1
|
Lin Y, Wang H, Xu S, Liu C, Zhang C. Pharmacokinetic and oral bioavailability study of schaftoside in rats. Biomed Chromatogr 2024; 38:e5892. [PMID: 38769722 DOI: 10.1002/bmc.5892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
A simple and sensitive LC-tandem mass spectrometry method was established and validated for the determination of schaftoside in rat plasma. After prepared by protein precipitation with acetonitrile, schaftoside and internal standard were separated on a Waters HSS T3 column using acetonitrile containing 0.1% formic acid and 0.1% formic acid in water as the mobile phase by gradient elution. The method showed excellent linearity over the range of 0.5-500 ng/mL with acceptable intra- and inter-day precision, accuracy, matrix effect, and recovery. The stability assay indicated that schaftoside was stable during the sample acquisition, preparation, and storage. The method was applied to a pharmacokinetic study of schaftoside in rats. The result suggested that after intravenous administration at a dose of 1 mg/kg, schaftoside was quickly eliminated from the plasma with an elimination half-life of 0.58 h. After oral administration at doses of 5, 10, and 20 mg/kg, schaftoside was quickly absorbed into the plasma and reached the peak concentration (Cmax) of 45.1-104.99 ng/mL at 0.67-1.17 h. The increase of exposure (area under the curve) was linear with the increase of dose. The oral bioavailability was 0.42%-0.71% in the range of 5-20 mg/kg.
Collapse
Affiliation(s)
- Yuan Lin
- Wenling Hospital of Traditional Chinese Medicine, Wenling, China
| | - Hongqiang Wang
- Fuyang Institute for Food and Drug Control, Fuyang, China
| | - Shihui Xu
- Fuyang Institute for Food and Drug Control, Fuyang, China
| | - Chang Liu
- Faculty of Pharmacy, Naval Medical University, Shanghai, China
| | | |
Collapse
|
2
|
Lu D, Liu W, Yang H, Zong Y, Sun J, Sun X, Song S, Liu M, Kan J, Che C. Schaftoside reduces inflammation in Aspergillus fumigatus keratitis through the inhibition of the TLR4/MyD88 pathway. Cytokine 2024; 175:156483. [PMID: 38159472 DOI: 10.1016/j.cyto.2023.156483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE The purpose of this research study was to investigate the impact of schaftoside on Aspergillus fumigatus (A. fumigatus) keratitis and elucidate its underlying mechanisms. METHODS In order to establish safe experimental concentrations of schaftoside in human corneal epithelial cells (HCECs), RAW264.7 cells, and mouse models, various techniques were employed including cytotoxicity assay (CCK-8) assay, cell scratch assay, and Draize test. The therapeutic effect of schaftoside was assessed using slit-lamp biomicroscopy, clinical scores, as well as determination of neutrophil infiltration through hematoxylin and eosin (HE) staining, immunofluorescence (IF) staining, and myeloperoxidase (MPO) assay. The levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), pro-inflammatory mediators interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 were determined using quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and IF techniques. RESULTS Schaftoside at a concentration of 160 μM displayed no harmful side effects on HCECs, RAW cells, and mouse corneas, rendering it suitable for further experiments. In a murine fungal keratitis model, schaftoside mitigated the severity of fungal keratitis by inhibiting neutrophil infiltration and reducing MPO activity. Both in vitro and in vivo experiments demonstrated that schaftoside treatment suppressed the upregulation of IL-1β, TNF-α, and IL-6 expression, while also downregulating the expressions of TLR4 as well as MyD88 at both mRNA and protein levels. CONCLUSIONS Schaftoside demonstrated a protective effect against A. fumigatus keratitis by reducing corneal damage through inhibition of neutrophil recruitment and downstream inflammatory cytokines. The anti-inflammatory properties of schaftoside in A. fumigatus keratitis may involve modulation of the TLR4/MyD88 pathway.
Collapse
Affiliation(s)
- Danli Lu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenting Liu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yao Zong
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jintao Sun
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyan Sun
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiqi Song
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengzhu Liu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingze Kan
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Medical College, Qingdao University, Qingdao, China
| | - Chengye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Opryshko V, Prokhach A, Akimov O, Riabushko M, Kostenko H, Kostenko V, Mishchenko A, Solovyova N, Kostenko V. Desmodium styracifolium: Botanical and ethnopharmacological insights, phytochemical investigations, and prospects in pharmacology and pharmacotherapy. Heliyon 2024; 10:e25058. [PMID: 38317880 PMCID: PMC10838797 DOI: 10.1016/j.heliyon.2024.e25058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
The purpose of this inquiry is to provide a conprehensive summary and analysis of the literature concerning the pharmacological properties of components that can be extracted from Desmodium styracifolium, a preparation in Chinese medicine. This study also aims to explore their potential application in elaborating medicinal products for the effective prevention and treatment of such conditions as urolithiasis, cholelithiasis, type 2 diabetes mellitus, metabolic syndrome, pro-oxidant and inflammatory processes, etc. Several experimental studies confirmed the potential of D. styracifolium to influence mineral metabolism, to decrease the concentration of constituents involved in the formation of urinary calculi, and to reduce mineral encrustation in the urinary tract, as well as to alleviate the damage caused by crystal structures. This beneficial impact is achieved through a combination of antioxidant and anti-inflammatory actions, along with urine alkalinization. The cholelitholytic, choleretic, and hepatoprotective effects of D. styracifolium plants have been confirmed, primarily ascribed to the activation of the hepatic Xα receptor and the bile acid receptor, farnesoid X receptor, by the flavonoid shaftoside. Special attention is focused on the potential therapeutic applications of flavonoids derived from D. styracifolium for diseases associated with the development of chronic inflammation and systemic response, emphasizing the ability of flavonoids to exert antioxidant and anti-inflammatory effects by acting directly and through the modulation of transcription factors. It is concluded that new strategies for the prevention and treatment of urolithiasis, cholelithiasis, type 2 diabetes mellitus, metabolic syndrome, acute and chronic inflammatory processes may rely on the promising development of dosage forms of D. styracifolium with their subsequent preclinical and clinical trials.
Collapse
Affiliation(s)
- Valentyna Opryshko
- Dnipro State Medical University, Department of General and Clinical Pharmacy, Dnipro, Ukraine
| | - Anna Prokhach
- Dnipro State Medical University, Department of Oncology and Medical Radiology, Dnipro, Ukraine
| | - Oleh Akimov
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Mykola Riabushko
- Poltava State Medical University, Department of Pharmacology, Clinical Pharmacology and Pharmacy, Poltava, Ukraine
| | - Heorhii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Viktoriia Kostenko
- Poltava State Medical University, Department of Foreign Languages with Latin and Medical Terminology, Poltava, Ukraine
| | - Artur Mishchenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Natalia Solovyova
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Vitalii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| |
Collapse
|
4
|
Xie C, Zhan T, Huang J, Lan J, Shen L, Wang H, Zheng X. Functional characterization of nine critical genes encoding rate-limiting enzymes in the flavonoid biosynthesis of the medicinal herb Grona styracifolia. BMC PLANT BIOLOGY 2023; 23:299. [PMID: 37268882 DOI: 10.1186/s12870-023-04290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Grona styracifolia is a photophilous legume that contains abundant flavonoids with multiple pharmacological activities, which is used to cure urethral and biliary calculus in China for thousands of years. The authentication of the rate-limiting enzymes involved in the flavonoids biosynthesis pathway enabled a better understanding of the molecular aspect of quality formation and modulation of this medicinal herb. In this study, the chemical distribution characteristics and content of flavonoids in different tissues of Grona styracifolia were analyzed using ultraperormance liquid chromatography coupled with Q-TOF mass spectrometry and showed that active flavonoids were primarily synthesized and stored in the leaves. Subsequently, RNA sequencing (RNA-seq)-based transcriptome profiling of the different tissues revealed that the flavonoids biosynthesis in the leaves was the most active. Meanwhile, 27 full-length transcripts inferred encoding vital enzymes involved in the flavonoids biosynthesis were preliminarily excavated. Finally, four CHSs, four CHIs, and one FNSII were successfully characterized by heterologous expression, which involved in three rate-limiting steps of the flavonoid biosynthetic pathway. In conclusion, these results laid a foundation for further investigation of the molecular mechanism of the biosynthesis and modulation of active flavonoids in Grona styracifolia.
Collapse
Affiliation(s)
- Chunzhu Xie
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ting Zhan
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jinqin Huang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jun Lan
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lingling Shen
- Guangzhou Analytical Applications Center, Shimadzu (China) Co., LTD, Guangzhou, 510010, China
| | - Hongbin Wang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Xiasheng Zheng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Yen LT, Kousar M, Park J. Comparative Analysis of Chloroplast Genome of Desmodium stryacifolium with Closely Related Legume Genome from the Phaseoloid Clade. Int J Mol Sci 2023; 24:ijms24076072. [PMID: 37047046 PMCID: PMC10094673 DOI: 10.3390/ijms24076072] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
Desmodium styracifolium is a medicinal plant from the Desmodieae tribe, also known as Grona styracifolia. Its role in the treatment of urolithiasis, urinary infections, and cholelithiasis has previously been widely documented. The complete chloroplast genome sequence of D. Styracifolium is 149,155 bp in length with a GC content of 35.2%. It is composed of a large single copy (LSC) of 82,476 bp and a small single copy (SSC) of 18,439 bp, which are separated by a pair of inverted repeats (IR) of 24,120 bp each and has 128 genes. We performed a comparative analysis of the D. styracifolium cpDNA with the genome of previously investigated members of the Sesamoidea tribe and on the outgroup from its Phaseolinae sister tribe. The size of all seven cpDNAs ranged from 148,814 bp to 151,217 bp in length due to the contraction and expansion of the IR/SC boundaries. The gene orientation of the SSC region in D. styracifolium was inverted in comparison with the other six studied species. Furthermore, the sequence divergence of the IR regions was significantly lower than that of the LSC and the SSC, and five highly divergent regions, trnL-UAA-trnT-UGU, psaJ-ycf4, psbE-petL, rpl36-rps8, and rpl32-trnL-UGA, were identified that could be used as valuable molecular markers in future taxonomic studies and phylogenetic constructions.
Collapse
Affiliation(s)
- Le-Thi Yen
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Muniba Kousar
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Joonho Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
6
|
Li X, Chen C, Ding N, Zhang T, Zheng P, Yang M. Physiologically based pharmacokinetic modelling and simulation to predict the plasma concentration profile of schaftoside after oral administration of total flavonoids of Desmodium styracifolium. Front Pharmacol 2022; 13:1073535. [PMID: 36588682 PMCID: PMC9794590 DOI: 10.3389/fphar.2022.1073535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/30/2022] [Indexed: 01/03/2023] Open
Abstract
Introduction: The total flavonoids of Desmodium styracifolium (TFDS) are the flavonoid extracts purified from Desmodii Styracifolii Herba. The capsule of TFDS was approved for the treatment of urolithiasis by NMPA in 2022. Schaftoside is the representative compound of TFDS that possesses antilithic and antioxidant effects. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model of schaftoside to simulate its plasma concentration profile in rat and human after oral administration of the total flavonoids of Desmodium styracifolium. Methods: The physiologically based pharmacokinetic model of schaftoside was firstly developed and verified by the pharmacokinetic data in rats following intravenous injection and oral administration of the total flavonoids of Desmodium styracifolium. Then the PBPK model was extrapolated to human with PK-Sim® software. In order to assess the accuracy of the extrapolation, a preliminary multiple-dose clinical study was performed in four healthy volunteers aged 18-45 years old. The predictive performance of PBPK model was mainly evaluated by visual predictive checks and fold error of Cmax and AUC0-t of schaftoside (the ratio of predicted to observed). Finally, the adult PBPK model was scaled to several subpopulations including elderly and renally impaired patients. Results: Schaftoside underwent poor metabolism in rat and human liver microsomes in vitro, and in vivo it was extensively excreted into urine and bile as an unchanged form. By utilizing literature and experimental data, the PBPK model of schaftoside was well established in rat and human. The predicted plasma concentration profiles of schaftoside were consistent with the corresponding observed data, and the fold error values were within the 2-fold acceptance criterion. No significant pharmacokinetic differences were observed after extrapolation from adult (18-40 years old) to elderly populations (71-80 years) in PK-Sim®. However, the plasma concentration of schaftoside was predicted to be much higher in renally impaired patients. The maximum steady-state plasma concentrations in patients with chronic kidney disease stage 3, 4 and 5 were 3.41, 12.32 and 23.77 times higher, respectively, than those in healthy people. Conclusion: The established PBPK model of schaftoside provided useful insight for dose selection of the total flavonoids of Desmodium styracifolium in different populations. This study provided a feasible way for the assessment of efficacy and safety of herbal medicines.
Collapse
Affiliation(s)
- Xue Li
- Phase I Clinical Research Lab, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Chen
- Phase I Clinical Research Lab, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nan Ding
- Phase I Clinical Research Lab, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianjiao Zhang
- Phase I Clinical Research Lab, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiyong Zheng
- Clinical Research Center, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Peiyong Zheng, ; Ming Yang,
| | - Ming Yang
- Phase I Clinical Research Lab, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Clinical Research Center, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Peiyong Zheng, ; Ming Yang,
| |
Collapse
|
7
|
Li X, Chen C, Zhang T, Ding N, Zheng P, Yang M. Comparative pharmacokinetic studies of five C-glycosylflavones in normal and urolithiasis model rats following administration of total flavonoids from Desmodium styracifolium by liquid chromatography-tandem mass spectrometry. J Sep Sci 2022; 45:2901-2913. [PMID: 35671519 DOI: 10.1002/jssc.202200010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/08/2022] [Accepted: 06/03/2022] [Indexed: 11/09/2022]
Abstract
The total flavonoids of Desmodium styracifolium are the flavonoid extracts purified from Desmodii Styracifolii Herba, which has conventionally been used for treating urolithiasis in China. In this study, a sensitive and simple liquid chromatography-tandem mass spectrometry method was developed to simultaneously determine five active components of the extracts in rat plasma. Chromatographic separation of the analytes (schaftoside, vicenin-1, vicenin-2, vicenin-3 and isovitexin) was performed on an ACQUITY UPLC HSS T3 Column under gradient elution conditions. The calibration curves were linear over ranges from 0.5 to 100 ng·mL-1 for schaftoside, vicenin-1, vicenin-2, and vicenin-3, and 0.2 to 20 ng·mL-1 for isovitexin. The RSD of intra- and inter-day precisions were ≤ 6.8% and ≤ 8.3%, respectively, and the accuracies (relative error) were within ±7.6%. The recoveries of the analytes ranged between 97.3 and 100.3%, and the matrix effects ranged from 98.6 to 113.8%. The method was successfully applied to the pharmacokinetic studies of the five active ingredients of Desmodium styracifolium, for the first time, in both normal and urolithiasis model rats. Results revealed that the plasma levels of these components were significantly increased under the pathological state. This study provided valuable information facilitating the clinical investigation of this medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xue Li
- Phase I Clinical Research lab, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chao Chen
- Phase I Clinical Research lab, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Tianjiao Zhang
- Phase I Clinical Research lab, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Nan Ding
- Phase I Clinical Research lab, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Peiyong Zheng
- Clinical research center, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ming Yang
- Phase I Clinical Research lab, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
8
|
Duan X, Zhang W, Li J, Xu H, Hu J, Zhao L, Ma Y. Comparative metabolomics analysis revealed biomarkers and distinct flavonoid biosynthesis regulation in Chrysanthemum mongolicum and C. rhombifolium. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:373-385. [PMID: 34750870 DOI: 10.1002/pca.3095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Chrysanthemums are traditional flowers that originated in China and have high ornamental, economic and medicinal value. They are widely used as herbal remedies and consumed as food or beverages in folk medicine. However, little is known about their metabolic composition. OBJECTIVES The aims of this work were to determine the metabolic composition of and natural variation among different species of Chrysanthemum and to explore new potential resources for drug discovery and sustainable utilisation of wild Chrysanthemum. METHODS The metabolomes of Chrysanthemum mongolicum (Ling) Tzvel. and Chrysanthemum rhombifolium H. Ohashi & Yonek. were compared using a widely targeted metabolomics approach based on liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS In total, 477 metabolites were identified, of which 72 showed significant differences in expression between C. mongolicum and C. rhombifolium, mainly in flavonoids, organic acids and nucleotides. The flavone and flavonol biosynthesis pathway showed significant enrichment among the differentially expressed metabolites. The contents of genkwanin, trigonelline, diosmin, narcissoside, 3,4-dihydroxyphenylacetic acid, linarin, N',N'-p-coumarin, C-hexosyl-tricetin O-pentoside, chrysoeriol, acacetin and kaempferol-3-O-gentiobioside were significantly different between the two species and represent potential biomarkers. CONCLUSION The types of flavonoid-related metabolites in the flavonoid biosynthesis pathway differed between C. mongolicum and C. rhombifolium. The mechanisms underlying the unique adaptations of these two species to their environments may involve variations in the composition and abundance of flavonoids, organic acids, and nucleotides. These methods are promising to identify functional compounds in Chrysanthemum species and can provide potential resources for drug discovery and the sustainable utilisation of Chrysanthemum plants.
Collapse
Affiliation(s)
- Xiaxia Duan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wenjie Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jingjing Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hongyuan Xu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jing Hu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Liang Zhao
- College of Life Sciences, Yangling, China
| | - Yueping Ma
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
9
|
Hao M, Dou Z, Xu L, Shao Z, Sun H, Li Z. RNA Sequencing Analysis of Gene Expression by Electroacupuncture in Guinea Pig Gallstone Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3793946. [PMID: 35035504 PMCID: PMC8759925 DOI: 10.1155/2022/3793946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Clinical studies have shown that electroacupuncture (EA) promotes gallbladder motility and alleviates gallstone. However, the mechanism underlying the effects of EA on gallstone is poorly understood. In this study, the mRNA transcriptome analysis was used to study the possible therapeutic targets of EA. METHODS Hartley SPF guinea pigs were employed for the gallstone models. Illumina NovaSeq 6000 platform was used for the RNA sequencing of guinea pig gallbladders in the normal group (Normal), gallstone model group (Model), and EA-treated group (EA). Differently expressed genes (DEGs) were examined separately in Model vs. Normal and EA vs. Model. DEGs reversed by EA were selected by comparing the DEGs of Model vs. Normal and EA vs. Model. Biological functions were enriched by gene ontology (GO) analysis. The protein-protein interaction (PPI) network was analyzed. RESULTS After 2 weeks of EA, 257 DEGs in Model vs. Normal and 1704 DEGs in EA vs. Model were identified. 94 DEGs reversed by EA were identified among these DEGs, including 28 reversed upregulated DEGs and 66 reversed downregulated DEGs. By PPI network analysis, 10 hub genes were found by Cytohubba plugin of Cytoscape. Quantitative real-time PCR (qRT-PCR) verified the changes. CONCLUSION We identified a few GOs and genes that might play key roles in the treatment of gallstone. This study may help understand the therapeutic mechanism of EA for gallstone.
Collapse
Affiliation(s)
- Mingyao Hao
- External Treatment Center of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhiqiang Dou
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Luyao Xu
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zongchen Shao
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongwei Sun
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhaofeng Li
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
10
|
Zhu H, Zhao F, Zhang W, Xia W, Chen Y, Liu Y, Fan Z, Zhang Y, Yang Y. Cholesterol-lowering effect of bile salt hydrolase from a Lactobacillus johnsonii strain mediated by FXR pathway regulation. Food Funct 2022; 13:725-736. [DOI: 10.1039/d1fo03143k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular diseases worldwide.
Collapse
Affiliation(s)
- Huanjing Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Fang Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Wenjun Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Wenxu Xia
- Skyline Therapeutics (Shanghai) Co., Ltd, Shanghai 201203, China
| | - Ying Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanrong Liu
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yao Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
11
|
Ren T, Pang L, Dai W, Wu S, Kong J. Regulatory mechanisms of the bile salt export pump (BSEP/ABCB11) and its role in related diseases. Clin Res Hepatol Gastroenterol 2021; 45:101641. [PMID: 33581308 DOI: 10.1016/j.clinre.2021.101641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 02/04/2023]
Abstract
The bile salt export pump (BSEP/ABCB11) is located on the apical membrane and mediates the secretion of bile salts from hepatocytes into the bile. BSEP-mediated bile salt efflux is the rate-limiting step of bile salt secretion and the main driving force of bile flow. BSEP drives and maintains the enterohepatic circulation of bile salts. In recent years, research efforts have been focused on understanding the physiological and pathological functions and regulatory mechanisms of BSEP. These studies elucidated the roles of farnesoid X receptor (FXR), AMP-activated protein kinase (AMPK), liver receptor homolog-1(LRH-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) in BSEP expression and discovered some regulatory factors which participate in its post-transcriptional regulation. A series of liver diseases have also been shown to be related to BSEP expression and dysfunction, such as cholestasis, drug-induced liver injury, and gallstones. Here, we systematically review and summarize recent literature on BSEP structure, physiological functions, regulatory mechanisms, and related diseases.
Collapse
Affiliation(s)
- Tengqi Ren
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liwei Pang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang, Liaoning, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jing Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
12
|
E S, Srikanth MS, Shreyas A, Desai S, Mehdi S, Gangadharappa HV, Suman, Krishna KL. Recent advances, novel targets and treatments for cholelithiasis; a narrative review. Eur J Pharmacol 2021; 908:174376. [PMID: 34303667 DOI: 10.1016/j.ejphar.2021.174376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022]
Abstract
Cholelithiasis is a common and frequent condition all over the world with a high prevalence rate in western countries. Individuals with cholesterol gallstone disease experience intense gastrointestinal symptoms and have a high risk of developing comorbidities like cholecystitis, Gall bladder (GB) cancer and pancreatitis. Multiple risk factors associated with cholesterol gallstones include but not limited to genetics, dietary habits, lifestyle changes, comorbid conditions and various drugs. These factors may lead to alteration in bile, cholesterol & phospholipids homeostasis in the GB, intestine and hepatocytes culminating in cholesterol gallstones formation. Surgical (cholecystectomy) and non-surgical (oral dissolution therapy) treatments are available for the disease, albeit with certain complications and high treatment cost. Thus, there is a need for interventions, complementary or alternative therapies for the treatment and prevention of cholesterol gallstones. Currently available drug therapies used for cholesterol gallstones include statins and ezetimibe. Many patients consider traditional herbal practitioners due to their promise of non-invasive and pain free management of gall stones. This present a positive shift towards generally acceptable safety and cost effectiveness of herbal treatment warranting extensive research for alternative or complementary choice such as herbal plants as an emerging area for their potential therapeutic effects. This review discusses current strategies, latest trends available in the disease pathogenesis, drug development for novel targets, risk management, newer anti-lithogenic drugs and herbal plants that target the different aspects of the disease.
Collapse
Affiliation(s)
- Swarne E
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - M S Srikanth
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - Ayachit Shreyas
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - Sneha Desai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - Suman
- Department of Dravya Guna, Government Ayurvedic Medical College and Hospital, New Sayyaji Rao Road, Mysuru, 570 001, India
| | - K L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India.
| |
Collapse
|
13
|
Selection and validation of reference genes for RT-qPCR analysis in Desmodium styracifolium Merr. 3 Biotech 2021; 11:403. [PMID: 34458065 DOI: 10.1007/s13205-021-02954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022] Open
Abstract
Gene expression valuated by reverse transcription-quantitative PCR (RT-qPCR) are often applied to study the gene function. To obtain accurate and reliable results, the usage of stable reference genes is essential for RT-qPCR analysis. The traditional southern Chinese medicinal herb, Desmodium styracifolium Merr is well known for its remarkable effect on the treatment of urination disturbance, urolithiasis, edema and jaundice. However, there are no ready-made reference genes identified for D. styracifolium. In this study, 13 novel genes retrieved from transcriptome datasets of four different tissues were reported according to the coefficient of variation (CV) and maximum fold change (MFC) of gene expression. The expression stability of currently used Leguminosae ACT6 was compared to the 13 candidate reference genes in different tissues and 7-day-old seedlings under different experimental conditions, which was evaluated by five statistical algorithms (geNorm/NormFinder/BestKeeper/ΔCT/RefFinder). Our results indicated that the reference gene combinations of PP + UFM1, CCRP4 + BRM and NFD6 + NCLN1 were the most stable reference genes in leaf, stem and root tissues, respectively. The most stable reference gene combination for all tissues was CCRP4 + CUL1. In addition, the most stable reference genes for different experimental conditions were distinct, for instance SMUP1 for MeJA treatment, ERDJ2A + SMUP1 for SA treatment, NCLN1 + ERDJ2A for ABA treatment and SF3B + VAMP721d for salt stress, respectively. Our results lay a foundation for achieving accurate and reliable RT-qPCR results so as to correctly understand the function of genes in D. styracifolium. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02954-x.
Collapse
|
14
|
Dang J, Paudel YN, Yang X, Ren Q, Zhang S, Ji X, Liu K, Jin M. Schaftoside Suppresses Pentylenetetrazol-Induced Seizures in Zebrafish via Suppressing Apoptosis, Modulating Inflammation, and Oxidative Stress. ACS Chem Neurosci 2021; 12:2542-2552. [PMID: 34128378 DOI: 10.1021/acschemneuro.1c00314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The lack of disease-modifying therapeutic strategies against epileptic seizures has caused a surge in preclinical research focused on exploring and developing novel therapeutic candidates for epilepsy. Compounds from traditional Chinese medicines (TCMs) have gained much attention for a plethora of neurological diseases, including epilepsy. Herein, for the first time, we evaluated the anticonvulsive effects of schaftoside (SS), a TCM, on pentylenetetrazol (PTZ)-induced epileptic seizures in zebrafish and examined the underlying mechanisms. We observed that SS pretreatments significantly suppressed seizure-like behavior and prolonged the onset of seizures. Zebrafish larvae pretreated with SS demonstrated downregulation of c-fos expression during seizures. PTZ-induced upregulation of apoptotic cells was decreased upon pretreatment with SS. Inflammatory phenomena during seizure progression including the upregulation of interleukin 6 (IL-6), interleukin 1 beta (IL-1β), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were downregulated upon pretreatment with SS. The PTZ-induced recruitment of immunocytes was in turn reduced upon SS pretreatment. Moreover, SS pretreatment modulated oxidative stress, as demonstrated by decreased levels of catalase (CAT) and increased levels of glutathione peroxidase-1a (GPx1a) and manganese superoxide dismutase (Mn-SOD). However, pretreatment with SS modulated the PTZ-induced downregulation of the relative enzyme activity of CAT, GPx, and SOD. Hence, our findings suggest that SS pretreatment ameliorates PTZ-induced seizures, suppresses apoptosis, and downregulates the inflammatory response and oxidative stress, which potentially protect against further seizures in zebrafish.
Collapse
Affiliation(s)
- Jiao Dang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Xueliang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| | - Qingyu Ren
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang’shan 063210, Hebei Province, People’s Republic of China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| |
Collapse
|
15
|
Chen Z, Sun Y, Wang G, Zhang Y, Zhang Q, Zhang Y, Li J, Wang Y. De novo biosynthesis of C-arabinosylated flavones by utilization of indica rice C-glycosyltransferases. BIORESOUR BIOPROCESS 2021; 8:49. [PMID: 34150466 PMCID: PMC8196924 DOI: 10.1186/s40643-021-00404-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
Flavone C-arabinosides/xylosides are plant-originated glycoconjugates with various bioactivities. However, the potential utility of these molecules is hindered by their low abundance in nature. Engineering biosynthesis pathway in heterologous bacterial chassis provides a sustainable source of these C-glycosides. We previously reported bifunctional C-glucosyl/C-arabinosyltransferases in Oryza sativa japonica and O. sativa indica, which influence the C-glycoside spectrum in different rice varieties. In this study, we proved the C-arabinosyl-transferring activity of rice C-glycosyltransferases (CGTs) on the mono-C-glucoside substrate nothofagin, followed by taking advantage of specific CGTs and introducing heterologous UDP-pentose supply, to realize the production of eight different C-arabinosides/xylosides in recombinant E. coli. Fed-batch fermentation and precursor supplement maximized the titer of rice-originated C-arabinosides to 20–110 mg/L in an E. coli chassis. The optimized final titer of schaftoside and apigenin di-C-arabinoside reached 19.87 and 113.16 mg/L, respectively. We demonstrate here the success of de novo bio-production of C-arabinosylated and C-xylosylated flavones by heterologous pathway reconstitution. These results lay a foundation for further optimal manufacture of complex flavonoid compounds in microbial cell factories. ![]()
Collapse
Affiliation(s)
- Zhuo Chen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China.,University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Yuwei Sun
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Guangyi Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China.,University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Ying Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China.,University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Qian Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China.,University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Yulian Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China.,University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Jianhua Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yong Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
16
|
Changes in the interstitial cells of Cajal in the gallbladder of guinea pigs fed a lithogenic diet. Exp Ther Med 2021; 22:823. [PMID: 34131446 PMCID: PMC8193206 DOI: 10.3892/etm.2021.10255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Cholesterol cholelithiasis is a common disease and gallbladder hypomotility may underlie its pathogenesis. Interstitial cells of Cajal (ICCs) in the gallbladder serve vital roles in regulating gallbladder motility. The aim of the present study was to investigate changes in gallbladder ICCs during the development of cholesterol cholelithiasis. A total of 40 male guinea pigs were randomly assigned to four groups and fed a standard diet (SD) or lithogenic diet (LD) for 2 or 8 weeks. The LD significantly increased the total cholesterol levels in the serum and bile, as well as the serum levels of high-density lipoprotein-cholesterol and low-density lipoprotein-cholesterol after 2 and 8 weeks. The LD also significantly increased and decreased the number of gallbladder ICCs at 2 and 8 weeks, respectively, by regulating the stem cell factor/C-kit pathway. Moreover, the ultrastructure of gallbladder ICCs was significantly altered after 8 weeks, and the protein expression levels of connexin 43 in the gallbladder were differentially altered after 2 and 8 weeks. Finally, cholecystokinin receptor type A (CCK1R) expression in the gallbladder was assessed. In gallbladder ICCs, its expression was significantly increased and decreased after 2 and 8 weeks, respectively. In conclusion, these results demonstrate that the density, ultrastructure and CCK1R expression levels of gallbladder ICCs are differentially altered at various stages of cholesterol cholelithiasis progression, indicating that gallbladder ICCs may be considered a potential therapeutic target for treatment of cholesterol cholelithiasis.
Collapse
|
17
|
Oh JK, Kim YR, Lee B, Choi YM, Kim SH. Prevention of Cholesterol Gallstone Formation by Lactobacillus acidophilus ATCC 43121 and Lactobacillus fermentum MF27 in Lithogenic Diet-Induced Mice. Food Sci Anim Resour 2021; 41:343-352. [PMID: 33987554 PMCID: PMC8115012 DOI: 10.5851/kosfa.2020.e93] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to evaluate the effects of Lactobacillus
acidophilus ATCC 43121 and L. fermentum MF27 on
biochemical indices in the serum, cholesterol metabolism in the liver and mucin
expression in the gallbladder in lithogenic diet (LD)-induced C57BL/6J mice to
determine the preventive effects of lactobacilli on gallstone formation. By the
end of 4 wk of the experimental period, mice fed on a LD with high-fat and
high-cholesterol exhibited higher levels of total and low-density lipoprotein
cholesterol in the serum compared to mice fed on control diet or LD with
L. acidophilus ATCC 43121 (LD+P1; p<0.05).
Cholesterol-lowering effects observed in the LD+P1 and LD with L.
fermentum MF27 (LD+P2) groups were associated with reduced
expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase in the liver
compared to the LD group (p<0.05). Furthermore, expression of the
gel-forming mucin, including MUC5AB and MUC5B,
was suppressed in the LD+P1 and LD+P2 groups compared to the LD
group (p<0.05). Therefore, steady intake of both L.
acidophilus ATCC 43121 and L. fermentum MF27 may
have the ability to prevent the formation of cholesterol gallstones in
LD-induced C57BL/6J mice.
Collapse
Affiliation(s)
- Ju Kyoung Oh
- Department of Food Bioscience and Technology, Korea University, Seoul 02841, Korea
| | - You Ra Kim
- Department of Food Bioscience and Technology, Korea University, Seoul 02841, Korea
| | - Boin Lee
- Department of Animal Sciences and Biotechnology, Kyungpook National University, Sangju 37224, Korea
| | - Young Min Choi
- Department of Animal Sciences and Biotechnology, Kyungpook National University, Sangju 37224, Korea
| | - Sae Hun Kim
- Department of Food Bioscience and Technology, Korea University, Seoul 02841, Korea
| |
Collapse
|
18
|
Liu M, Zhang G, Song M, Wang J, Shen C, Chen Z, Huang X, Gao Y, Zhu C, Lin C, Mi S, Liu C. Activation of Farnesoid X Receptor by Schaftoside Ameliorates Acetaminophen-Induced Hepatotoxicity by Modulating Oxidative Stress and Inflammation. Antioxid Redox Signal 2020; 33:87-116. [PMID: 32037847 DOI: 10.1089/ars.2019.7791] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aims: Acetaminophen (APAP) overdose leads to acute liver injury by inducing hepatic mitochondrial oxidative stress and inflammation. However, the molecular mechanisms involved are still unclear. Farnesoid X receptor (FXR) serves as a therapeutic target for the treatment of liver disorders, whose activation has been proved to protect APAP-induced hepatotoxicity. In this study, we examined whether FXR activation by schaftoside (SS), a naturally occurring flavonoid from Desmodium styracifolium, could protect mice against APAP-induced hepatotoxicity via regulation of oxidative stress and inflammation. Results: We first found that SS exhibited potent protective effects against APAP-induced hepatotoxicity in mice. The study reveals that SS is a potential agonist of FXR, which protects mice from hepatotoxicity mostly via regulation of oxidative stress and inflammation. Mechanistically, the hepatoprotective SS is associated with the induction of the genes of phase II detoxifying enzymes (e.g., UGT1A1, GSTα1), phase III drug efflux transporters (e.g., bile salt export pump, organic solvent transporter protein β), and glutathione metabolism-related enzymes (e.g., glutamate-cysteine ligase modifier subunit [Gclm], glutamate-cysteine ligase catalytic subunit [Gclc]). More importantly, SS-mediated FXR activation could fine-tune the pro- and anti-inflammatory eicosanoids generation via altering eicosanoids metabolic pathway, thereby resulting in decrease of hepatic inflammation. In contrast, FXR deficiency can abrogate the above effects. Innovation and Conclusion: Our results provided the direct evidence that FXR activation by SS could attenuate APAP-induced hepatotoxicity via inhibition of nuclear factor kappa-B signaling and fine-tuning the generation of proinflammatory mediators' eicosanoids. Our findings indicate that strategies to activate FXR signaling in hepatocytes may provide a promising therapeutic approach to alleviate liver injury induced by APAP overdose.
Collapse
Affiliation(s)
- Meijing Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Beijing Advanced Innovation Center for Big Data-based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guohui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, China
| | - Meng Song
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jueyu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuangpeng Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao Chen
- The Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingan Huang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gao
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China.,Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suiqing Mi
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Fan N, Meng K, Zhang Y, Hu Y, Li D, Gao Q, Wang J, Li Y, Wu S, Cui Y. The effect of ursodeoxycholic acid on the relative expression of the lipid metabolism genes in mouse cholesterol gallstone models. Lipids Health Dis 2020; 19:158. [PMID: 32615989 PMCID: PMC7333299 DOI: 10.1186/s12944-020-01334-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Many studies indicate that gallstone formation has genetic components. The abnormal expression of lipid-related genes could be the basis for particular forms of cholesterol gallstone disease. The aim of this study was to obtain insight into lipid metabolism disorder during cholesterol gallstone formation and to evaluate the effect of ursodeoxycholic acid (UDCA) on the improvement of bile lithogenicity and its potential influence on the transcription of lipid-related genes. METHODS Gallstone-susceptible mouse models were induced by feeding with a lithogenic diet (LD) for 8 weeks. Bile and liver tissues were obtained from these mouse models after 0, 4 and 8 weeks. Bile lipids were measured enzymatically, and the cholesterol saturation index (CSI) was calculated to evaluate the bile lithogenicity by using Carey's critical tables. Real-time polymerase chain reaction (RT-PCR) was used to detect the mRNA expression levels of farnesoid X receptor (FXR), liver X receptor (LXR), adenosine triphosphate-binding cassette subfamily G member 5/8 (ABCG5/8), cholesterol 7-α hydroxylase (CYP7A1), oxysterol 7-α hydroxylase (CYP7B1), sterol 27-α hydroxylase (CYP27A1), peroxisome proliferator-activated receptor alpha (PPAR-α) and adenosine triphosphate-binding cassette subfamily B member 11 (ABCB11). RESULTS The rate of gallstone formation was 100% in the 4-week group but only 30% in the UDCA-treated group. The UDCA-treated group had a significantly lower CSI compared with other groups. Of special note, the data on the effects of UDCA showed higher expression levels of ABCG8, ABCB11 and CYP27A1, as well as lower expression levels of LXR and PPAR-α, compared to the model control group. CONCLUSIONS UDCA exhibits tremendously potent activity in restraining lipid accumulation, thus reversing the lithogenic effect and protecting hepatocytes from serious pathological damage. The abnormal expression of ABCG8, CYP7A1, CYP27A1, LXR and PPAR-α might lead to high lithogenicity of bile. These results are helpful in exploring new lipid metabolism pathways and potential targets for the treatment of cholesterol stones and for providing some basis for the study of the pathogenesis and genetic characteristics of cholelithiasis. Research on the mechanism of UDCA in improving lipid metabolism and bile lithogenicity may be helpful for clinical treatment and for reducing the incidence of gallstones.
Collapse
Affiliation(s)
- Ning Fan
- Beichen Chinese Medicine Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, 436 Jingjin Road, Beichen District, Tianjin, 300400, China
| | - Ke Meng
- Department of Obstetrics and Gynecology, General Hospital of Tianjin Medical University, 154 AnShan Road, HePing District, Tianjin, 300052, China
| | - Yuqing Zhang
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, 122 Sanwei Road Nankai District, Tianjin, 300100, China
| | - Yong Hu
- Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Donghua Li
- Institute of Acute Abdomen in Integrative Medicine, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, 122 Sanwei Road Nankai District, Tianjin, 300100, China
| | - Qiaoying Gao
- Institute of Acute Abdomen in Integrative Medicine, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, 122 Sanwei Road Nankai District, Tianjin, 300100, China
| | - Jianhua Wang
- Beichen Chinese Medicine Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, 436 Jingjin Road, Beichen District, Tianjin, 300400, China
| | - Yanning Li
- Beichen Chinese Medicine Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, 436 Jingjin Road, Beichen District, Tianjin, 300400, China
| | - Shangwei Wu
- Institute of Acute Abdomen in Integrative Medicine, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, 122 Sanwei Road Nankai District, Tianjin, 300100, China
| | - Yunfeng Cui
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, 122 Sanwei Road Nankai District, Tianjin, 300100, China.
| |
Collapse
|
20
|
Liu M, Zhang G, Wu S, Song M, Wang J, Cai W, Mi S, Liu C. Schaftoside alleviates HFD-induced hepatic lipid accumulation in mice via upregulating farnesoid X receptor. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112776. [PMID: 32205261 DOI: 10.1016/j.jep.2020.112776] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/06/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE The farnesoid X receptor (FXR) is a therapeutic target of for the treatment of non-alcoholic fatty liver disease (NAFLD) owing to its regulatory role in lipid homeostasis. Schaftoside (SS) is a bioactive compound of Herba Desmodii Styracifolii, which has traditionally been used to treat hepatitis and cholelithiasis. However, the potential hepatoprotective effect of SS against NAFLD and the underlying mechanisms remain unknown. AIM OF THE STUDY We investigated whether SS could improve NAFLD-induced liver injury by decreasing lipid accumulation via the activation of FXR signalling. MATERIALS AND METHODS In vivo, the effects of SS on high-fat diet (HFD)-induced lipid accumulation in the liver of mice were evaluated by serum biochemical parameters and histopathological analysis. In vitro, the intracellular triglyceride (TG) level and Oil Red O staining were used to evaluate the lipid removal ability of SS in Huh-7 cells or FXR knockout mouse primary hepatocytes (MPHs) induced by oleic acid (OA). Moreover, FXR/sterol regulatory element-binding protein 1 (SREBP1) mRNA and protein expression levels were detected. RESULTS SS reduced HFD-induced lipid accumulation in the liver, as indicated by decreased aspartate aminotransferase (AST), cholesterol (Ch), and TG levels in serum and TG levels in liver tissue, and subsequently resulting in attenuation of liver histopathological injury. Gene expression profiles demonstrated that SS dose-dependently prevented HFD-induced decrease of FXR expression and inversely inhibited SREBP1 expression in the nucleus. Furthermore, SS significantly suppressed excessive TG accumulation and decreased intracellular TG level in Huh-7 cells or MPHs via the upregulation of FXR and inhibition of SREBP1 expression in the nucleus. CONCLUSION Our results suggest that SS ameliorates HFD-induced NAFLD by the decrease of lipid accumulation via the control of FXR-SREBP1 signalling.
Collapse
Affiliation(s)
- Meijing Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Guohui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, 519000, China
| | - Shuangcheng Wu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Meng Song
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jueyu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Weibin Cai
- Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510095, China
| | - Suiqing Mi
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
21
|
Liu R, Meng C, Zhang Z, Ma H, Lv T, Xie S, Liu Y, Wang C. Comparative metabolism of schaftoside in healthy and calcium oxalate kidney stone rats by UHPLC-Q-TOF-MS/MS method. Anal Biochem 2020; 597:113673. [DOI: 10.1016/j.ab.2020.113673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/18/2022]
|
22
|
Role of Baicalin and Liver X Receptor Alpha in the Formation of Cholesterol Gallstones in Mice. Gastroenterol Res Pract 2020; 2020:1343969. [PMID: 32382260 PMCID: PMC7191361 DOI: 10.1155/2020/1343969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/17/2020] [Accepted: 03/28/2020] [Indexed: 12/23/2022] Open
Abstract
This study was aimed at investigating the effect of baicalin on experimental cholesterol gallstones in mice. The mouse gallstone model was induced by feeding with a lithogenic diet, and cholesterol stones were found in the gallbladder. The lithogenic diet caused elevation of triglycerides, cholesterol, and low-density lipoprotein concentrations and descent of high-density lipoprotein concentration in serum. Hyperplasia and inflammatory infiltration were observed in the gallbladder wall of lithogenic diet-fed mice. We also found the increase of cholesterol content and the decrease of bile acid in bile. Real-time PCR and western blot results demonstrated that the expression levels of two enzymes (cholesterol 7α-hydroxylase (CYP7a1) and sterol 12α-hydroxylase (CYP8b1)) to catalyze the synthesis of bile acid from cholesterol were decreased and that two cholesterol transporters (ATP-binding cassette transporter G5/G8 (ABCG5/8)) were increased in the liver of lithogenic diet-fed mice. The lithogenic diet also led to enhanced activity of alanine aminotransferase and aspartate aminotransferase in serum; increased concentrations of tumor necrosis factor-α, interleukin- (IL-) 1β, IL-6, and malondialdehyde; and decreased superoxide dismutase activity in the liver, suggesting inflammatory and oxidative stress. In addition, liver X receptor alpha (LXRα) was increased in the liver. After gavage of baicalin, the lithogenic diet-induced gallstones, hyperlipidemia, gallbladder hyperplasia, inflammation, and oxidative stress in liver and cholesterol metabolism disorders were all alleviated to some degree. The expression of LXRα in the liver was inhibited by baicalin. In addition, the LXRα agonist T0901317 aggravated lithogenic diet-induced harmful symptoms in mice, including the increase of gallstone formation, hyperlipidemia, hepatic injury, inflammation, and oxidative stress. In conclusion, we demonstrated that baicalin played a protective role in a lithogenic diet-induced gallstone mouse model, which may be mediated by inhibition of LXRα activity. These findings may provide novel insights for prevention and therapy of gallstones in the clinic.
Collapse
|
23
|
Qu T, Yang L, Wang Y, Jiang B, Shen M, Ren D. Reduction of serum cholesterol and its mechanism byLactobacillus plantarumH6 screened from local fermented food products. Food Funct 2020; 11:1397-1409. [DOI: 10.1039/c9fo02478f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Scheme showing the possible mechanisms by whichL. plantarumH6 maintains cholesterol homeostasis in mice with high-cholesterol-induced hypercholesterolemia.
Collapse
Affiliation(s)
- Tianming Qu
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun
- China
| | - Liu Yang
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun
- China
| | - Yuhua Wang
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun
- China
| | - Bin Jiang
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun
- China
| | - Minghao Shen
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun
- China
| | - Dayong Ren
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun
- China
| |
Collapse
|
24
|
Chen Q, Zhang Y, Li S, Chen S, Lin X, Li C, Asakawa T. Mechanisms Underlying the Prevention and Treatment of Cholelithiasis Using Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:2536452. [PMID: 31316569 PMCID: PMC6601506 DOI: 10.1155/2019/2536452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/17/2019] [Accepted: 06/02/2019] [Indexed: 01/14/2023]
Abstract
Cholelithiasis is a major public health concern that necessitates highly effective, feasible, and recurrence-preventing therapies. Currently available surgical treatments and medications cannot effectively avoid the recurrence of cholelithiasis. Hence, several Chinese herbal compounds (CHCs) are considered for the treatment of cholelithiasis, considering that they can effectively discharge gallstones and prevent the recurrence of such condition. In the present narrative review, we aim to summarize the underlying mechanisms of currently used CHCs in the treatment of cholelithiasis and to describe the current situation of traditional Chinese medicine (TCM) use for cholelithiasis. Several commonly used CHCs were used to illustrate these issues. We found that the mechanisms underlying the CHC treatments rely on the amelioration of the biliary dynamics factors, maintenance and protection of the liver function, reduction of the cholesterol and bilirubin levels, and regulation of the inflammatory reactions. CHCs as treatments based on TCM can ameliorate the overall bodily function, thereby preventing the recurrence of cholelithiasis. Appropriate application of CHCs would be beneficial for patients and clinicians, although the safety and efficacy of CHCs need further verification.
Collapse
Affiliation(s)
- Qiliang Chen
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yuanyuan Zhang
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shunan Li
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shujiao Chen
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xuejuan Lin
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Candong Li
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Tetsuya Asakawa
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Department of Neurosurgery, Hamamatsu University School of Medicine, Handayama, Hamamatsu-City, Shizuoka, Japan
| |
Collapse
|
25
|
Di Ciaula A, Wang DQH, Portincasa P. Cholesterol cholelithiasis: part of a systemic metabolic disease, prone to primary prevention. Expert Rev Gastroenterol Hepatol 2019; 13:157-171. [PMID: 30791781 DOI: 10.1080/17474124.2019.1549988] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholesterol gallstone disease have relationships with various conditions linked with insulin resistance, but also with heart disease, atherosclerosis, and cancer. These associations derive from mechanisms active at a local (i.e. gallbladder, bile) and a systemic level and are involved in inflammation, hormones, nuclear receptors, signaling molecules, epigenetic modulation of gene expression, and gut microbiota. Despite advanced knowledge of these pathways, the available therapeutic options for symptomatic gallstone patients remain limited. Therapy includes oral litholysis by the bile acid ursodeoxycholic acid (UDCA) in a small subgroup of patients at high risk of postdissolution recurrence, or laparoscopic cholecystectomy, which is the therapeutic radical gold standard treatment. Cholecystectomy, however, may not be a neutral event, and potentially generates health problems, including the metabolic syndrome. Areas covered: Several studies on risk factors and pathogenesis of cholesterol gallstone disease, acting at a systemic level have been reviewed through a PubMed search. Authors have focused on primary prevention and novel potential therapeutic strategies. Expert commentary: The ultimate goal appears to target the manageable systemic mechanisms responsible for gallstone occurrence, pointing to primary prevention measures. Changes must target lifestyles, as well as experimenting innovative pharmacological tools in subgroups of patients at high risk of developing gallstones.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- a Division of Internal Medicine , Hospital of Bisceglie , Bisceglie , Italy
| | - David Q-H Wang
- b Department of Medicine, Division of Gastroenterology and Liver Diseases , Marion Bessin Liver Research Center, Albert Einstein College of Medicine , Bronx , NY , USA
| | - Piero Portincasa
- c Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri" , University of Bari Medical School , Bari , Italy
| |
Collapse
|
26
|
Schaftoside ameliorates oxygen glucose deprivation-induced inflammation associated with the TLR4/Myd88/Drp1-related mitochondrial fission in BV2 microglia cells. J Pharmacol Sci 2019; 139:15-22. [DOI: 10.1016/j.jphs.2018.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
|
27
|
Kim PS, Shin JH, Jo DS, Shin DW, Choi DH, Kim WJ, Park K, Kim JK, Joo CG, Lee JS, Choi Y, Shin YW, Shin JJ, Jeon HB, Seo JH, Cho DH. Anti-melanogenic activity of schaftoside in Rhizoma Arisaematis by increasing autophagy in B16F1 cells. Biochem Biophys Res Commun 2018; 503:309-315. [DOI: 10.1016/j.bbrc.2018.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/07/2018] [Indexed: 01/06/2023]
|
28
|
Ren S, Yan X, Ma J, Pan Y, Zhang W, Wang D, Fei Z, Liu X. Defatted walnut powder extract reduces cholesterol gallstones formation in C57BL/6 mice by downregulating the levels of ABCG5/8 in the liver and NPC1L1 in the intestine. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
29
|
Abstract
The high prevalence of cholesterol gallstones, the availability of new information about pathogenesis, and the relevant health costs due to the management of cholelithiasis in both children and adults contribute to a growing interest in this disease. From an epidemiologic point of view, the risk of gallstones has been associated with higher risk of incident ischemic heart disease, total mortality, and disease-specific mortality (including cancer) independently from the presence of traditional risk factors such as body weight, lifestyle, diabetes, and dyslipidemia. This evidence points to the existence of complex pathogenic pathways linking the occurrence of gallstones to altered systemic homeostasis involving multiple organs and dynamics. In fact, the formation of gallstones is secondary to local factors strictly dependent on the gallbladder (that is, impaired smooth muscle function, wall inflammation, and intraluminal mucin accumulation) and bile (that is, supersaturation in cholesterol and precipitation of solid crystals) but also to "extra-gallbladder" features such as gene polymorphism, epigenetic factors, expression and activity of nuclear receptors, hormonal factors (in particular, insulin resistance), multi-level alterations in cholesterol metabolism, altered intestinal motility, and variations in gut microbiota. Of note, the majority of these factors are potentially manageable. Thus, cholelithiasis appears as the expression of systemic unbalances that, besides the classic therapeutic approaches to patients with clinical evidence of symptomatic disease or complications (surgery and, in a small subgroup of subjects, oral litholysis with bile acids), could be managed with tools oriented to primary prevention (changes in diet and lifestyle and pharmacologic prevention in subgroups at high risk), and there could be relevant implications in reducing both prevalence and health costs.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Division of Internal Medicine - Hospital of Bisceglie, ASL BAT, Bisceglie, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|