discussions in this review focus on single TCM agent and the herbal formulas are only discussed for a little. (iii) Those most famous herbal medicines like Capsicum annuum (pepper), Curcuma longa (ginger) and Cannabis sativa (marijuana) are excluded. (iv) Only those TCM herbs with more than 5 research papers confirming their effects on ion channels are discussed in this review. Our review discusses recently available scientific evidences for TCMs and related bioactive compounds that have been reported with the modulatory effects on different ion channels, and thus provides a new ethnopharmacological approach to understand the usage of TCMs.
Collapse
Affiliation(s)
- Yian Huang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Shumei Ma
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Yan Wang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Renjie Yan
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Sheng Wang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Nan Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Ben Chen
- Laboratory of Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.,Department of CNS Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0192, Japan
| | - Jia Chen
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Li Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China.,Shanghai Professional and Technical Service Center for Biological Material Drug-ability Evaluation, Shanghai 200437, China
| |
Collapse
|