1
|
Felipe Souza E Silva L, Siena Dos Santos A, Mayumi Yuzawa J, Luiz de Barros Torresi J, Ziroldo A, Rosado Rosenstock T. SIRTUINS MODULATORS COUNTERACT MITOCHONDRIAL DYSFUNCTION IN CELLULAR MODELS OF HYPOXIA: RELEVANCE TO SCHIZOPHRENIA. Neuroscience 2023:S0306-4522(23)00200-2. [PMID: 37169164 DOI: 10.1016/j.neuroscience.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
Schizophrenia (SZ) is a neurodevelopmental-associated disorder strongly related to environmental factors, such as hypoxia. Because there is no cure for SZ or any pharmacological approach that could revert hypoxia-induced cellular damages, we evaluated whether modulators of sirtuins could abrogate hypoxia-induced mitochondrial deregulation as a neuroprotective strategy. Firstly, astrocytes from control (Wistar) and Spontaneously Hypertensive Rats (SHR), a model of both SZ and neonatal hypoxia, were submitted to chemical hypoxia. Then, cells were exposed to different concentrations of Nicotinamide (NAM), Resveratrol (Resv), and Sirtinol (Sir) for 48hrs. Our data indicate that sirtuins modulation reduces cell death increasing the acetylation of histone 3. This outcome is related to the rescue of loss of mitochondrial membrane potential, changes in mitochondrial calcium buffering capacity, decreased O2-• levels and increased expression of metabolic regulators (Nrf-1 and Nfe2l2) and mitochondrial content. Such findings are relevant not only for hypoxia-associated conditions, named pre-eclampsia but also for SZ since prenatal hypoxia is a relevant environmental factor related to this burdensome neuropsychiatric disorder.
Collapse
Affiliation(s)
- Luiz Felipe Souza E Silva
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Amanda Siena Dos Santos
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jessica Mayumi Yuzawa
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | - Alan Ziroldo
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | - Tatiana Rosado Rosenstock
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; Dept. of Bioscience, In-vitro Neuroscience, Sygnature Discovery, Nottingham, United Kingdom.
| |
Collapse
|
2
|
Gao Y, Yue L, Miao Z, Wang F, Wang S, Luan B, Hao W. The Effect and Possible Mechanism of Cardiac Rehabilitation in Partial Revascularization Performed on Multiple Coronary Artery Lesions. Clin Interv Aging 2023; 18:235-248. [PMID: 36843631 PMCID: PMC9948643 DOI: 10.2147/cia.s398732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/10/2023] [Indexed: 02/20/2023] Open
Abstract
Purpose To observe the effect of cardiac rehabilitation (CR) in patients with partial revascularization performed on multiple coronary artery lesions and explore its possible mechanism. Patients and Methods A total of 400 patients with multiple coronary artery lesions were enrolled and randomly divided into a complete revascularization group and a CR group, with 200 cases in each group. Target lesion revascularization was performed radically in the complete revascularization group, while it was partially completed in the CR group, and postoperative CR was performed. All the patients were put under conventional treatment. Left ventricular end diastolic dimension (LVEDD), left ventricular ejection fraction (LVEF), 6-minute walking distance (6-MWD), quality-of-life scores, safety and levels of serum nitric oxide (NO), nitric oxide synthase (NOS), superoxide dismutase (SOD), and vascular endothelial growth factor (VEGF) were evaluated and compared between two groups before and after training. Results There was no significant difference in LVEDD, LVEF, 6-MWD, quality-of-life scores, levels of serum NO, NOS, SOD, and VEGF between two groups before training (p>0.05). 1 year later, compared with the complete revascularization group, the occurrence of major adverse events in the CR group declined (p>0.05); the measurements of LVEDD decreased and LVEF increased (p>0.05), 6-MWD increased significantly (p<0.05), quality-of-life scores were higher (p<0.05), the levels of serum NO, NOS, and SOD increased noticeably, and the levels of serum VEGF decreased significantly in the CR group (p<0.05). There were significant differences within the same group, before and after training (p<0.05). Conclusion Cardiac rehabilitation training, not increase in the incidence of adverse events, is effective and safe after partial revascularization in patients with multiple coronary artery lesions, which has notable clinical advantages in promoting patients' exercise endurance and quality-of-life by improving the nitric oxide synthase system and antioxidant system and reducing the level of VEGF.
Collapse
Affiliation(s)
- Yang Gao
- Department of Cardiology, The People’s Hospital of Liaoning Province, Shenyang, Liaoning Province, People’s Republic of China
| | - Ling Yue
- Department of Ultrasound, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Zhilin Miao
- Department of Cardiology, The People’s Hospital of Liaoning Province, Shenyang, Liaoning Province, People’s Republic of China
| | - Fengrong Wang
- Department of Cardiology, The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, People’s Republic of China
| | - Shuai Wang
- Department of Cardiology, The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, People’s Republic of China
| | - Bo Luan
- Department of Cardiology, The People’s Hospital of Liaoning Province, Shenyang, Liaoning Province, People’s Republic of China
| | - Wenjun Hao
- Department of Cardiology, The People’s Hospital of Liaoning Province, Shenyang, Liaoning Province, People’s Republic of China,Correspondence: Wenjun Hao, Department of Cardiology, The People’s Hospital of Liaoning Province, NO. 33, Wenyi Road, Shenhe District, Shenyang, Liaoning Province, 110016, People’s Republic of China, Email
| |
Collapse
|
3
|
Lai CC, Tang CY, Fu SK, Tseng WC, Tseng KW. Effects of swimming training on myocardial protection in rats. Biomed Rep 2022; 16:19. [PMID: 35251606 PMCID: PMC8850963 DOI: 10.3892/br.2022.1502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/23/2021] [Indexed: 11/07/2022] Open
Abstract
Swimming is important for promoting and maintaining health, as it can increase the efficiency of the cardiovascular system and decrease the occurrence of cardiovascular diseases. The objective of the present study was to examine whether swimming training could decrease myocardial injury in rats caused by myocardial ischemia/reperfusion (I/R). Sprague-Dawley rats were randomized into four groups, namely the Sham, coronary artery occlusion, swimming training and ischemic preconditioning (IPC) groups. Myocardial I/R was induced in anesthetized male Sprague-Dawley rats by a 40-min occlusion followed by a 3-h reperfusion of the left anterior descending coronary artery. The rats were sacrificed after surgery and their hearts were examined. The results demonstrated that the number of TUNEL-positive nuclei and degree of caspase-3 activation were both significantly increased in the myocardium following myocardial I/R in rats, indicating increased cardiomyocyte apoptosis. On the other hand, swimming training decreased the serum levels of creatine phosphokinase, lactate dehydrogenase and cardiac troponin I, and was associated with reduced histological damage and myocardial infarct size. Furthermore, swimming training also reduced TNF-α levels, caspase-3 activation and enhanced Bcl-2 activation, which decreased the number of apoptotic cells in the myocardium. The findings of the present study showed that swimming training and IPC could similarly decrease myocardial injury following myocardial I/R, and may therefore be used as exercise training to effectively prevent myocardial injury.
Collapse
Affiliation(s)
- Chang-Chi Lai
- Department of Exercise and Health Sciences, University of Taipei, Taipei 11153, Taiwan, R.O.C
| | - Chia-Yu Tang
- Department of Physical Education, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Szu-Kai Fu
- Graduate Institute of Sports Training, University of Taipei, Taipei 11153, Taiwan, R.O.C
| | - Wei-Chin Tseng
- Department of Exercise and Health Sciences, University of Taipei, Taipei 11153, Taiwan, R.O.C
| | - Kuo-Wei Tseng
- Department of Exercise and Health Sciences, University of Taipei, Taipei 11153, Taiwan, R.O.C
| |
Collapse
|
4
|
Refaie MMM, Abdel-Gaber SA, Rahman SAAE, Hafez SMNA, Khalaf HM. Cardioprotective effects of bosentan in 5-fluorouracil-induced cardiotoxicity. Toxicology 2022; 465:153042. [PMID: 34800596 DOI: 10.1016/j.tox.2021.153042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
5-fluorouracil (5-FU) is a widely used chemotherapeutic agent but cardiotoxicity challenges its clinical usefulness. Thus, searching for more cardioprotective drugs is highly required to prevent the accompanied cardiac hazards. Up to date, the different mechanisms involved in 5-FU cardiotoxicity are still unclear and there is no evaluation of bosentan's role in controlling these cardiac complications. This forced us to deeply study and evaluate the possible cardiopreserving properties of bosentan and different mechanisms involved in mediating it. 32 Wistar albino rats were included in our experiment and induction of cardiotoxicity was performed via administration of 5-FU (150 mg/kg) on 5th day of the experiment by intraperitoneal (i.p.) injection with or without co-administration of bosentan (50 mg/kg/day) orally for 7days. Our data revealed that 5-FU could induce cardiotoxicity which was detected as significant increases of troponin I, lactate dehydrogenase (LDH), creatine kinase- MB (CK-MB), endothelin receptors, malondialdehyde (MDA), toll like receptor4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor kappa B (NFκB), and caspase 3 levels. However, there is marked decrease in endothelial nitric oxide synthase (eNOS), reduced glutathione (GSH) and total antioxidant capacity (TAC). In addition, the histopathological examination showed severe toxic features of cardiac injury. Interestingly, co-administration of bosentan could ameliorate 5-FU-induced cardiotoxicity via improving the detected biochemical and histopathological changes besides modulation of TLR4/MyD88/NFκB signaling pathway, eNOS, and endothelin receptors. Bosentan had a significant cardioprotective effect against 5-FU induced cardiac damage. This effect may be attributed to its ability to inhibit endothelin receptors, stimulates eNOS, anti-oxidant, anti-inflammatory, anti-apoptotic properties with modulation of TLR4/MyD88/NFκB signaling pathway.
Collapse
Affiliation(s)
- Marwa M M Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511, El-Minia, Egypt.
| | - Seham A Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511, El-Minia, Egypt
| | | | | | - Hanaa Mohamed Khalaf
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511, El-Minia, Egypt
| |
Collapse
|
5
|
Fan X, Wei H, Du J, Lu X, Wang L. Hypoxic preconditioning neural stem cell transplantation promotes spinal cord injury in rats by affecting transmembrane immunoglobulin domain-containing. Hum Exp Toxicol 2022; 41:9603271211066587. [PMID: 35243930 DOI: 10.1177/09603271211066587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To explore the effects of hypoxic preconditioning neural stem cell (P-NSC) transplantation on rats with spinal cord injury (SCI). METHODS After identification, the NSCs were treated with hypoxic preconditioning. The NSCs migration was detected by Transwell method. RT-qPCR was used to detect the mRNA levels of HIF-1α, CXCR4 in NSC. The secretion of representative neurotrophic factors (VEGF, HGF, and BDNF) was checked by Western blot. Forty-six SCI rats were randomly divided into three experimental groups: SCI group (PBS injection, n = 10); N-NSC group (NSC atmospheric normoxic pretreatment injection, n = 18); and P-NSC group (NSC 's hypoxic preconditioning injection, n = 18). The sham operation group was also included (rats underwent laminectomy but not SCI, n = 10). The recovery of hindlimb motor function was evaluated by BBB score. The level of spinal cord inflammation (IL-1β, TNF-α, and IL-6) was determined by ELISA. Western blot was used to detect the content of TMIGD1 and TMIGD3 in spinal cord. RESULTS Compared with the N-NSC group, the number of NSC-passing membranes in the P-NSC group increased with the increase of the culture time (p < 0.05). Compared with N-NSC, P-NSC had higher levels of VEGF, HGF, and BDNF after 1 week of culture (p < 0.05). The BBB score of the P-NSC group was significantly higher than that of the N-NSC group at 7 and 28 days (p < 0.05). Compared with the SCI group, the levels of TNF-α, IL-1β, and IL-6 were significantly reduced after NSC treatment, and the P-NSC group was lower than the N-NSC group (p < 0.05). Compared with the SCI group, the levels of TMIGD1 and TMIGD3 increased. Compared with the N-NSC group, and the levels of TMIGD1 and TMIGD3 increased in the P-NSC group (p < 0.05). CONCLUSION P-NSC administration could improve SCI injury, and the levels of TMIGD1 and TMIGD3.
Collapse
Affiliation(s)
- Xiaoguang Fan
- The Second Department of Spine Surgery, 519688Yantaishan Hospital, Yantai, China
| | - Hongchun Wei
- Department of Neurology, 117747the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Juan Du
- Department of Neurology, 519688Yantaishan Hospital, Yantai, China
| | - Xiuguo Lu
- Department of spine surgery, Yantai Yeda Hospital, Yantai, China
| | - Leisheng Wang
- The Second Department of Spine Surgery, 519688Yantaishan Hospital, Yantai, China
| |
Collapse
|
6
|
Zhu T, Zhu M, Qiu Y, Wu Z, Huang N, Wan G, Xu J, Song P, Wang S, Yin Y, Li P. Puerarin Alleviates Vascular Cognitive Impairment in Vascular Dementia Rats. Front Behav Neurosci 2021; 15:717008. [PMID: 34720898 PMCID: PMC8554240 DOI: 10.3389/fnbeh.2021.717008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia triggers vascular dementia (VD), which is characterized by memory loss, cognitive deficits, and vascular injury in the brain. Puerarin (Pur) represents the major isoflavone glycoside of Radix Puerariae, with verified neuroprotective activity and cardiovascular protective effects. However, whether Pur ameliorates cognitive impairment and vascular injury in rats with permanent occlusion of bilateral common carotid arteries (BCCAO) remains unknown. This work aimed to assess Pur's effects on BCCAO-induced VD and to dissect the underlying mechanisms, especially examining the function of transient receptor potential melastatin-related 2 (TRPM2) in alleviating cognitive deficits and vascular injuries. Rats with BCCAO developed VD. Pur (50, 100, and 150 mg/kg) dose-dependently attenuated the pathological changes, increased synaptic structural plasticity in the dorsal CA1 hippocampal region and decreased oxidative stress, which eventually reduced cognitive impairment and vascular injury in BCCAO rats. Notably, Pur-improved neuronal cell loss, synaptic structural plasticity, and endothelial vasorelaxation function might be mediated by the reactive oxygen species (ROS)-dependent TRPM2/NMDAR pathway, evidenced by decreased levels of ROS, malondialdehyde (MDA), Bax, Bax/Bcl2, and TRPM2, and increased levels of superoxide dismutase (SOD), Bcl2, and NR2A. In conclusion, Pur has therapeutic potential for VD, alleviating neuronal cell apoptosis and vascular injury, which may be related to the ROS-dependent TRPM2/NMDAR pathway.
Collapse
Affiliation(s)
- Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Moli Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yue Qiu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Zeqing Wu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ning Huang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Guangrui Wan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Jian Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ping Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shuangxi Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yaling Yin
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| |
Collapse
|
7
|
Li Y, Huang Y, Cheng X, He Y, Hu X. Whole body hypoxic preconditioning-mediated multiorgan protection in db/db mice via nitric oxide-BDNF-GSK-3β-Nrf2 signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:281-296. [PMID: 34187947 PMCID: PMC8255126 DOI: 10.4196/kjpp.2021.25.4.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/15/2022]
Abstract
The beneficial effects of hypoxic preconditioning are abolished in the diabetes. The present study was designed to investigate the protective effects and mechanisms of repeated episodes of whole body hypoxic preconditioning (WBHP) in db/db mice. The protective effects of preconditioning were explored on diabetesinduced vascular dysfunction, cognitive impairment and ischemia-reperfusion (IR)-induced increase in myocardial injury. Sixteen-week old db/db (diabetic) and C57BL/6 (non-diabetic) mice were employed. There was a significant impairment in cognitive function (Morris Water Maze test), endothelial function (acetylcholineinduced relaxation in aortic rings) and a significant increase in IR-induced heart injury (Langendorff apparatus) in db/db mice. WBHP stimulus was given by exposing mice to four alternate cycles of low (8%) and normal air O2 for 10 min each. A single episode of WBHP failed to produce protection; however, two and three episodes of WBHP significantly produced beneficial effects on the heart, brain and blood vessels. There was a significant increase in the levels of brain-derived neurotrophic factor (BDNF) and nitric oxide (NO) in response to 3 episodes of WBHP. Moreover, pretreatment with the BDNF receptor, TrkB antagonist (ANA-12) and NO synthase inhibitor (LNAME) attenuated the protective effects imparted by three episodes of WBHP. These pharmacological agents abolished WBHP-induced restoration of p-GSK-3β/GSK-3β ratio and Nrf2 levels in IR-subjected hearts. It is concluded that repeated episodes of WHBP attenuate cognitive impairment, vascular dysfunction and enhancement in IRinduced myocardial injury in diabetic mice be due to increase in NO and BDNF levels that may eventually activate GSK-3β and Nrf2 signaling pathway to confer protection.
Collapse
Affiliation(s)
- Yuefang Li
- Cadre Ward the No.901 Hospital of the Joint Logistics Support Unit of the Chinese People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Yan Huang
- Cadre Ward the No.901 Hospital of the Joint Logistics Support Unit of the Chinese People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Xi Cheng
- Cadre Ward the No.901 Hospital of the Joint Logistics Support Unit of the Chinese People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Youjun He
- Cadre Ward the No.901 Hospital of the Joint Logistics Support Unit of the Chinese People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Xin Hu
- Cadre Ward the No.901 Hospital of the Joint Logistics Support Unit of the Chinese People's Liberation Army, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
8
|
Acute Hypobaric and Hypoxic Preconditioning Reduces Myocardial Ischemia-Reperfusion Injury in Rats. Cardiol Res Pract 2021; 2021:6617374. [PMID: 33815836 PMCID: PMC7990552 DOI: 10.1155/2021/6617374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background Chronic and/or intermittent exposure to hypobaric hypoxia reportedly exerts cardioprotective effects against ischemia-reperfusion injury. However, few studies have focused on the cardioprotective effects of acute and/or short-term hypobaric and hypoxic exposures. This study investigated the effects of acute hypobaric hypoxia on myocardial ischemia-reperfusion injury. Materials and Methods Rats were assigned to groups receiving normobaric normoxia (NN group), hypobaric hypoxia (HH group), or normobaric hypoxia (NH group). HH group rats were exposed to 60.8 kPa and 12.6% fraction of inspired oxygen in a hypobaric chamber for 6 h. NH group rats were exposed to hypoxic conditions under normal pressure. After each exposure, 30 min of myocardial ischemia was followed by 60 min of reperfusion. Cardiac function and infarct size were determined after reperfusion. Expression of hypoxia-inducible factor 1 alpha (HIF1α) was also measured. Results Cardiac function was better preserved in the HH and NH groups than in the NN group (p < 0.01 each). Median infarct size/area at risk was significantly lower in the HH group (50%, interquartile range [IQR] 48–54%; p < 0.01 vs. NN group) and NH group (45%, IQR 36–50%; p < 0.01 vs. NN group) than in the NN group (72%, IQR 69–75%). HIF1α expression was significantly higher in the HH group (p < 0.05 vs. NN group) and NH group (p < 0.01 vs. NN group) than in the NN group. Conclusions Exposure to acute and/or short-term hypobaric and hypoxic conditions might exert cardioprotective effects against myocardial ischemia-reperfusion injury via HIF1α modulation.
Collapse
|
9
|
Russell JS, Griffith TA, Naghipour S, Vider J, Du Toit EF, Patel HH, Peart JN, Headrick JP. Dietary α-Linolenic Acid Counters Cardioprotective Dysfunction in Diabetic Mice: Unconventional PUFA Protection. Nutrients 2020; 12:nu12092679. [PMID: 32887376 PMCID: PMC7551050 DOI: 10.3390/nu12092679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Whether dietary omega-3 (n-3) polyunsaturated fatty acid (PUFA) confers cardiac benefit in cardiometabolic disorders is unclear. We test whether dietary -linolenic acid (ALA) enhances myocardial resistance to ischemia-reperfusion (I-R) and responses to ischemic preconditioning (IPC) in type 2 diabetes (T2D); and involvement of conventional PUFA-dependent mechanisms (caveolins/cavins, kinase signaling, mitochondrial function, and inflammation). Eight-week male C57Bl/6 mice received streptozotocin (75 mg/kg) and 21 weeks high-fat/high-carbohydrate feeding. Half received ALA over six weeks. Responses to I-R/IPC were assessed in perfused hearts. Localization and expression of caveolins/cavins, protein kinase B (AKT), and glycogen synthase kinase-3 β (GSK3β); mitochondrial function; and inflammatory mediators were assessed. ALA reduced circulating leptin, without affecting body weight, glycemic dysfunction, or cholesterol. While I-R tolerance was unaltered, paradoxical injury with IPC was reversed to cardioprotection with ALA. However, post-ischemic apoptosis (nucleosome content) appeared unchanged. Benefit was not associated with shifts in localization or expression of caveolins/cavins, p-AKT, p-GSK3β, or mitochondrial function. Despite mixed inflammatory mediator changes, tumor necrosis factor-a (TNF-a) was markedly reduced. Data collectively reveal a novel impact of ALA on cardioprotective dysfunction in T2D mice, unrelated to caveolins/cavins, mitochondrial, or stress kinase modulation. Although evidence suggests inflammatory involvement, the basis of this "un-conventional" protection remains to be identified.
Collapse
Affiliation(s)
- Jake S. Russell
- School of Medical Science, Griffith University Gold Coast, Southport QLD 4217, Australia; (J.S.R.); (T.A.G.); (S.N.); (J.V.); (E.F.D.T.); (J.N.P.)
| | - Tia A. Griffith
- School of Medical Science, Griffith University Gold Coast, Southport QLD 4217, Australia; (J.S.R.); (T.A.G.); (S.N.); (J.V.); (E.F.D.T.); (J.N.P.)
| | - Saba Naghipour
- School of Medical Science, Griffith University Gold Coast, Southport QLD 4217, Australia; (J.S.R.); (T.A.G.); (S.N.); (J.V.); (E.F.D.T.); (J.N.P.)
| | - Jelena Vider
- School of Medical Science, Griffith University Gold Coast, Southport QLD 4217, Australia; (J.S.R.); (T.A.G.); (S.N.); (J.V.); (E.F.D.T.); (J.N.P.)
| | - Eugene F. Du Toit
- School of Medical Science, Griffith University Gold Coast, Southport QLD 4217, Australia; (J.S.R.); (T.A.G.); (S.N.); (J.V.); (E.F.D.T.); (J.N.P.)
| | - Hemal H. Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, CA 92093, USA;
| | - Jason N. Peart
- School of Medical Science, Griffith University Gold Coast, Southport QLD 4217, Australia; (J.S.R.); (T.A.G.); (S.N.); (J.V.); (E.F.D.T.); (J.N.P.)
| | - John P. Headrick
- School of Medical Science, Griffith University Gold Coast, Southport QLD 4217, Australia; (J.S.R.); (T.A.G.); (S.N.); (J.V.); (E.F.D.T.); (J.N.P.)
- Correspondence: ; Tel.: +61-7-5552-8292
| |
Collapse
|
10
|
Li Y, Wang C, Wang J, Tao L. Exploring the beneficial effects and possible mechanisms of repeated episodes of whole-body hypoxic perconditioning in rat model of preeclampsia. Hypertens Pregnancy 2020; 39:267-282. [PMID: 32397773 DOI: 10.1080/10641955.2020.1761378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIM The study explored the beneficial effects of repeated episodes of whole body hypoxic perconditioning (WHPC) on preeclampsia (PE)-like symptoms in rats. MATERIAL AND METHODS PE was induced by administration of L-NAME (75 mg/kg) and WHPC was performed by exposing rats to low O2 (8%) and normal O2 of 10 min each in four alternate cycles. RESULTS L-NAME induced PE like symptoms in rats along with a decrease in the cystathionine-β-synthase (CBS) activity in the placental tissue, plasma levels of H2S and NO metabolites in pregnant rats. Two (GD9, GD14) and three episodes (GD9, GD14 and GD18) of WHPC improved PE-like symptoms with an increase in CBS activity and H2S levels. CBS inhibitor, amino-oxyacetic acid abolished the beneficial effects of three episodes of WHPC; while H2S donor, 4-methylbenzenecarbothioamide, 4-MBC attenuated PE-like symptoms. CONCLUSION WHPC attenuates L-NAME-induced PE-like symptoms due to increase in CBS activity and H2S-production.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics, Jinan Seventh People's Hospital of Shandong , Jinan City, Shandong Province, China
| | - Chunyun Wang
- Department of Obstetrics, Jinan Seventh People's Hospital of Shandong , Jinan City, Shandong Province, China
| | - Jing Wang
- Department of Obstetrics, Jinan Seventh People's Hospital of Shandong , Jinan City, Shandong Province, China
| | - Leisi Tao
- Department of Gynecology, Jinan Seventh People's Hospital of Shandong , Jinan City, Shandong Province, China
| |
Collapse
|
11
|
McGraw MD, Kim SY, White CW, Veress LA. Acute cytotoxicity and increased vascular endothelial growth factor after in vitro nitrogen mustard vapor exposure. Ann N Y Acad Sci 2020; 1479:223-233. [PMID: 32408394 DOI: 10.1111/nyas.14367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022]
Abstract
Nitrogen mustard (NM) is a highly toxic alkylating agent. Inhalation exposure can cause acute and chronic lung injury. This study's aims were to develop an in vitro coculture model of mustard-induced airway injury and to identify growth factors contributing to airway pathology. Primary human bronchial epithelial cells cultured with pulmonary endothelial cells were exposed to NM (25, 50, 100, 250, or 500 μM) or PBS (control) for 1 hour. Lactate dehydrogenase (LDH) and transepithelial electrical resistance (TEER) were measured before and 24 h after NM exposure. Fixed cultures were stained for hematoxylin and eosin or live/dead staining. Culture media were analyzed for 11 growth factors. A 1-h vapor exposure to greater than or equal to 50 μM NM increased supernatant LDH, decreased TEER, and caused airway epithelial cell detachment. Endothelial cell death occurred at 500 μM NM. Vascular endothelial growth factor A (VEGF-A) and placental growth factor (PlGF) expression increased in 500 μM NM-exposed cultures compared with PBS-exposed control cultures. NM vapor exposure causes differential cytotoxicity to airway epithelial and endothelial injury in culture. Increased VEGF-A and PlGF expression occurred acutely in airway cocultures. Future studies are required to validate the role of VEGF signaling in mustard-induced airway pathology.
Collapse
Affiliation(s)
- Matthew D McGraw
- Department of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, New York.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - So-Young Kim
- Department of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, New York
| | - Carl W White
- Department of Pediatrics, Pulmonology Section, Pediatric Airway Research Center, University of Colorado Denver, Aurora, Colorado
| | - Livia A Veress
- Department of Pediatrics, Pulmonology Section, Pediatric Airway Research Center, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
12
|
Zhao Y, Zhou Y, Ma X, Liu X, Zhao Y, Liu X. DDAH-1 via HIF-1 target genes improves cerebral ischemic tolerance after hypoxic preconditioning and middle cerebral artery occlusion-reperfusion. Nitric Oxide 2020; 95:17-28. [DOI: 10.1016/j.niox.2019.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
|
13
|
Liu X, Yang R, Bai W, Xu X, Bi F, Zhu M, Dou X, Li H. Exploring the role of orexin B-sirtuin 1-HIF-1α in diabetes-mellitus induced vascular endothelial dysfunction and associated myocardial injury in rats. Life Sci 2019; 254:117041. [PMID: 31715188 DOI: 10.1016/j.lfs.2019.117041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 01/02/2023]
Abstract
AIM The present study explored the role and possible interrelationship between orexin B-sirtuin 1-HIF-1α signaling pathways in diabetes-mellitus induced vascular dysfunction and enhancement in myocardial injury. MATERIAL AND METHODS Streptozotocin (60 mg/kg) was employed to induce diabetes mellitus in male Wistar albino rats, which were kept for eight weeks. The vascular function was noted by assessing acetylcholine-induced relaxation in norepinephrine precontracted mesenteric arteries. The hearts were subjected to ischemia-reperfusion injury on the Langendorff apparatus. Myocardial injury was assessed by noting the release of CK-MB, cardiac troponin and measuring myocardial infarction. The levels of orexin B, sirtuin 1 and HIF-1α were measured. YNT-185 (orexin B type 2 receptor agonist), STR2104 (sirtuin 1 agonist) and EX527 (sirtuin 1 antagonist) were employed as pharmacological tools. RESULTS Diabetes led to significant development of vascular dysfunction and enhanced ischemia-reperfusion injury in isolated hearts. There was a significant decrease in the levels of orexin B, sirtuin 1 and HIF-1α in diabetic animals. Treatment with YNT-185 and/or STR2104 significantly attenuated the diabetes-induced increase in myocardial injury and vascular dysfunction. Co-administration of EX527 abolished the effects of YNT-185 suggesting orexin B-mediated effects may be through activation of sirtuin 1. Moreover, YNT-185-induced increase in the expression of sirtuin 1 and HIF-1α was also abolished in the presence of EX527. CONCLUSION Diabetes-induced significant decline in orexin B levels in the plasma along with a decrease in the expression of sirtuin 1 and HIF-1α in the heart following ischemia-reperfusion injury may possibly contribute in exacerbating the myocardial injury and vascular dysfunction.
Collapse
Affiliation(s)
- Xiaoyong Liu
- Department of Cardiovascular, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Rui Yang
- Forensic Medicine Institution, Kunming Medical University, Kunming, 650500, China.
| | - Wenwei Bai
- Department of Cardiovascular, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Xiang Xu
- Department of Cardiovascular, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Feng Bi
- Department of Cardiovascular, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Min Zhu
- Department of Cardiovascular, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Xingkui Dou
- Department of Cardiovascular, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Hu Li
- Department of Cardiovascular, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| |
Collapse
|