1
|
Cabral-García GA, Cruz-Muñoz JR, Valdez-Morales EE, Barajas-Espinosa A, Liñán-Rico A, Guerrero-Alba R. Pharmacology of P2X Receptors and Their Possible Therapeutic Potential in Obesity and Diabetes. Pharmaceuticals (Basel) 2024; 17:1291. [PMID: 39458933 PMCID: PMC11509955 DOI: 10.3390/ph17101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
The role of P2X ionotropic receptors in the behavior of purinergic signaling on pathophysiological processes has been widely studied. In recent years, the important participation of P2X receptors in physiological and pathological processes, such as energy metabolism, characteristic inflammatory responses of the immune system, and nociceptive activity in response to pain stimuli, has been noted. Here, we explore the molecular characteristics of the P2X receptors and the use of the different agonist and antagonist agents recently described, focusing on their potential as new therapeutic targets in the treatment of diseases with emphasis on obesity, diabetes, and some of the complications derived from these pathologies.
Collapse
Affiliation(s)
- Guillermo A. Cabral-García
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (G.A.C.-G.); (J.R.C.-M.); (E.E.V.-M.)
| | - José R. Cruz-Muñoz
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (G.A.C.-G.); (J.R.C.-M.); (E.E.V.-M.)
| | - Eduardo E. Valdez-Morales
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (G.A.C.-G.); (J.R.C.-M.); (E.E.V.-M.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Ciudad de México 03940, Mexico;
| | - Alma Barajas-Espinosa
- Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes 43000, Hidalgo, Mexico;
| | - Andrómeda Liñán-Rico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Ciudad de México 03940, Mexico;
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (G.A.C.-G.); (J.R.C.-M.); (E.E.V.-M.)
| |
Collapse
|
2
|
Cingolani F, Balasubramaniam A, Srinivasan S. Molecular mechanisms of enteric neuropathies in high-fat diet feeding and diabetes. Neurogastroenterol Motil 2024:e14897. [PMID: 39119749 DOI: 10.1111/nmo.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Obesity and diabetes are associated with altered gastrointestinal function and with the development of abdominal pain, nausea, diarrhea, and constipation among other symptoms. The enteric nervous system (ENS) regulates gastrointestinal motility. Enteric neuropathies defined as damage or loss of enteric neurons can lead to motility disorders. PURPOSE Here, we review the molecular mechanisms that drive enteric neurodegeneration in diabetes and obesity, including signaling pathways leading to neuronal cell death, oxidative stress, and microbiota alteration. We also highlight potential approaches to treat enteric neuropathies including antioxidant therapy to prevent oxidative stress-induced damage and the use of stem cells.
Collapse
Affiliation(s)
- Francesca Cingolani
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| | - Arun Balasubramaniam
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| |
Collapse
|
3
|
Wei C, Fu M, Zhang H, Yao B. How is the P2X7 receptor signaling pathway involved in epileptogenesis? Neurochem Int 2024; 173:105675. [PMID: 38211839 DOI: 10.1016/j.neuint.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Epilepsy, a condition characterized by spontaneous recurrent epileptic seizures, is among the most prevalent neurological disorders. This disorder is estimated to affect approximately 70 million people worldwide. Although antiseizure medications are considered the first-line treatments for epilepsy, most of the available antiepileptic drugs are not effective in nearly one-third of patients. This calls for the development of more effective drugs. Evidence from animal models and epilepsy patients suggests that strategies that interfere with the P2X7 receptor by binding to adenosine triphosphate (ATP) are potential treatments for this patient population. This review describes the role of the P2X7 receptor signaling pathways in epileptogenesis. We highlight the genes, purinergic signaling, Pannexin1, glutamatergic signaling, adenosine kinase, calcium signaling, and inflammatory response factors involved in the process, and conclude with a synopsis of these key connections. By unraveling the intricate interplay between P2X7 receptors and epileptogenesis, this review provides ideas for designing potent clinical therapies that will revolutionize both prevention and treatment for epileptic patients.
Collapse
Affiliation(s)
- Caichuan Wei
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Miaoying Fu
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Haiju Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
4
|
Xu S, Liang S, Pei Y, Wang R, Zhang Y, Xu Y, Huang B, Li H, Li J, Tan B, Cao H, Guo S. TRPV1 Dysfunction Impairs Gastric Nitrergic Neuromuscular Relaxation in High-Fat Diet-Induced Diabetic Gastroparesis Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:548-557. [PMID: 36740184 DOI: 10.1016/j.ajpath.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023]
Abstract
Diabetic gastroparesis (DGP) is characterized by delayed gastric emptying of solid food. Nitrergic neuron-mediated fundus relaxation and intragastric peristalsis are pivotal for gastric emptying and are impaired in DGP. Transient receptor potential vanilloid 1 (TRPV1) ion channels are expressed in gastrointestinal vagal afferent nerves and have a potential role in relevant gastrointestinal disorders. In this study, mice with high-fat diet (HFD)-induced type 2 diabetes mellitus (T2DM), associated with gastroparesis, were used to determine the role of TRPV1 in DGP. After feeding with HFD, mice exhibited obesity, hyperglycemia, insulin resistance, and delayed gastric emptying. Cholinergic- and nitrergic neuron-mediated neuromuscular contractions and relaxation were impaired. The antral tone of the DGP mice was attenuated. Interestingly, activating or suppressing TRPV1 facilitated or inhibited gastric fundus relaxation in normal mice. These effects were neutralized by using a nitric oxide synthase (NOS) inhibitor. Activation or suppression of TRPV1 also increased or reduced NO release. TRPV1 was specifically localized with neuronal NOS in the gastric fundus. These data suggest that TRPV1 activation facilitates gastric fundus relaxation by regulating neuronal NOS and promoting NO release. However, these effects and mechanisms disappeared in mice with DGP induced by HFD diet. TRPV1 expression was only marginally decreased in the fundus of DGP mice. TRPV1 dysfunction may be a potential mechanism underlying the dysfunction of DGP gastric nitrergic neuromuscular relaxation.
Collapse
Affiliation(s)
- Siyuan Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shaochan Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Pei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifei Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bin Huang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Haiwen Li
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Juanjuan Li
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bo Tan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Shaoju Guo
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China.
| |
Collapse
|
5
|
Reichert KP, Castro MFV, Assmann CE, Bottari NB, Miron VV, Cardoso A, Stefanello N, Morsch VMM, Schetinger MRC. Diabetes and hypertension: Pivotal involvement of purinergic signaling. Biomed Pharmacother 2021; 137:111273. [PMID: 33524787 PMCID: PMC7846467 DOI: 10.1016/j.biopha.2021.111273] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/11/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus (DM) and hypertension are highly prevalent worldwide health problems and frequently associated with severe clinical complications, such as diabetic cardiomyopathy, nephropathy, retinopathy, neuropathy, stroke, and cardiac arrhythmia, among others. Despite all existing research results and reasonable speculations, knowledge about the role of purinergic system in individuals with DM and hypertension remains restricted. Purinergic signaling accounts for a complex network of receptors and extracellular enzymes responsible for the recognition and degradation of extracellular nucleotides and adenosine. The main components of this system that will be presented in this review are: P1 and P2 receptors and the enzymatic cascade composed by CD39 (NTPDase; with ATP and ADP as a substrate), CD73 (5'-nucleotidase; with AMP as a substrate), and adenosine deaminase (ADA; with adenosine as a substrate). The purinergic system has recently emerged as a central player in several physiopathological conditions, particularly those linked to inflammatory responses such as diabetes and hypertension. Therefore, the present review focuses on changes in both purinergic P1 and P2 receptor expression as well as the activities of CD39, CD73, and ADA in diabetes and hypertension conditions. It can be postulated that the manipulation of the purinergic axis at different levels can prevent or exacerbate the insurgency and evolution of diabetes and hypertension working as a compensatory mechanism.
Collapse
Affiliation(s)
- Karine Paula Reichert
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Milagros Fanny Vera Castro
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Nathieli Bianchin Bottari
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vanessa Valéria Miron
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Andréia Cardoso
- Academic Coordination, Medicine, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Naiara Stefanello
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Bódi N, Szalai Z, Bagyánszki M. Nitrergic Enteric Neurons in Health and Disease-Focus on Animal Models. Int J Mol Sci 2019; 20:ijms20082003. [PMID: 31022832 PMCID: PMC6515552 DOI: 10.3390/ijms20082003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Nitrergic enteric neurons are key players of the descending inhibitory reflex of intestinal peristalsis, therefore loss or damage of these neurons can contribute to developing gastrointestinal motility disturbances suffered by patients worldwide. There is accumulating evidence that the vulnerability of nitrergic enteric neurons to neuropathy is strictly region-specific and that the two main enteric plexuses display different nitrergic neuronal damage. Alterations both in the proportion of the nitrergic subpopulation and in the total number of enteric neurons suggest that modification of the neurochemical character or neuronal death occurs in the investigated gut segments. This review aims to summarize the gastrointestinal region and/or plexus-dependent pathological changes in the number of nitric oxide synthase (NOS)-containing neurons, the NO release and the cellular and subcellular expression of different NOS isoforms. Additionally, some of the underlying mechanisms associated with the nitrergic pathway in the background of different diseases, e.g., type 1 diabetes, chronic alcoholism, intestinal inflammation or ischaemia, will be discussed.
Collapse
Affiliation(s)
- Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - Zita Szalai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| |
Collapse
|