1
|
Picado C, Machado-Carvalho L, Roca-Ferrer J. Low Prostaglandin E 2 but High Prostaglandin D 2, a Paradoxical Dissociation in Arachidonic Acid Metabolism in Aspirin-Exacerbated Airway Disease: Role of Airway Epithelium. J Clin Med 2024; 13:7416. [PMID: 39685875 DOI: 10.3390/jcm13237416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
In patients with aspirin-exacerbated respiratory disease (AERD), there is disparate regulation of prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2). Both prostanoids are synthesised by cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2). However, while the basal synthesis of PGE2 tends to decrease, that of PGD2 increases in patients with AERD. Furthermore, both behave differently in response to the inhibitory action of NSAIDs on COX-1: PGE2 levels decrease while PGD2 increases. Increased PGD2 release correlates with nasal, bronchial, and extra-pulmonary symptoms caused by aspirin in AERD. The proposed hypothesis establishes that the answer to this paradoxical dissociation can be found in the airway epithelium. This is based on the observation that reduced COX-2 mRNA and/or protein expression is associated with reduced PGE2 synthesis in cultured fibroblast and epithelial cells from AERD compared to patients with asthma who are aspirin-tolerant and healthy subjects. The low production of PGE2 by the airway epithelium in AERD results in an excessive release of alarmins (TSLP, IL-33), which in turn contributes to activating group 2 innate lymphoid cells (ILC2s) and PGD2 synthesis by mast cells and eosinophils. Aspirin, by further increasing the diminished PGE2 regulation capacity in AERD, leads to respiratory reactions associated with the surge in PGD2 from mast cells and eosinophils. In summary, the downregulation of COX-2 and the subsequent low production of PGE2 by airway cells account for the apparently paradoxical increased production of PGD2 by mast cells and eosinophils at the baseline and after aspirin provocation in patients with AERD. A better understanding of the role of the airway epithelium would contribute to elucidating the mechanism of AERD.
Collapse
Affiliation(s)
- César Picado
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, 08907 Barcelona, Spain
- Centro de Investigaciones en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Liliana Machado-Carvalho
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Jordi Roca-Ferrer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, 08907 Barcelona, Spain
- Centro de Investigaciones en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
2
|
Belikova M, Al-Ameri M, Orre AC, Säfholm J. Defining the contractile prostanoid component in hyperosmolar-induced bronchoconstriction in human small airways. Prostaglandins Other Lipid Mediat 2023; 168:106761. [PMID: 37336434 DOI: 10.1016/j.prostaglandins.2023.106761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Exercise-induced bronchoconstriction (EIB) is thought to be triggered by increased osmolarity at the airway epithelium. The aim of this study was to define the contractile prostanoid component of EIB, using an ex vivo model where intact segments of bronchi (inner diameter 0.5-2 mm) isolated from human lung tissue and subjected to mannitol. Exposure of bronchial segments to hyperosmolar mannitol evoked a contraction (64.3 ± 3.5 %) which could be prevented either by elimination of mast cells (15.8 ± 4.3 %) or a combination of cysteinyl leukotriene (cysLT1), histamine (H1) and thromboxane (TP) receptor antagonists (11.2 ± 2.3 %). Likewise, when antagonism of TP receptor was exchanged for inhibition of either cyclooxygenase-1 (8 ± 2.5 %), hematopoietic prostaglandin (PG)D synthase (20.7 ± 5.6 %), TXA synthase (14.8 ± 4.9 %), or the combination of the latter two (12.2 ± 4.6 %), the mannitol-induced contraction was prevented, suggesting that the TP-mediated component is induced by PGD2 and TXA2 generated by COX-1 and their respective synthases.
Collapse
Affiliation(s)
- Maria Belikova
- Institute of Environmental Medicine, Karolinska Institutet, Sweden; Centre for Allergy Research, Karolinska Institutet, Sweden
| | - Mamdoh Al-Ameri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden; Heart and Vascular Theme, Karolinska University Hospital, Sweden
| | | | - Jesper Säfholm
- Institute of Environmental Medicine, Karolinska Institutet, Sweden; Centre for Allergy Research, Karolinska Institutet, Sweden.
| |
Collapse
|
3
|
Rönnberg E, Ravindran A, Mazzurana L, Gong Y, Säfholm J, Lorent J, Dethlefsen O, Orre AC, Al-Ameri M, Adner M, Dahlén SE, Dahlin JS, Mjösberg J, Nilsson G. Analysis of human lung mast cells by single cell RNA sequencing. Front Immunol 2023; 14:1151754. [PMID: 37063885 PMCID: PMC10100501 DOI: 10.3389/fimmu.2023.1151754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
Mast cells are tissue-resident cells playing major roles in homeostasis and disease conditions. Lung mast cells are particularly important in airway inflammatory diseases such as asthma. Human mast cells are classically divided into the subsets MCT and MCTC, where MCT express the mast cell protease tryptase and MCTC in addition express chymase, carboxypeptidase A3 (CPA3) and cathepsin G. Apart from the disctintion of the MCT and MCTC subsets, little is known about the heterogeniety of human lung mast cells and a deep analysis of their heterogeniety has previously not been performed. We therefore performed single cell RNA sequencing on sorted human lung mast cells using SmartSeq2. The mast cells showed high expression of classical mast cell markers. The expression of several individual genes varied considerably among the cells, however, no subpopulations were detected by unbiased clustering. Variable genes included the protease-encoding transcripts CMA1 (chymase) and CTSG (cathepsin G). Human lung mast cells are predominantly of the MCT subset and consistent with this, the expression of CMA1 was only detectable in a small proportion of the cells, and correlated moderately to CTSG. However, in contrast to established data for the protein, CPA3 mRNA was high in all cells and the correlation of CPA3 to CMA1 was weak.
Collapse
Affiliation(s)
- Elin Rönnberg
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Elin Rönnberg, ; Gunnar Nilsson,
| | - Avinash Ravindran
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Luca Mazzurana
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Yitao Gong
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Säfholm
- Unit for Experimental Asthma and Allergy Research Centre for Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Julie Lorent
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Olga Dethlefsen
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Ann-Charlotte Orre
- Thoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mamdoh Al-Ameri
- Thoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Adner
- Unit for Experimental Asthma and Allergy Research Centre for Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Unit for Experimental Asthma and Allergy Research Centre for Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joakim S. Dahlin
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- *Correspondence: Elin Rönnberg, ; Gunnar Nilsson,
| |
Collapse
|
4
|
Hamid SJ, Salih T. Design, Synthesis, and Anti-Inflammatory Activity of Some Coumarin Schiff Base Derivatives: In silico and in vitro Study. Drug Des Devel Ther 2022; 16:2275-2288. [PMID: 35860526 PMCID: PMC9293384 DOI: 10.2147/dddt.s364746] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Inflammation is a fundamental response of the immune system during tissue damage or pathogen infection to protect and maintain tissue homeostasis. However, inflammation may lead to life-threatening conditions. The most common treatment of inflammation is non-steroidal anti-inflammatory drugs (NSAIDs). Nowadays, the development of safer new NSAIDs is critical as most of the existing NSAIDs have serious adverse effects, such as gastrointestinal (GI) toxicity and cardiotoxicity. In the present study, four compounds as Schiff base derivatives of 7-hydroxy-4-formyl coumarin and 7-methoxy-4-formyl coumarin were designed and synthesized aiming to develop a lead compound that exhibits anti-inflammatory activity and circumvents the side effects of NSAIDs, especially GI toxicity. Materials and Methods Lipinski’s rule of five was applied for each designed molecule to evaluate the drug-likeness properties. Molecular docking studies were performed using the ligands and the cyclooxygenase-2 (COX-2) protein to select the best-scored molecule using AutoDock 4.2.6. The molecules were then synthesized and characterized. An in vitro anti-inflammatory assay of the compounds against the COX-2 receptor was realized through a protein denaturation assay. Results and Discussion All four synthesized ligands passed Lipinski’s rule of five and exhibited higher binding free energy compared to the positive standard control (ibuprofen), and the Ki values of compounds 5, 7, and 8 were in the nanomolar range. However, only compounds 6 and 7 obtained a higher percentage of inhibition of protein denaturation relative to ibuprofen. Conclusion The present study suggested that compound 7 may be a lead molecule because this ligand not only exhibited the best computational and experimental results but also exhibited the strongest correlation between the concentration and percentage of protein denaturation (R = 0.986 and R2 = 0.972) with the lowest P-value (0.014).
Collapse
Affiliation(s)
- Shokhan J Hamid
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaymaniyah, Iraq
| | - Twana Salih
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaymaniyah, Iraq
- Correspondence: Twana Salih, Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Town Campus, Sulaymaniyah, 46001, Iraq, Tel +964 0 770 146 2171, Email
| |
Collapse
|
5
|
Mary R, Chalmin F, Accogli T, Bruchard M, Hibos C, Melin J, Truntzer C, Limagne E, Derangère V, Thibaudin M, Humblin E, Boidot R, Chevrier S, Arnould L, Richard C, Klopfenstein Q, Bernard A, Urade Y, Harker JA, Apetoh L, Ghiringhelli F, Végran F. Hematopoietic Prostaglandin D2 Synthase Controls Tfh/Th2 Communication and Limits Tfh Antitumor Effects. Cancer Immunol Res 2022; 10:900-916. [PMID: 35612500 DOI: 10.1158/2326-6066.cir-21-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/06/2021] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
T follicular helper (Tfh) cells are a subset of CD4+ T cells essential in immunity and have a role in helping B cells produce antibodies against pathogens. However, their role during cancer progression remains unknown. The mechanism of action of Tfh cells remains elusive because contradictory data have been reported on their protumor or antitumor responses in human and murine tumors. Like Tfh cells, Th2 cells are also involved in humoral immunity and are regularly associated with tumor progression and poor prognosis, mainly through their secretion of IL4. Here, we showed that Tfh cells expressed hematopoietic prostaglandin D2 (PGD2) synthase in a pSTAT1/pSTAT3-dependent manner. Tfh cells produced PGD2, which led to recruitment of Th2 cells via the PGD2 receptor chemoattractant receptor homologous molecule expressed on Th type 2 cells (CRTH2) and increased their effector functions. This cross-talk between Tfh and Th2 cells promoted IL4-dependent tumor growth. Correlation between Th2 cells, Tfh cells, and hematopoietic PGD2 synthase was observed in different human cancers and associated with outcome. This study provides evidence that Tfh/Th2 cross-talk through PGD2 limits the antitumor effects of Tfh cells and, therefore, could serve as a therapeutic target.
Collapse
Affiliation(s)
- Romain Mary
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Fanny Chalmin
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Théo Accogli
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Mélanie Bruchard
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | - Christophe Hibos
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Joséphine Melin
- LipSTIC LabEx, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | | | | | - Valentin Derangère
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | | | - Etienne Humblin
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,Precision Immunology Institute, New York, New York
| | - Romain Boidot
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | | | | | - Corentin Richard
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | | | - Antoine Bernard
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Yoshihiro Urade
- Intemational Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - James A Harker
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Lionel Apetoh
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - François Ghiringhelli
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | - Frédérique Végran
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
6
|
Banafea GH, Bakhashab S, Alshaibi HF, Natesan Pushparaj P, Rasool M. The role of human mast cells in allergy and asthma. Bioengineered 2022; 13:7049-7064. [PMID: 35266441 PMCID: PMC9208518 DOI: 10.1080/21655979.2022.2044278] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mast cells are tissue-inhabiting cells that play an important role in inflammatory diseases of the airway tract. Mast cells arise in the bone marrow as progenitor cells and complete their differentiation in tissues exposed to the external environment, such as the skin and respiratory tract, and are among the first to respond to bacterial and parasitic infections. Mast cells express a variety of receptors that enable them to respond to a wide range of stimulants, including the high-affinity FcεRI receptor. Upon initial contact with an antigen, mast cells are sensitized with IgE to recognize the allergen upon further contact. FcεRI-activated mast cells are known to release histamine and proteases that contribute to asthma symptoms. They release a variety of cytokines and lipid mediators that contribute to immune cell accumulation and tissue remodeling in asthma. Mast cell mediators trigger inflammation and also have a protective effect. This review aims to update the existing knowledge on the mediators released by human FcεRI-activated mast cells, and to unravel their pathological and protective roles in asthma and allergy. In addition, we highlight other diseases that arise from mast cell dysfunction, the therapeutic approaches used to address them, and fill the gaps in our current knowledge. Mast cell mediators not only trigger inflammation but may also have a protective effect. Given the differences between human and animal mast cells, this review focuses on the mediators released by human FcεRI-activated mast cells and the role they play in asthma and allergy.
Collapse
Affiliation(s)
- Ghalya H Banafea
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda F Alshaibi
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Säfholm J, Abma W, Liu J, Balgoma D, Fauland A, Kolmert J, Wheelock CE, Adner M, Dahlén SE. Prostaglandin D 2 inhibits mediator release and antigen induced bronchoconstriction in the Guinea pig trachea by activation of DP 1 receptors. Eur J Pharmacol 2021; 907:174282. [PMID: 34175307 DOI: 10.1016/j.ejphar.2021.174282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
The mechanism by which cyclooxygenase (COX) inhibition increases antigen-induced responses in airways remains unknown. Male albino guinea pigs were sensitized to ovalbumin (OVA). Intact rings of the trachea were isolated and mounted in organ baths for either force measurements or lipid mediator release analysis by UPLC-MS/MS or EIA following relevant pharmacological interventions. First, challenge with OVA increased the release of all primary prostanoids (prostaglandin (PG) D2/E2/F2α/I2 and thromboxanes). This release was eliminated by unselective COX inhibition (indomethacin) whereas selective inhibition of COX-2 (lumiracoxib) did not inhibit release of PGD2 or thromboxanes. Additionally, the increased levels of leukotriene B4 and E4 after OVA were further amplified by unselective COX inhibition. Second, unselective inhibition of COX and selective inhibition of the prostaglandin D synthase (2-Phenyl-Pyrimidine-5-Carboxylic Acid (2,3-dihydro-indol-1-yl)-amide) amplified the antigen-induced bronchoconstriction which was reversed by exogenous PGD2. Third, a DP1 receptor agonist (BW 245c) concentration-dependently reduced the antigen-induced constriction as well as reducing released histamine and cysteinyl-leukotrienes, a response inhibited by the DP1 receptor antagonist (MK-524). In contrast, a DP2 receptor agonist (15(R)-15-methyl PGD2) failed to modulate the OVA-induced constriction. In the guinea pig trachea, endogenous PGD2 is generated via COX-1 and mediates an inhibitory effect of the antigen-induced bronchoconstriction via DP1 receptors inhibiting mast cell release of bronchoconstrictive mediators. Removal of this protective function by COX-inhibition results in increased release of mast cell mediators and enhanced bronchoconstriction.
Collapse
Affiliation(s)
- Jesper Säfholm
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.
| | - Willem Abma
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Jielu Liu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - David Balgoma
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Fauland
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Kolmert
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden; Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Adner
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Johnsson AK, Choi JH, Rönnberg E, Fuchs D, Kolmert J, Hamberg M, Dahlén B, Wheelock CE, Dahlén SE, Nilsson G. Selective inhibition of prostaglandin D 2 biosynthesis in human mast cells to overcome need for multiple receptor antagonists: Biochemical consequences. Clin Exp Allergy 2021; 51:594-603. [PMID: 33449404 DOI: 10.1111/cea.13831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The major mast cell prostanoid PGD2 is targeted for therapy of asthma and other diseases, because the biological actions include bronchoconstriction, vasodilation and regulation of immune cells mediated by three different receptors. It is not known if the alternative to selectively inhibit the biosynthesis of PGD2 affects release of other prostanoids in human mast cells. OBJECTIVES To determine the biochemical consequences of inhibition of the hematopoietic prostaglandin D synthase (hPGDS) PGD2 in human mast cells. METHODS Four human mast cell models, LAD2, cord blood derived mast cells (CBMC), peripheral blood derived mast cells (PBMC) and human lung mast cells (HLMC), were activated by anti-IgE or ionophore A23187. Prostanoids were measured by UPLC-MS/MS. RESULTS All mast cells almost exclusively released PGD2 when activated by anti-IgE or A23187. The biosynthesis was in all four cell types entirely initiated by COX-1. When pharmacologic inhibition of hPGDS abolished formation of PGD2 , PGE2 was detected and release of TXA2 increased. Conversely, when the thromboxane synthase was inhibited, levels of PGD2 increased. Adding exogenous PGH2 confirmed predominant conversion to PGD2 under control conditions, and increased levels of TXB2 and PGE2 when hPGDS was inhibited. However, PGE2 was formed by non-enzymatic degradation. CONCLUSIONS Inhibition of hPGDS effectively blocks mast cell dependent PGD2 formation. The inhibition was associated with redirected use of the intermediate PGH2 and shunting into biosynthesis of TXA2 . However, the levels of TXA2 did not reach those of PGD2 in naïve cells. It remains to determine if this diversion occurs in vivo and has clinical relevance.
Collapse
Affiliation(s)
- Anna-Karin Johnsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Jeong-Hee Choi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Elin Rönnberg
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Immunology and Allergy Division, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| | - David Fuchs
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Kolmert
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Mats Hamberg
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Barbro Dahlén
- Department of Medicine, Clinical Asthma and Allergy Research Laboratory, Karolinska University Hospital, Huddinge, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Immunology and Allergy Division, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
dos Santos Maia M, Rodrigues GCS, de Sousa NF, Scotti MT, Scotti L, Mendonça-Junior FJB. Identification of New Targets and the Virtual Screening of Lignans against Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3098673. [PMID: 32879651 PMCID: PMC7448245 DOI: 10.1155/2020/3098673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/22/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is characterized by the progressive disturbance in cognition and affects approximately 36 million people, worldwide. However, the drugs used to treat this disease are only moderately effective and do not alter the course of the neurodegenerative process. This is because the pathogenesis of AD is mainly associated with oxidative stress, and current drugs only target two enzymes involved in neurotransmission. Therefore, the present study sought to identify potential multitarget compounds for enzymes that are directly or indirectly involved in the oxidative pathway, with minimal side effects, for AD treatment. A set of 159 lignans were submitted to studies of QSAR and molecular docking. A combined analysis was performed, based on ligand and structure, followed by the prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. The results showed that the combined analysis was able to select 139 potentially active and multitarget lignans targeting two or more enzymes, among them are c-Jun N-terminal kinase 3 (JNK-3), protein tyrosine phosphatase 1B (PTP1B), nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1), NADPH quinone oxidoreductase 1 (NQO1), phosphodiesterase 5 (PDE5), nuclear factor erythroid 2-related factor 2 (Nrf2), cycloxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS). The authors conclude that compounds (06) austrobailignan 6, (11) anolignan c, (19) 7-epi-virolin, (64) 6-[(2R,3R,4R,5R)-3,4-dimethyl-5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]-4-methoxy-1,3-benzodioxole, (116) ococymosin, and (135) mappiodoinin b have probabilities that confer neuroprotection and antioxidant activity and represent potential alternative AD treatment drugs or prototypes for the development of new drugs with anti-AD properties.
Collapse
Affiliation(s)
- Mayara dos Santos Maia
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Gabriela Cristina Soares Rodrigues
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Natália Ferreira de Sousa
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | |
Collapse
|
10
|
Lee K, Lee SH, Kim TH. The Biology of Prostaglandins and Their Role as a Target for Allergic Airway Disease Therapy. Int J Mol Sci 2020; 21:ijms21051851. [PMID: 32182661 PMCID: PMC7084947 DOI: 10.3390/ijms21051851] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Prostaglandins (PGs) are a family of lipid compounds that are derived from arachidonic acid via the cyclooxygenase pathway, and consist of PGD2, PGI2, PGE2, PGF2, and thromboxane B2. PGs signal through G-protein coupled receptors, and individual PGs affect allergic inflammation through different mechanisms according to the receptors with which they are associated. In this review article, we have focused on the metabolism of the cyclooxygenase pathway, and the distinct biological effect of each PG type on various cell types involved in allergic airway diseases, including asthma, allergic rhinitis, nasal polyposis, and aspirin-exacerbated respiratory disease.
Collapse
|
11
|
Pelaia C, Crimi C, Vatrella A, Busceti MT, Gaudio A, Garofalo E, Bruni A, Terracciano R, Pelaia G. New treatments for asthma: From the pathogenic role of prostaglandin D 2 to the therapeutic effects of fevipiprant. Pharmacol Res 2019; 155:104490. [PMID: 31682916 DOI: 10.1016/j.phrs.2019.104490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022]
Abstract
Prostaglandin D2 (PGD2) is a pleiotropic mediator, significantly involved in the pathogenesis of type 2 (T2) asthma because of its biologic actions exerted on both immune/inflammatory and airway structural cells. In particular, the pro-inflammatory and pro-remodelling effects of PGD2 are mainly mediated by stimulation of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). This receptor is the target of the oral competitive antagonist fevipiprant, which on the basis of recent phase II studies is emerging as a potential very promising anti-asthma drug. Indeed, fevipiprant appears to be safe and effective, especially in consideration of its ability to inhibit eosinophilic bronchial inflammation and improve forced expiratory volume in one second (FEV1). Further ongoing phase III trials will definitely clarify if fevipiprant can prospectively become a valid option for an efficacious add-on treatment of moderate-to-severe T2-high asthma.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Maria Teresa Busceti
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Achille Gaudio
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Eugenio Garofalo
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Andrea Bruni
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy.
| |
Collapse
|
12
|
Sharma V, Bhatia P, Alam O, Javed Naim M, Nawaz F, Ahmad Sheikh A, Jha M. Recent advancement in the discovery and development of COX-2 inhibitors: Insight into biological activities and SAR studies (2008–2019). Bioorg Chem 2019; 89:103007. [PMID: 31132600 DOI: 10.1016/j.bioorg.2019.103007] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
|
13
|
Therapeutic Potential of Hematopoietic Prostaglandin D 2 Synthase in Allergic Inflammation. Cells 2019; 8:cells8060619. [PMID: 31226822 PMCID: PMC6628301 DOI: 10.3390/cells8060619] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Worldwide, there is a rise in the prevalence of allergic diseases, and novel efficient therapeutic approaches are still needed to alleviate disease burden. Prostaglandin D2 (PGD2) has emerged as a central inflammatory lipid mediator associated with increased migration, activation and survival of leukocytes in various allergy-associated disorders. In the periphery, the hematopoietic PGD synthase (hPGDS) acts downstream of the arachidonic acid/COX pathway catalysing the isomerisation of PGH2 to PGD2, which makes it an interesting target to treat allergic inflammation. Although much effort has been put into developing efficient hPGDS inhibitors, no compound has made it to the market yet, which indicates that more light needs to be shed on potential PGD2 sources and targets to determine which particular condition and patient will benefit most and thereby improve therapeutic efficacy. In this review, we want to revisit current knowledge about hPGDS function, expression in allergy-associated cell types and their contribution to PGD2 levels as well as beneficial effects of hPGDS inhibition in allergic asthma, rhinitis, atopic dermatitis, food allergy, gastrointestinal allergic disorders and anaphylaxis.
Collapse
|
14
|
Marone G, Galdiero MR, Pecoraro A, Pucino V, Criscuolo G, Triassi M, Varricchi G. Prostaglandin D 2 receptor antagonists in allergic disorders: safety, efficacy, and future perspectives. Expert Opin Investig Drugs 2018; 28:73-84. [PMID: 30513028 DOI: 10.1080/13543784.2019.1555237] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Prostaglandin D2 (PGD2) is a major cyclooxygenase mediator that is synthesized by activated human mast cells and other immune cells. The biological effects of PGD2 are mediated by D-prostanoid (DP1), DP2 (CRTH2) and thromboxane prostanoid (TP) receptors that are expressed on several immune and non-immune cells involved in allergic inflammation. PGD2 exerts various proinflammatory effects relevant to the pathophysiology of allergic disorders. Several selective, orally active, DP2 receptor antagonists and a small number of DP1 receptor antagonists are being developed for the treatment of allergic disorders. AREAS COVERED The role of DP2 and DP1 receptor antagonists in the treatment of asthma and allergic rhinitis. EXPERT OPINION Head-to-head studies that compare DP1 antagonists with the standard treatment for allergic rhinitis are necessary to verify the role of these novel drugs as mono- or combination therapies. Further clinical trials are necessary to verify whether DP2 antagonists as monotherapies or, more likely, as add-on therapies, will be effective for the treatment of different phenotypes of adult and childhood asthma. Long-term studies are necessary to evaluate the safety of targeted anti-PGD2 treatments.
Collapse
Affiliation(s)
- Giancarlo Marone
- a Department of Public Health , University of Naples Federico II , Naples , Italy.,b Monaldi Hospital Pharmacy , Naples , Italy
| | - Maria Rosaria Galdiero
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| | - Antonio Pecoraro
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| | - Valentina Pucino
- e William Harvey Research Institute, Barts and The London School of Medicine &Dentistry , Queen Mary University of London , London , UK
| | - Gjada Criscuolo
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| | - Maria Triassi
- a Department of Public Health , University of Naples Federico II , Naples , Italy
| | - Gilda Varricchi
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| |
Collapse
|
15
|
Pan D, Buchheit KM, Samuchiwal SK, Liu T, Cirka H, Raff H, Boyce JA. COX-1 mediates IL-33-induced extracellular signal-regulated kinase activation in mast cells: Implications for aspirin sensitivity. J Allergy Clin Immunol 2018; 143:1047-1057.e8. [PMID: 30017554 DOI: 10.1016/j.jaci.2018.06.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/25/2018] [Accepted: 06/25/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Classical FcεRI-induced mast cell (MC) activation causes synthesis of arachidonic acid (AA)-derived eicosanoids (leukotriene [LT] C4, prostaglandin [PG] D2, and thromboxane A2), which mediate vascular leak, bronchoconstriction, and effector cell chemotaxis. Little is known about the significance and regulation of eicosanoid generation in response to nonclassical MC activation mechanisms. OBJECTIVES We sought to determine the regulation and significance of MC-derived eicosanoids synthesized in response to IL-33, a cytokine critical to innate type 2 immunity. METHODS We used an ex vivo model of mouse bone marrow-derived mast cells and an IL-33-dependent in vivo model of aspirin-exacerbated respiratory disease (AERD). RESULTS IL-33 potently liberates AA and elicits LTC4, PGD2, and thromboxane A2 production by bone marrow-derived mast cells. Unexpectedly, the constitutive function of COX-1 is required for IL-33 to activate group IVa cytosolic phospholipase A2 with consequent AA release for synthesis of all eicosanoids, including CysLTs. In contrast, COX-1 was dispensable for FcεRI-driven CysLT production. Inhibition of COX-1 prevented IL-33-induced phosphorylation of extracellular signal-related kinase, an upstream effector of cytosolic phospholipase A2, which was restored by exogenous PGH2, implying that the effects of COX-1 required its catalytic function. Administration of a COX-1-selective antagonist to mice completely prevented the generation of both PGD2 and LTC4 in a model of AERD in which MC activation is IL-33 driven. CONCLUSIONS MC-intrinsic COX-1 amplifies IL-33-induced activation in the setting of innate type 2 immunity and might help explain the phenomenon of therapeutic desensitization to aspirin by nonselective COX inhibitors in patients with AERD.
Collapse
Affiliation(s)
- Dingxin Pan
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass
| | - Kathleen M Buchheit
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass
| | - Sachin K Samuchiwal
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass
| | - Tao Liu
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass
| | - Haley Cirka
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass
| | - Hannah Raff
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Mass.
| |
Collapse
|