1
|
Sharma V, Sharma P, Singh TG. Leukotriene signaling in neurodegeneration: implications for treatment strategies. Inflammopharmacology 2024; 32:3571-3584. [PMID: 39167313 DOI: 10.1007/s10787-024-01557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Leukotrienes (LTs) are a group of substances that cause inflammation. They are produced by the enzyme 5-lipoxygenase (5-LOX) from arachidonic acid. Cysteinyl LTs are a group of lipid molecules that have a prominent role in inflammatory signaling in the allergic diseases. Although they are traditionally known for their role in allergic disease, current advancements in bio-medical research have shed light on the involvement of these inflammatory mediators in diseases such as in the inflammation related to central nervous system (CNS) disorders. Among the CNS diseases, LTs, along with 5-LOX and their receptors, have been shown to be associated with multiple sclerosis (MS), Alzheimer's disease (AD), and Parkinson's disease (PD). Through a comprehensive review of current research and experimentation, this investigation provides an insight on the biosynthesis, receptors, and biological effects of LTs in the body. Furthermore, implications of leukotriene signaling in CNS and its intricate role in neurodegeneration are also studied. Through the revelation of these insights, our aim is to establish a foundation for the development of enhanced and focused therapeutic approaches in the continuous endeavor to combat neurodegeneration. Furthermore, the pharmacological inhibition of leukotriene signaling with selective inhibitors offers promising prospects for future interventions and treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
2
|
Sood R, Anoopkumar-Dukie S, Rudrawar S, Hall S. Neuromodulatory effects of leukotriene receptor antagonists: A comprehensive review. Eur J Pharmacol 2024; 978:176755. [PMID: 38909933 DOI: 10.1016/j.ejphar.2024.176755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Cysteinyl leukotrienes (CysLTs) are central to the pathophysiology of asthma and various inflammatory disorders. Leukotriene receptor antagonists (LTRAs) effectively treat respiratory conditions by targeting cysteinyl leukotriene receptors, CysLT1 and CysLT2 subtypes. This review explores the multifaceted effects of LTs, extending beyond bronchoconstriction. CysLT receptors are not only present in the respiratory system but are also crucial in neuronal signaling pathways. LTRAs modulate these receptors, influencing downstream signaling, calcium levels, inflammation, and oxidative stress (OS) within neurons hinting at broader implications. Recent studies identify novel molecular targets, sparking interest in repurposing LTRAs for therapeutic use. Clinical trials are investigating their potential in neuroinflammation control, particularly in Alzheimer's disease (AD) and Parkinson's diseases (PD). However, montelukast, a long-standing LTRA since 1998, raises concerns due to neuropsychiatric adverse drug reactions (ADRs). Despite widespread use, understanding montelukast's metabolism and underlying ADR mechanisms remains limited. This review comprehensively examines LTRAs' diverse biological effects, emphasizing non-bronchoconstrictive activities. It also analyses plausible mechanisms behind LTRAs' neuronal effects, offering insights into their potential as neurodegenerative disease modulators. The aim is to inform clinicians, researchers, and pharmaceutical developers about LTRAs' expanding roles, particularly in neuroinflammation control and their promising repurposing for neurodegenerative disease management.
Collapse
Affiliation(s)
- Radhika Sood
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, 4222, Australia
| | | | - Santosh Rudrawar
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, 4222, Australia; Institute for Glycomics, Griffith University, Queensland, 4222, Australia
| | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, 4222, Australia.
| |
Collapse
|
3
|
Wang X, Gan W, Kang M, Lv C, Zhao Z, Wu Y, Zhang X, Wang R. Asthma aggravates alzheimer's disease by up-regulating NF- κB signaling pathway through LTD4. Brain Res 2024; 1825:148711. [PMID: 38092296 DOI: 10.1016/j.brainres.2023.148711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 12/25/2023]
Abstract
Clinical studies have shown that asthma is a risk factor for dementia or Alzheimer's disease (AD). To investigate whether asthma aggravates AD in APP/PS1 mice and explore the potential mechanisms, an asthma model was established using six-month-old APP/PS1 mice, and montelukast was used as a therapeutic agent in APP/PS1 mice with asthma. The Morris water maze test showed that asthma aggravates spatial learning and memory abilities. Asthma also upregulates the NF-κB inflammatory pathway in APP/PS1 mice and promotes the expression of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), amyloid-β (Aβ) deposition, neuronal damage, synaptic plasticity deficiency, activation of microglia and astrocytes. The level of LTD4 and its receptor CysLT1R in the hippocampus of APP/PS1 mice after the asthma modeling was established was higher than that in APP/PS1 mice, suggesting that asthma may affect the pathology of AD through LTD4 and its receptor Cys-LT1R. Montelukast ameliorates these pathological changes and cognitive impairment. These results suggest that asthma aggravates AD pathology and cognitive impairment of APP/PS1 mice via upregulation of the NF-κB inflammatory pathway, and montelukast ameliorates these pathological changes.
Collapse
Affiliation(s)
- Xiaozhen Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Wenjing Gan
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Meimei Kang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Caizhen Lv
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Zhiwei Zhao
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Yanchuan Wu
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Xu Zhang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing, PR China; Beijing Institute for Brain Disorders, Beijing, PR China; National Clinical Research Center for Geriatric Disorders, Beijing, PR China.
| |
Collapse
|
4
|
Abdik E, Çakır T. Transcriptome-based biomarker prediction for Parkinson's disease using genome-scale metabolic modeling. Sci Rep 2024; 14:585. [PMID: 38182712 PMCID: PMC10770157 DOI: 10.1038/s41598-023-51034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Identification of PD biomarkers is crucial for early diagnosis and to develop target-based therapeutic agents. Integrative analysis of genome-scale metabolic models (GEMs) and omics data provides a computational approach for the prediction of metabolite biomarkers. Here, we applied the TIMBR (Transcriptionally Inferred Metabolic Biomarker Response) algorithm and two modified versions of TIMBR to investigate potential metabolite biomarkers for PD. To this end, we mapped thirteen post-mortem PD transcriptome datasets from the substantia nigra region onto Human-GEM. We considered a metabolite as a candidate biomarker if its production was predicted to be more efficient by a TIMBR-family algorithm in control or PD case for the majority of the datasets. Different metrics based on well-known PD-related metabolite alterations, PD-associated pathways, and a list of 25 high-confidence PD metabolite biomarkers compiled from the literature were used to compare the prediction performance of the three algorithms tested. The modified algorithm with the highest prediction power based on the metrics was called TAMBOOR, TrAnscriptome-based Metabolite Biomarkers by On-Off Reactions, which was introduced for the first time in this study. TAMBOOR performed better in terms of capturing well-known pathway alterations and metabolite secretion changes in PD. Therefore, our tool has a strong potential to be used for the prediction of novel diagnostic biomarkers for human diseases.
Collapse
Affiliation(s)
- Ecehan Abdik
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
5
|
Chen H, Lin J, Zhu S, Zeng K, Tu P, Jiang Y. Anti-inflammatory constituents from the stems and leaves of Glycosmis ovoidea Pierre. PHYTOCHEMISTRY 2022; 203:113369. [PMID: 35973615 DOI: 10.1016/j.phytochem.2022.113369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Seven undescribed compounds, including four acridones, two coumarins, and a phenylpropanoid, together with 13 known acridone analogues were isolated from the ethanolic extract of the stems and leaves of Glycosmis ovoidea Pierre. Their structures were elucidated on the basis of comprehensive analysis of 1D and 2D NMR and HRESIMS spectroscopic data, and the absolute configurations were assigned by comparison of the experimental and calculated ECD data. Five compounds showed moderate inhibitory effects on nitric oxide production stimulated by lipopolysaccharide in BV-2 microglial cells with IC50 values in the range of 18.30-30.84 μM, and three compounds showed potent inhibition on 5-lipoxygenase (5-LOX) with IC50 values in the range of 2.08-10.26 μM. The possible binding sites of the active compounds with 5-LOX were further performed by molecular docking.
Collapse
Affiliation(s)
- Hongwei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sisi Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
6
|
Marcos Pasero H, García Tejedor A, Giménez-Bastida JA, Laparra Llopis JM. Modifiable Innate Biology within the Gut–Brain Axis for Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10092098. [PMID: 36140198 PMCID: PMC9495985 DOI: 10.3390/biomedicines10092098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a prototypical inflammation-associated loss of cognitive function, with approximately 90% of the AD burden associated with invading myeloid cells controlling the function of the resident microglia. This indicates that the immune microenvironment has a pivotal role in the pathogenesis of the disease. Multiple peripheral stimuli, conditioned by complex and varied interactions between signals that stem at the intestinal level and neuroimmune processes, are involved in the progression and severity of AD. Conceivably, the targeting of critical innate immune signals and cells is achievable, influencing immune and metabolic health within the gut–brain axis. Considerable progress has been made, modulating many different metabolic and immune alterations that can drive AD development. However, non-pharmacological strategies targeting immunometabolic processes affecting neuroinflammation in AD treatment remain general and, at this point, are applied to all patients regardless of disease features. Despite these possibilities, improved knowledge of the relative contribution of the different innate immune cells and molecules comprising the chronically inflamed brain network to AD pathogenesis, and elucidation of the network hierarchy, are needed for planning potent preventive and/or therapeutic interventions. Moreover, an integrative perspective addressing transdisciplinary fields can significantly contribute to molecular pathological epidemiology, improving the health and quality of life of AD patients. This review is intended to gather modifiable immunometabolic processes based on their importance in the prevention and management of AD.
Collapse
Affiliation(s)
- Helena Marcos Pasero
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Sciences, Universidad Internacional de Valencia—VIU, Pintor Sorolla 21, 46002 Valencia, Spain
| | - Aurora García Tejedor
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Sciences, Universidad Internacional de Valencia—VIU, Pintor Sorolla 21, 46002 Valencia, Spain
| | - Juan Antonio Giménez-Bastida
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | - José Moisés Laparra Llopis
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra Cantoblanco 8, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-(0)-9-1787-8100
| |
Collapse
|
7
|
CysLT2R Antagonist HAMI 3379 Ameliorates Post-Stroke Depression through NLRP3 Inflammasome/Pyroptosis Pathway in Gerbils. Brain Sci 2022; 12:brainsci12080976. [PMID: 35892417 PMCID: PMC9330558 DOI: 10.3390/brainsci12080976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 01/25/2023] Open
Abstract
Post-stroke depression (PSD) is a kind of prevalent emotional disorder following stroke that usually results in slow functional recovery and even increased mortality. We had reported that the cysteinyl leukotriene receptor 2 (CysLT2R) antagonist HAMI3379 (HM3379) contributes to the improvement of neurological injury. The present study was designed to investigate the role of HM3379 in PSD-induced chronic neuroinflammation and related mechanisms in gerbils. The gerbils were subjected to transient global cerebral ischemia (tGCI) and spatial restraint stress to induce the PSD model. They were randomized to receive the vehicle or HM3379 (0.1 mg/kg, i.p.) for a consecutive 14 days. In the PSD-treated gerbils, HM3379 had noteworthy efficacy in improving the modified neurological severity score (mNSS) and depression-like behaviors, including the sucrose preference test and the forced swim test. HM3379 administration significantly mitigated neuron loss, lessened TUNEL-positive neurons, and reduced the activation of microglia in the cerebral cortex. Importantly, HM3379 downregulated protein expressions of the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome and pyroptosis including NLRP3, cleaved caspase-1, interleukin-1β (IL-1β), IL-18, cleaved gasdermin-N domain (GSDMD-N), and apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC). Mechanistically, HM3379 could repress pyroptosis via inhibiting NLRP3 inflammasome activation under oxygen-glucose deprivation (OGD) stimulation. Knockdown of CysLT2R by short hairpin RNA (shRNA) or overexpression of CysLT2R by lentivirus (LV)-CysLT2R could abolish or restore the anti-depression effect of HM3379. Our results demonstrated that the selective CysLT2R antagonist HM3379 has beneficial effects on PSD, partially by suppressing the NLRP3 inflammasome/pyroptosis pathway.
Collapse
|
8
|
Paljarvi T, Forton J, Luciano S, Herttua K, Fazel S. Analysis of Neuropsychiatric Diagnoses After Montelukast Initiation. JAMA Netw Open 2022; 5:e2213643. [PMID: 35608857 PMCID: PMC9131741 DOI: 10.1001/jamanetworkopen.2022.13643] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
IMPORTANCE The evidence base for the association between montelukast and adverse neuropsychiatric outcomes is mixed and inconclusive. Several methodological limitations have been identified in the evidence base on the safety of montelukast in observational studies. OBJECTIVE To investigate the association between new montelukast exposure and 1-year incident neuropsychiatric diagnoses with improved precision and control for baseline confounders. DESIGN, SETTING, AND PARTICIPANTS This propensity score-matched cohort study was conducted using electronic health records from 2015 to 2019 in the TriNetX Analytics Network patient repository of more than 51 million patients from 56 health care organizations, mainly in the US. Included patients were those aged 15 to 64 years at index prescription for montelukast or for control prescription who had a history of asthma or allergic rhinitis. After propensity score matching for various baseline confounders, including comorbidities and dispensed prescription medicines, we included 154 946 patients, of whom 77 473 individuals were exposed to montelukast. Patients were followed up for 12 months. Data were analyzed from June through November 2021. EXPOSURES New dispensed prescription for leukotriene receptor antagonist montelukast or control medication. MAIN OUTCOMES AND MEASURES Incident neuropsychiatric diagnoses at 12 months identified using International Statistical Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) codes. RESULTS There were 72 490 patients with asthma (44 726 [61.7%] women; mean [SD] age at index prescription, 35 [15] years) and 82 456 patients with allergic rhinitis (54 172 [65.7%] women; mean [SD] age at index prescription, 40 [14] years). In patients exposed to montelukast, the odds ratio [OR] for any incident neuropsychiatric outcome was 1.11 (95% CI, 1.04-1.19) in patients with asthma and 1.07 (95% CI, 1.01-1.14) in patients with allergic rhinitis compared with patients who were unexposed. The highest OR was for anxiety disorders (OR, 1.21; 95% CI, 1.05-1.20) among patients with asthma exposed to montelukast and insomnia (OR, 1.15; 95% CI, 1.05-1.27) among patients with allergic rhinitis exposed to montelukast. CONCLUSIONS AND RELEVANCE This study found that patients with asthma or allergic rhinitis had increased odds of adverse neuropsychiatric outcomes after montelukast initiation. These findings suggest that clinicians should consider monitoring potential adverse mental health symptoms during montelukast treatment, particularly in individuals with a history of mental health or sleep problems.
Collapse
Affiliation(s)
- Tapio Paljarvi
- Department of Psychiatry, University of Oxford, Warneford Hospital, Headington, Oxford, England, United Kingdom
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Julian Forton
- Children’s Hospital for Wales, Heath Park, Cardiff, Wales, United Kingdom
| | | | - Kimmo Herttua
- Department of Public Health, University of Southern Denmark, Esbjerg, Denmark
| | - Seena Fazel
- Department of Psychiatry, University of Oxford, Warneford Hospital, Headington, Oxford, England, United Kingdom
- Oxford Health National Health Service Foundation Trust, Warneford Hospital, Oxford, England, United Kingdom
| |
Collapse
|
9
|
Ezeamuzie CI, Rao MS, El-Hashim AZ, Philip E, Phillips OA. Anti-allergic, anti-asthmatic and anti-inflammatory effects of an oxazolidinone hydroxamic acid derivative (PH-251) – A novel dual inhibitor of 5-lipoxygenase and mast cell degranulation. Int Immunopharmacol 2022; 105:108558. [DOI: 10.1016/j.intimp.2022.108558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
|
10
|
Shen W, Jiang L, Zhao J, Wang H, Hu M, Chen L, Chen Y. Bioactive lipids and their metabolism: new therapeutic opportunities for Parkinson's disease. Eur J Neurosci 2021; 55:846-872. [PMID: 34904314 DOI: 10.1111/ejn.15566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by motor dysfunction, which can also be associated with non-motor symptoms. Its pathogenesis is thought to stem from a loss of dopaminergic neurons in the substantia nigra pars compacta and the formation of Lewy bodies containing aggregated α-synuclein. Recent works suggested that lipids might play a pivotal role in the pathophysiology of PD. In particular, the so-called "bioactive" lipids whose changes in the concentration may lead to functional consequences and affect many pathophysiological processes, including neuroinflammation, are closely related to PD in terms of symptoms, disease progression, and incidence. This study aimed to explore the molecular metabolism and physiological functions of bioactive lipids, such as fatty acids (mainly unsaturated fatty acids), eicosanoids, endocannabinoids, oxysterols, representative sphingolipids, diacylglycerols, and lysophosphatidic acid, in the development of PD. The knowledge of bioactive lipids in PD gained through preclinical and clinical studies is expected to improve the understanding of disease pathogenesis and provide novel therapeutic avenues.
Collapse
Affiliation(s)
- Wenjing Shen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Jiang
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingyi Zhao
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Haili Wang
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Meng Hu
- The Second Xiangya Hospital, Central Sounth University, Changsha, Hunan Province, China
| | - Lanlan Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingzhu Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
11
|
Yan Y, Gao Y, Fang Q, Zhang N, Kumar G, Yan H, Song L, Li J, Zhang Y, Sun J, Wang J, Zhao L, Skaggs K, Zhang HT, Ma CG. Inhibition of Rho Kinase by Fasudil Ameliorates Cognition Impairment in APP/PS1 Transgenic Mice via Modulation of Gut Microbiota and Metabolites. Front Aging Neurosci 2021; 13:755164. [PMID: 34721000 PMCID: PMC8551711 DOI: 10.3389/fnagi.2021.755164] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Fasudil, a Rho kinase inhibitor, exerts therapeutic effects in a mouse model of Alzheimer's disease (AD), a chronic neurodegenerative disease with progressive loss of memory. However, the mechanisms remain unclear. In addition, the gut microbiota and its metabolites have been implicated in AD. Methods: We examined the effect of fasudil on learning and memory using the Morris water-maze (MWM) test in APPswe/PSEN1dE9 transgenic (APP/PS1) mice (8 months old) treated (i.p.) with fasudil (25 mg/kg/day; ADF) or saline (ADNS) and in age- and gender-matched wild-type (WT) mice. Fecal metagenomics and metabolites were performed to identify novel biomarkers of AD and elucidate the mechanisms of fasudil induced beneficial effects in AD mice. Results: The MWM test showed significant improvement of spatial memory in APP/PS1 mice treated with fasudil as compared to ADNS. The metagenomic analysis revealed the abundance of the dominant phyla in all the three groups, including Bacteroidetes (23.7–44%) and Firmicutes (6.4–26.6%), and the increased relative abundance ratio of Firmicutes/Bacteroidetes in ADNS (59.1%) compared to WT (31.7%). In contrast, the Firmicutes/Bacteroidetes ratio was decreased to the WT level in ADF (32.8%). Lefse analysis of metagenomics identified s_Prevotella_sp_CAG873 as an ADF potential biomarker, while s_Helicobacter_typhlonius and s_Helicobacter_sp_MIT_03-1616 as ADNS potential biomarkers. Metabolite analysis revealed the increment of various metabolites, including glutamate, hypoxanthine, thymine, hexanoyl-CoA, and leukotriene, which were relative to ADNS or ADF microbiota potential biomarkers and mainly involved in the metabolism of nucleotide, lipids and sugars, and the inflammatory pathway. Conclusions: Memory deficit in APP/PS1 mice was correlated with the gut microbiome and metabolite status. Fasudil reversed the abnormal gut microbiota and subsequently regulated the related metabolisms to normal in the AD mice. It is believed that fasudil can be a novel strategy for the treatment of AD via remodeling of the gut microbiota and metabolites. The novel results also provide valuable references for the use of gut microbiota and metabolites as diagnostic biomarkers and/or therapeutic targets in clinical studies of AD.
Collapse
Affiliation(s)
- Yuqing Yan
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China.,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Ye Gao
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Qingli Fang
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Nianping Zhang
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Hailong Yan
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jiehui Li
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Yuna Zhang
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Jingxian Sun
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Jiawei Wang
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Linhu Zhao
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Keith Skaggs
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Han-Ting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Cun-Gen Ma
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China.,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| |
Collapse
|
12
|
Singh RK. Recent Trends in the Management of Alzheimer's Disease: Current Therapeutic Options and Drug Repurposing Approaches. Curr Neuropharmacol 2021; 18:868-882. [PMID: 31989900 PMCID: PMC7569317 DOI: 10.2174/1570159x18666200128121920] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/14/2020] [Accepted: 01/27/2020] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease is one of the most progressive forms of dementia, ultimately leading to death in aged populations. The major hallmarks of Alzheimer's disease include deposition of extracellular amyloid senile plaques and intracellular neurofibrillary tangles in brain neuronal cells. Although there are classical therapeutic options available for the treatment of the diseases, however, they provide only a symptomatic relief and do not modify the molecular pathophysiological course of the disease. Recent research advances in Alzheimer's disease have highlighted the potential role of anti-amyloid, anti-tau, and anti-inflammatory therapies. However, these therapies are still in different phases of pre-clinical/clinical development. In addition, drug repositioning/repurposing is another interesting and promising approach to explore rationalized options for the treatment of Alzheimer's disease. This review discusses the different aspects of the pathophysiological mechanism involved in the progression of Alzheimer's disease along with the limitations of current therapies. Furthermore, this review also highlights emerging investigational drugs along with recent drug repurposing approaches for Alzheimer's disease.
Collapse
Affiliation(s)
- Rakesh K Singh
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Manesar, Gurgaon-122413, Haryana, India,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research,
Raebareli. Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow-226002, Uttar Pradesh, India
| |
Collapse
|
13
|
Lee HR, Park HJ, Park JS, Park DW, Ho MJ, Kim DY, Lee HC, Kim EJ, Song WH, Park JS, Choi YS, Kang MJ. Montelukast microsuspension with hypromellose for improved stability and oral absorption. Int J Biol Macromol 2021; 183:1732-1742. [PMID: 34051251 DOI: 10.1016/j.ijbiomac.2021.05.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022]
Abstract
Oral montelukast (MTK) is prescribed to treat asthma or rhinitis, and is clinically investigated as new medication in the treatment of Alzheimer's dementia. Herein, in order to better patient's compliance, microsuspensions (MSs)-based oral liquid preparations of montelukast (MTK) were formulated with polymeric suspending agents including hypromellose (HPMC), and those drug-polymer interaction, physicochemical stability, dissolution, and in vivo pharmacokinetic profile was evaluated. When amorphous MTK particle was suspended in aqueous vehicle, it was readily converted into crystalline form and grown into aggregates, drastically lowering dissolution rate. However, the addition of HPMC polymer markedly suppressed the crystal growth, providing both improved drug stability and profound dissolution profile. Raman spectrometry denoted the inter-molecular hydrogen boding between MTK particle and HPMC polymer. The crystal growth or dissolution profile of MSs was markedly affected by pharmaceutical additives (sucrose or simethicone) in the preparations or storage temperature. The optimized HPMC-based MS exhibited over 80% higher bioavailability, compared to marketed granule (Singulair®) in rats. Therefore, novel MTK-loaded MS can be a promising liquid preparation, bettering oral absorption and patient's compliance.
Collapse
Affiliation(s)
- Ha Ryeong Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Hyun Jin Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Jun Soo Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Dong Woo Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Myoung Jin Ho
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Dong Yoon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Hyo Chun Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Eun Jeong Kim
- GL Pharm Tech Corp., 137, Sagimakgol-ro, Jungwon-gu, Seongnam, Republic of Korea
| | - Woo Heon Song
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Jun Sang Park
- GL Pharm Tech Corp., 137, Sagimakgol-ro, Jungwon-gu, Seongnam, Republic of Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea.
| |
Collapse
|
14
|
Potential Effects of Leukotriene Receptor Antagonist Montelukast in Treatment of Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22115606. [PMID: 34070609 PMCID: PMC8198163 DOI: 10.3390/ijms22115606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder where misfolded alpha-synuclein-enriched aggregates called Lewy bodies are central in pathogenesis. No neuroprotective or disease-modifying treatments are currently available. Parkinson’s disease is considered a multifactorial disease and evidence from multiple patient studies and animal models has shown a significant immune component during the course of the disease, highlighting immunomodulation as a potential treatment strategy. The immune changes occur centrally, involving microglia and astrocytes but also peripherally with changes to the innate and adaptive immune system. Here, we review current understanding of different components of the PD immune response with a particular emphasis on the leukotriene pathway. We will also describe evidence of montelukast, a leukotriene receptor antagonist, as a possible anti-inflammatory treatment for PD.
Collapse
|
15
|
Tesfaye BA, Hailu HG, Zewdie KA, Ayza MA, Berhe DF. Montelukast: The New Therapeutic Option for the Treatment of Epilepsy. J Exp Pharmacol 2021; 13:23-31. [PMID: 33505173 PMCID: PMC7829127 DOI: 10.2147/jep.s277720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no definitive cure for epilepsy. The available medications relieve symptoms and reduce seizure attacks. The major challenge with the available antiepileptic medication is safety and affordability. The repurposing of montelukast for epilepsy can be an alternative medication with a better safety profile. Montelukast is a leukotriene receptor antagonist that binds to the cysteinyl leukotrienes (CysLT) receptors used in the treatment of bronchial asthma and seasonal allergies. Emerging evidence suggests that montelukast's anti-inflammatory effect can help to maintain BBB integrity. The drug has also neuroprotective and anti-oxidative activities to reduce seizure incidence and epilepsy. The present review summarizes the neuropharmacological actions of montelukast in epilepsy with an emphasis on the recent findings associated with CysLT and cell-specific effects.
Collapse
Affiliation(s)
- Bekalu Amare Tesfaye
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Haftom Gebregergs Hailu
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Kaleab Alemayehu Zewdie
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Muluken Altaye Ayza
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Derbew Fikadu Berhe
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
16
|
Yuan JJ, Chen Q, Xiong XY, Zhang Q, Xie Q, Huang JC, Yang GQ, Gong CX, Qiu ZM, Sang HF, Zi WJ, He Q, Xu R, Yang QW. Quantitative Profiling of Oxylipins in Acute Experimental Intracerebral Hemorrhage. Front Neurosci 2020; 14:777. [PMID: 33071720 PMCID: PMC7538633 DOI: 10.3389/fnins.2020.00777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/02/2020] [Indexed: 01/03/2023] Open
Abstract
Oxylipins are a series of bioactive lipid metabolites derived from polyunsaturated fatty acids that are involved in cerebral homeostasis and the development of intracerebral hemorrhage (ICH). However, comprehensive quantification of the oxylipin profile in ICH remains unknown. Therefore, an ICH mouse model was constructed and liquid chromatography tandem mass spectrometry was then performed to quantify the change in oxylipins in ICH. The expression of the oxylipin relative enzymes was also reanalyzed based on RNA-seq data from our constructed ICH dataset. A total of 58 oxylipins were quantifiable and the levels of 17 oxylipins increased while none decreased significantly in the first 3 days following ICH. The most commonly increased oxylipins in ICH were derived from AA (10/17) and EPA (4/17) followed by LA (2/17) and DHA (1/17). 18-HEPE from EPA was the only oxylipin that remained significantly increased from 0.5 to 3 days following ICH. Furthermore, 14 of the increased oxylipins reached a peak level on the first day of ICH, and soon decreased while five oxylipins (PGJ2, 15-oxo-ETE, 12-HEPE, 18-HEPE, and 5-oxo-ETE) had increased 3 days after ICH suggesting that the profile shifted with the progression of ICH. In our constructed RNA-seq dataset based on ICH rats, 90 oxylipin relative molecules were detected except for COX. Among these, Cyp4f18, Cyp1b1, Cyp2d3, Cyp2e1, Cyp1a1, ALOX5AP, and PLA2g4a were found up-regulated and Cyp26b1 was found to decrease in ICH. In addition, there was no significant change in sEH in ICH. This study provides fundamental data on the profile of oxylipins and their enzymes in ICH. We found that the profile shifted as the progression of ICH and the metabolism of arachidonic acid and eicosapentaenoic acid was highly affected in ICH, which will help further studies explore the functions of oxylipins in ICH.
Collapse
Affiliation(s)
- Jun-Jie Yuan
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiong Chen
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-Yi Xiong
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Qin Zhang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Qi Xie
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Jia-Cheng Huang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Guo-Qiang Yang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Chang-Xiong Gong
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhong-Ming Qiu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong-Fei Sang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Wen-Jie Zi
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Qian He
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Rui Xu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
17
|
Tu G, Qin Z, Huo D, Zhang S, Yan A. Fingerprint-based computational models of 5-lipo-oxygenase activating protein inhibitors: Activity prediction and structure clustering. Chem Biol Drug Des 2020; 96:931-947. [PMID: 33058463 DOI: 10.1111/cbdd.13657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 01/24/2023]
Abstract
Inflammatory diseases can be treated by inhibiting 5-lipo-oxygenase activating protein (FLAP). In this study, a data set containing 2,112 FLAP inhibitors was collected. A total of 25 classification models were built by five machine learning algorithms with five different types of fingerprints. The best model, which was built by support vector machine algorithm with ECFP_4 fingerprint had an accuracy and a Matthews correlation coefficient of 0.862 and 0.722 on the test set, respectively. The predicted results were further evaluated by the application domain dSTD-PRO (a distance between one compound to models). Each compound had a dSTD-PRO value, which was calculated by the predicted probabilities obtained from all 25 models. The application domain results suggested that the reliability of predicted results depended mainly on the compounds themselves rather than algorithms or fingerprints. A group of customized 10-bit fingerprint was manually defined for clustering the molecular structures of 2,112 FLAP inhibitors into eight subsets by K-Means. According to the clustering results, most of inhibitors in two subsets (subsets 2 and 4) were highly active inhibitors. We found that aryl oxadiazole/oxazole alkanes, biaryl amino-heteroarenes, two aromatic rings (often N-containing) linked by a cyclobutene group, and 1,2,4-triazole group were typical fragments in highly active inhibitors.
Collapse
Affiliation(s)
- Guiping Tu
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Zijian Qin
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Donghui Huo
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Shengde Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
18
|
Rahman SO, Kaundal M, Salman M, Shrivastava A, Parvez S, Panda BP, Akhter M, Akhtar M, Najmi AK. Alogliptin reversed hippocampal insulin resistance in an amyloid-beta fibrils induced animal model of Alzheimer's disease. Eur J Pharmacol 2020; 889:173522. [PMID: 32866503 DOI: 10.1016/j.ejphar.2020.173522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022]
Abstract
The complications of Alzheimer's disease (AD) have made the development of its treatment a challenging task. Several studies have indicated the disruption of insulin receptor substrate-1 (IRS-1) signaling during the development and progression of AD. The role of a dipeptidyl peptidase-4 (DPP-4) inhibitor on hippocampal IRS-1 signaling has not been investigated before. In this study, we evaluated the efficacy of alogliptin (DPP-4 inhibitor) on hippocampal insulin resistance and associated AD complications. In the present study, amyloid-β (1-42) fibrils were produced and administered intrahippocampally for inducing AD in Wistar rats. After 7 days of surgery, rats were treated with 10 and 20 mg/kg of alogliptin for 28 days. Morris water maze (MWM) test was performed in the last week of our experimental study. Post 24 h of final treatment, rats were euthanized and hippocampi were separated for biochemical and histopathological investigations. In-silico analysis revealed that alogliptin has a good binding affinity with Aβ and beta-secretase-1 (BACE-1). Alogliptin significantly restored cognitive functions in Aβ (1-42) fibrils injected rats during the MWM test. Alogliptin also significantly attenuated insulin level, IRS-1pS307 expression, Aβ (1-42) level, GSK-3β activity, TNF-α level and oxidative stress in the hippocampus. The histopathological analysis supported alogliptin mediated neuroprotective and anti-amyloidogenic effect. Immunohistochemical analysis also revealed a reduction in IRS-1pS307 expression after alogliptin treatment. The in-silico, behavioral, biochemical and histopathological analysis supports the protective effect of alogliptin against hippocampal insulin resistance and AD.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Madhu Kaundal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Apeksha Shrivastava
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Bibhu Prasad Panda
- Pharmaceutical Biotechnology Laboratory, Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
19
|
Chen F, Ghosh A, Lin J, Zhang C, Pan Y, Thakur A, Singh K, Hong H, Tang S. 5-lipoxygenase pathway and its downstream cysteinyl leukotrienes as potential therapeutic targets for Alzheimer's disease. Brain Behav Immun 2020; 88:844-855. [PMID: 32222525 DOI: 10.1016/j.bbi.2020.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/29/2022] Open
Abstract
5-lipoxygenase (ALOX5) is an enzyme involved in arachidonic acid (AA) metabolism, a metabolic pathway in which cysteinyl leukotrienes (CysLTs) are the resultant metabolites. Both ALOX5 and CysLTs are clinically significant in a number of inflammatory diseases, such as in asthma and allergic rhinitis, and drugs antagonizing the effect of these molecules have long been successfully used to counter these diseases. Interestingly, recent advances in 'neuroinflammation' research has led to the discovery of several novel inflammatory pathways regulating many cerebral pathologies, including the ALOX5 pathway. By means of pharmacological and genetic studies, both ALOX5 and CysLTs receptors have been shown to be involved in the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative/neurological diseases, such as in Parkinson's disease, multiple sclerosis, and epilepsy. In both transgenic and sporadic models of AD, it has been shown that the levels of ALOX5/CysLTs are elevated, and that genetic/pharmacological interventions of these molecules can alleviate AD-related behavioral and pathological conditions. Clinical relevance of these molecules has also been found in AD brain samples. In this review, we aim to summarize such important findings on the role of ALOX5/CysLTs in AD pathophysiology, from both the cellular and the molecular aspects, and also discuss the potential of their blockers as possible therapeutic choices to curb AD-related conditions.
Collapse
Affiliation(s)
- Fang Chen
- Department of Pharmacy, the First Affiliated Hospital of Xiamen University, Xiamen, China; Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Arijit Ghosh
- Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Jingran Lin
- Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Chunteng Zhang
- School of Pharmacy, North China University of Science and Technology, Tangshan, China; Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Yining Pan
- Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China
| | - Abhimanyu Thakur
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Kunal Singh
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida, India
| | - Hao Hong
- Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China.
| | - Susu Tang
- Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
20
|
Ye XY, Wang DY, Xu Y, Wang J. [Effect of pranlukast on neonatal rats with periventricular leukomalacia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:656-661. [PMID: 32571468 PMCID: PMC7390222 DOI: 10.7499/j.issn.1008-8830.1912139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To study the effect of pranlukast (Pran) on neonatal rats with periventricular leukomalacia (PVL). METHODS The rats, aged 3 days, were randomly divided into a sham-operation group, a PVL group, and a Pran group. A rat model of PVL was prepared by right common carotid artery ligation and postoperative hypoxia. The rats in the sham-operation group were given isolation of the right common carotid artery without ligation or hypoxic treatment. The rats in the Pran group were given intraperitoneal injection of Pran (0.1 mg/kg) once every 12 hours, for 3 consecutive days, and those in the sham-operation group and the PVL group were given intraperitoneal injection of an equal volume of normal saline. On day 14 after modeling, hematoxylin-eosin (HE) staining was used to observe the pathological changes of brain tissue; immunofluorescent staining was used to measure the expression of myelin basic protein (MBP) in brain tissue (n=8); Western blot was used to measure the expression of cyclic nucleotide phosphodiesterase (CNPase), MBP, and G protein-coupled receptor 17 (GPR17) (n=8). On day 21 after modeling, Morris water maze test was used to evaluate the learning and memory abilities of rats in each group (n=8). RESULTS The results of HE staining showed that the PVL group had greater pathological changes of white matter than the sham-operation group, and compared with the PVL group, the Pran group had a significant improvement in such pathological changes. The results of immunofluorescence assay showed that the PVL group had a lower mean fluorescence intensity of MBP than the sham-operation group (P<0.05), and the Pran group had a higher mean fluorescence intensity of MBP than the PVL group (P<0.05). Western blot showed that compared with the sham-operation group, the PVL group had significantly lower relative expression of MBP and CNPase (P<0.05) and significantly higher relative expression of GPR17 (P<0.05), and compared with the PVL group, the Pran group had significantly higher relative expression of MBP and CNPase (P<0.05) and significantly lower relative expression of GPR17 (P<0.05). Morris water maze test showed that compared with the sham-operation group, the PVL group had a significant increase in escape latency and a significant reduction in the number of platform crossings, and compared with the PVL group, the Pran group had a significant reduction in escape latency and a significant increase in the number of platform crossings (P<0.05). CONCLUSIONS Pran can alleviate brain damage, promote myelination, and improve long-term learning and memory abilities in neonatal rats with PVL, possibly by reducing the expression of GPR17.
Collapse
Affiliation(s)
- Xiao-Yan Ye
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China.
| | | | | | | |
Collapse
|
21
|
Ihara M, Saito S. Drug Repositioning for Alzheimer’s Disease: Finding Hidden Clues in Old Drugs. J Alzheimers Dis 2020; 74:1013-1028. [DOI: 10.3233/jad-200049] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Japan
| |
Collapse
|
22
|
Abdelzaher LA, Hussein OA, Ashry IEM. The Novel Potential Therapeutic Utility of Montelukast in Alleviating Autistic Behavior Induced by Early Postnatal Administration of Thimerosal in Mice. Cell Mol Neurobiol 2020; 41:129-150. [PMID: 32303879 DOI: 10.1007/s10571-020-00841-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM: Thimerosal (THIM) is a mercury-containing preservative widely used in many biological and medical products including many vaccines. It has been accused of being a possible etiological factor for some neurodevelopmental disorders such as autistic spectrum disorders (ASDs). In our study, the potential therapeutic effect of montelukast, a leukotriene receptor antagonist used to treat seasonal allergies and asthma, on THIM mice model (ASDs model) was examined. METHODOLOGY Newborn mice were randomly distributed into three groups: (Group 1) Control (Cont.) group received saline injections. (Group 2) THIM-treated (THIM) group received THIM intramuscular (IM) at a dose of 3000 μg Hg/kg on postnatal days 7, 9, 11, and 15. (Group 3) Montelukast-treated (Monte) group received THIM followed by montelukast sodium (10 mg/kg/day) intraperitoneal (IP) for 3 weeks. Mice were evaluated for growth development, social interactions, anxiety, locomotor activity, and cognitive function. Brain histopathology, alpha 7 nicotinic acetylcholine receptors (α7nAChRs), nuclear factor kappa B p65 (NF-κB p65), apoptotic factor (Bax), and brain injury markers were evaluated as well. RESULTS THIIM significantly impaired social activity and growth development. Montelukast mitigated THIM-induced social deficit probably through α7nAChRs upregulation, NF-κB p65, Bax, and brain injury markers downregulation, thus suppressing THIM-induced neuronal toxicity and inflammation. CONCLUSION Neonatal exposure to THIM can induce growth retardation and abnormal social interactions similar to those observed in ASDs. Some of these abnormalities could be ameliorated by montelukast via upregulation of α7nAChRs that inhibited NF-κB activation and significant suppression of neuronal injury and the associated apoptosis.
Collapse
Affiliation(s)
- Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Ola A Hussein
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - I E M Ashry
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
23
|
Antagonism of cysteinyl leukotrienes and their receptors as a neuroinflammatory target in Alzheimer's disease. Neurol Sci 2020; 41:2081-2093. [PMID: 32281039 DOI: 10.1007/s10072-020-04369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 03/21/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alzheimer's disease is a complex multifaceted neurodegenerative disorder. It is characterized by the deposition of extracellular amyloid senile plaques and intracellular neurofibrillary tangles leading to progressive dementia and death in aged adult population. Recent emerging research has highlighted a potential pharmacological role of 5-lipoxyenase-cysteinyl leukotriene pathway in molecular pathogenesis of Alzheimer's disease. OBJECTIVE Although cysteinyl leukotrienes and their receptors have a major clinical role in chronic respiratory inflammation, their roles in chronic neuroinflammation in Alzheimer's disease need a detailed and careful exploration. RESULTS AND CONCLUSION This review article highlights a novel role of cysteinyl leukotrienes and their receptors in pathophysiology of Alzheimer's disease in order to understand the underlying molecular mechanism. In addition, it summarizes the recent advances in various pre-clinical and clinical strategies used to modulate this pathway for therapeutic targeting of Alzheimer's disease.
Collapse
|
24
|
Zhao Y, Gan Y, Xu G, Yin G, Liu D. MSCs-Derived Exosomes Attenuate Acute Brain Injury and Inhibit Microglial Inflammation by Reversing CysLT2R-ERK1/2 Mediated Microglia M1 Polarization. Neurochem Res 2020; 45:1180-1190. [PMID: 32112178 DOI: 10.1007/s11064-020-02998-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory responses play a major role in the pathophysiology of cerebral ischemia. Mesenchymal stem cell-derived exosomes (MSC-exos) have important anti-inflammatory effects on the treatment of organ injury. This study aimed to determine the anti-inflammatory effect and furtherly investigate the potential mechanism of MSC-exos on acute cerebral ischemia. MSC-exos were isolated by ultracentrifugation, characterized by transmission electron microscopy and FACS. Rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) surgery were administered MSC-exos through the tail vein. In vitro, microglia exposed to oxygen- and glucose-deprivation (OGD) and leukotrienes were used to study the protective mechanism of exosomes against ischemia/reperfusion-induced inflammation. The intake of exosomes into microglia was visualized through immunofluorescence staining. The results showed that MSC-exos treatment significantly improved motor, learning and memory abilities of MCAO/R rats 7 days later. The production of pro-inflammatory factors decreased, while the anti-inflammatory cytokines and neurotrophic factors increased both in the cortex and hippocampus of ischemic hemisphere as well as in the culture supernatant of microglia treated with OGD and NMLTC4. MSC-exos treatment also significantly inhibited M1 microglia polarization and increased M2 microglia cells. Furthermore, western blot analysis demonstrated that CysLT2R expression and ERK1/2 phosphorylation were downregulated both in vivo and in vitro. Thus, MSC-exos attenuated brain injury and inhibited microglial inflammation by reversing CysLT2R-ERK1/2 mediated microglia M1 polarization.
Collapse
Affiliation(s)
- Yangmin Zhao
- School of Clinical Sciences, Hangzhou Medical College, Zhejiang, China
| | - Yunxiao Gan
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China
| | - Gewei Xu
- School of Clinical Sciences, Hangzhou Medical College, Zhejiang, China
| | - Guoli Yin
- Shcool of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Zhejiang, China
| | - Dandan Liu
- Shcool of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Zhejiang, China.
| |
Collapse
|
25
|
Hussain S, Singh A, Zameer S, Jamali MC, Baxi H, Rahman SO, Alam M, Altamish M, Singh AK, Anil D, Hussain MS, Ahmad A, Najmi AK. No association between proton pump inhibitor use and risk of dementia: Evidence from a meta-analysis. J Gastroenterol Hepatol 2020; 35:19-28. [PMID: 31334885 DOI: 10.1111/jgh.14789] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/30/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM A growing body of literature suggests the association between dementia risk and proton pump inhibitor (PPI) use. Therefore, we aimed to investigate the association between PPI use and dementia risk. METHODS An extensive literature search was performed in PubMed, Embase, and Cochrane till March 31, 2019. All the studies (cohort and case-control) assessing the association between PPI use and dementia risk were eligible for inclusion. Articles were selected based on the screening of title and abstract, data were extracted, and risk of bias was assessed using Newcastle-Ottawa scale. The primary outcome was pooled risk of dementia among PPI user as compared with non-PPI user. Secondary outcomes include dementia risk based on subgroups. Statistical analysis was performed using review manager software. RESULTS Twelve studies (eight cohort and four case-control) were found to be eligible for inclusion. Majority of the studies were of high quality. Dementia was diagnosed based on International Classification of Diseases 9/10 codes in majority of the included studies. PPI use was not associated with the dementia risk, with a pooled relative risk (RR) of 1.05 (95% confidence interval [CI]: 0.96-1.15), P = 0.31. Subgroup analysis based on study design (cohort: P = 0.14; case-control: P = 0.14), sex (RR 1.25 [95% CI: 0.97-1.60], P = 0.08), histamine 2 receptor antagonist blockers (P = 0.93), and Alzheimer's disease (RR 1.00 [95% CI: 0.91-1.09], P = 0.93) revealed no significant association between PPI use and dementia risk. CONCLUSION We found no significant association between PPI use and the risk of dementia or Alzheimer's disease.
Collapse
Affiliation(s)
- Salman Hussain
- Department of Pharmaceutical Medicine (Division of Pharmacology), School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ambrish Singh
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Saima Zameer
- Department of Pharmaceutical Medicine (Division of Pharmacology), School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Chand Jamali
- Department of Health and Medical Sciences, Khawarizmi International College, Abu Dhabi, United Arab Emirates
| | - Harveen Baxi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Syed Obaidur Rahman
- Department of Pharmaceutical Medicine (Division of Pharmacology), School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mahtab Alam
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Altamish
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Avinash Kumar Singh
- Department of Pharmaceutical Medicine (Division of Pharmacology), School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | | | - Md Sarfaraj Hussain
- Institute of Pharmaceutical Sciences, Sanskriti University, Mathura, Uttar Pradesh, India
| | - Adil Ahmad
- Department of Pharmacognosy, Jamia Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
26
|
Im SH, Jung HT, Ho MJ, Lee JE, Kim HT, Kim DY, Lee HC, Choi YS, Kang MJ. Montelukast Nanocrystals for Transdermal Delivery with Improved Chemical Stability. Pharmaceutics 2019; 12:pharmaceutics12010018. [PMID: 31877986 PMCID: PMC7022715 DOI: 10.3390/pharmaceutics12010018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022] Open
Abstract
A novel nanocrystal system of montelukast (MTK) was designed to improve the transdermal delivery, while ensuring chemical stability of the labile compound. MTK nanocrystal suspension was fabricated using acid-base neutralization and ultra-sonication technique and was characterized as follows: approximately 100 nm in size, globular shape, and amorphous state. The embedding of MTK nanocrystals into xanthan gum-based hydrogel caused little changes in the size, shape, and crystalline state of the nanocrystal. The in vitro drug release profile from the nanocrystal hydrogel was comparable to that of the conventional hydrogel because of the rapid dissolution pattern of the drug nanocrystals. The drug degradation under visible exposure (400–800 nm, 600,000 lux·h) was markedly reduced in case of nanocrystal hydrogel, yielding only 30% and 50% amount of cis-isomer and sulfoxide as the major degradation products, as compared to those of drug alkaline solution. Moreover, there was no marked pharmacokinetic difference between the nanocrystal and the conventional hydrogels, exhibiting equivalent extent and rate of drug absorption after topical administration in rats. Therefore, this novel nanocrystal system can be a potent tool for transdermal delivery of MTK in the treatment of chronic asthma or seasonal allergies, with better patient compliance, especially in children and elderly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yong Seok Choi
- Correspondence: (Y.S.C.); (M.J.K.); Tel.: +82-41-550-1439 (Y.S.C); +82-41-550-1446 (M.J.K.)
| | - Myung Joo Kang
- Correspondence: (Y.S.C.); (M.J.K.); Tel.: +82-41-550-1439 (Y.S.C); +82-41-550-1446 (M.J.K.)
| |
Collapse
|