1
|
Misao T, Fukushima K, Fujino H. Novel anti-cancer effect of 2-arachidonoylglycerol via processing body formation in HCA-7 human colon cancer cells. Prostaglandins Other Lipid Mediat 2024; 174:106861. [PMID: 38876400 DOI: 10.1016/j.prostaglandins.2024.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The endocannabinoid 2-arachidonoylglycerol (2-AG) has been reported to exhibit anticancer effects, including against colorectal cancer (CRC); however, the detailed mechanisms have not been clarified. Herein, we demonstrated that 2-AG suppressed cyclooxygenase-2 (COX-2) expression induced by prostaglandin E2 in human colon cancer HCA-7 cells. The suppression of COX-2 expression by 2-AG was through the acceleration of processing body (P-body) formation followed by COX-2 mRNA degradation. These effects were restored by TAK-715, a specific inhibitor of p38 MAPK. Therefore, the effect of 2-AG on COX-2 may be distinct from conventional non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs inhibit the function of COX-2, whereas 2-AG suppresses the protein expression of COX-2. Recently, the cardiovascular risks of NSAIDs were reported by the Food and Drug Administration in the United States. Therefore, elucidation of the effect of 2-AG is expected to contribute to the development of an alternative and novel therapeutic option that would have no or fewer risks regarding cardiovascular events.
Collapse
Affiliation(s)
- Takaya Misao
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan.
| |
Collapse
|
2
|
Liu G, Tang J, Zhou J, Dong M. Short-chain fatty acids play a positive role in colorectal cancer. Discov Oncol 2024; 15:425. [PMID: 39256239 PMCID: PMC11387572 DOI: 10.1007/s12672-024-01313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Short-chain fatty acids (SCFAs) are produced by bacterial fermentation in the colon and are thought to be protective against gastrointestinal disease. SCFAs such as acetate, propionate and butyrate are important metabolites in the maintenance of intestinal homeostasis and have been shown to be beneficial in colorectal cancer (CRC). SCFAs are responsible for maintaining a normal intestinal barrier and exhibit numerous immunomodulatory functions. In this review article, we will discuss the metabolism and mechanism of action of SCFAs and their effects on the CRC, with particular emphasis on dietary fiber treatment and the clinical research progress.
Collapse
Affiliation(s)
- Gang Liu
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, 110001, Liaoning, China
| | - Jingtong Tang
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, 110001, Liaoning, China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, 110001, Liaoning, China.
| | - Ming Dong
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, 110001, Liaoning, China
| |
Collapse
|
3
|
Shieh C, Thompson HJ, McLaughlin E, Chiang CW, Hussan H. Advancements in Understanding and Preventing Obesity-Related Colon Cancer. Cancer J 2024; 30:357-369. [PMID: 39312456 DOI: 10.1097/ppo.0000000000000744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ABSTRACT Obesity and colorectal cancer are global public health issues, with the prevalence of both conditions increasing over the last 4 decades. In the United States alone, the prevalence of obesity is greater than 40%, and this percentage is projected to increase past 50% by 2030. This review focuses on understanding the association between obesity and the risk of colorectal cancer while also highlighting hypotheses about molecular mechanisms underlying the link between these disease processes. We also consider whether those linkages can be disrupted via weight loss therapies, including lifestyle modifications, pharmacotherapy, bariatric surgery, and endobariatrics.
Collapse
Affiliation(s)
- Christine Shieh
- From the Department of Gastroenterology, University of California, Davis, Sacramento, CA
| | - Henry J Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO
| | | | - Chien-Wei Chiang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH
| | | |
Collapse
|
4
|
Wang LY, He LH, Xu LJ, Li SB. Short-chain fatty acids: bridges between diet, gut microbiota, and health. J Gastroenterol Hepatol 2024; 39:1728-1736. [PMID: 38780349 DOI: 10.1111/jgh.16619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
In recent years, gut microbiota has become a hot topic in the fields of medicine and life sciences. Short-chain fatty acids (SCFAs), the main metabolites of gut microbiota produced by microbial fermentation of dietary fiber, play a vital role in healthy and ill hosts. SCFAs regulate the process of metabolism, immune, and inflammation and have therapeutic effects on gastrointestinal and neurological disorders, as well as antitumor properties. This review summarized the production, distribution, and molecular mechanism of SCFAs, as well as their mechanisms of action in healthy and ill hosts. In addition, we also emphasized the negative effects of SCFAs, aiming to provide the public with a more comprehensive understanding of SCFAs.
Collapse
Affiliation(s)
- Ling-Yun Wang
- Department of Infectious Diseases, Zhoushan Hospital, Zhejiang University, Zhoushan, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Li-Hong He
- College of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li-Jun Xu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shi-Bo Li
- Department of Infectious Diseases, Zhoushan Hospital, Zhejiang University, Zhoushan, China
| |
Collapse
|
5
|
Zhang YW, Wu Y, Liu XF, Chen X, Su JC. Targeting the gut microbiota-related metabolites for osteoporosis: The inextricable connection of gut-bone axis. Ageing Res Rev 2024; 94:102196. [PMID: 38218463 DOI: 10.1016/j.arr.2024.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Osteoporosis is a systemic skeletal disease characterized by decreased bone mass, destruction of bone microstructure, raised bone fragility, and enhanced risk of fractures. The correlation between gut microbiota and bone metabolism has gradually become a widespread research hotspot in recent years, and successive studies have revealed that the alterations of gut microbiota and its-related metabolites are related to the occurrence and progression of osteoporosis. Moreover, several emerging studies on the relationship between gut microbiota-related metabolites and bone metabolism are also underway, and extensive research evidence has indicated an inseparable connection between them. Combined with latest literatures and based on inextricable connection of gut-bone axis, this review is aimed to summarize the relation, potential mechanisms, application strategies, clinical application prospects, and existing challenges of gut microbiota and its-related metabolites on osteoporosis, thus updating the knowledge in this research field and providing certain reference for future researches.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Xiang-Fei Liu
- Department of Orthopaedics, Shanghai Zhongye Hospital, Shanghai 200941, China.
| | - Xiao Chen
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China.
| | - Jia-Can Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Hussan H, McLaughlin E, Chiang C, Marsano JG, Lieberman D. The Risk of Colorectal Polyps after Weight Loss Therapy Versus Obesity: A Propensity-Matched Nationwide Cohort Study. Cancers (Basel) 2023; 15:4820. [PMID: 37835515 PMCID: PMC10571780 DOI: 10.3390/cancers15194820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND A fundamental understanding of the impact of bariatric surgery (BRS) on mechanisms of colorectal carcinogenesis is limited. For instance, studies report a reduced risk of colorectal cancer in females but not in males after BRS. We examined whether this sex-specific difference existed at the earlier polyp development stage. METHODS This retrospective cohort study included 281,417 adults from the 2012-2020 MarketScan database. We compared polyps rates on colonoscopy in four groups: post- vs. pre-BRS (treatment) to post- vs. pre-severe obesity (SO) diagnosis (control). We focused our main analysis on a propensity-matched sample that yielded a balanced distribution of covariates in our four groups (n = 9680 adults, 21.9% males). We also adjusted for important covariates. RESULTS Metabolic syndrome parameters improved after bariatric surgery and worsened after severe obesity diagnosis (p < 0.05). The rate of polyps was 46.7% at a median of 0.5 years pre-BRS and 47.9% at a median of 0.6 years pre-SO diagnosis. The polyps rate was 45.4% at a median (range) of 3.2 (1.0-8.5) years post-BRS. Conversely, 53.8% of adults had polyps at 3.0 (1.0-8.6) years post-SO. There was no change in the risk of colorectal polyps in males or females post- vs. pre-BRS. However, the risk of polyps was higher in males (OR = 1.32, 95% CI: 1.02-1.70) and females (OR = 1.29, 95% CI: 1.13-1.47) post- vs. pre-SO. When compared to the control group (SO), the odds ratios for colorectal polyps were lower for males and females after bariatric surgery (OR = 0.63, 95% CI: 0.44-0.90, and OR = 0.79, 95% CI: 0.66-0.96, respectively). CONCLUSIONS Obesity is associated with an increased risk of colorectal polyps, an effect that is ameliorated after bariatric surgery. These data are relevant for studies investigating colorectal carcinogenesis mechanisms.
Collapse
Affiliation(s)
- Hisham Hussan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA 95616, USA
| | - Eric McLaughlin
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Chienwei Chiang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph G. Marsano
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA 95616, USA
| | - David Lieberman
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
7
|
Shi J, Ma D, Gao S, Long F, Wang X, Pu X, Cannon RD, Han TL. Probiotic Escherichia coli Nissle 1917-derived outer membrane vesicles modulate the intestinal microbiome and host gut-liver metabolome in obese and diabetic mice. Front Microbiol 2023; 14:1219763. [PMID: 37649633 PMCID: PMC10465304 DOI: 10.3389/fmicb.2023.1219763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Obesity and diabetes are common chronic metabolic disorders which can cause an imbalance of the intestinal flora and gut-liver metabolism. Several studies have shown that probiotics, including Escherichia coli Nissle 1917 (EcN), promote microbial balance and metabolic health. However, there are no studies on how EcN outer membrane vesicles (EcN-OMVs) influence the intestinal microflora and affect the metabolic disorders of obesity and diabetes. Methods In this study, we evaluated the effects of EcN-OMVs on high-fat diet (HFD)-induced obesity and HFD + streptozotocin (STZ)-induced diabetes. Results EcN-OMVs could reduce body weight, decrease blood glucose, and increase plasma insulin in obese mice. Similarly, EcN-OMVs treatment could modify the ratio of Firmicutes/Bacteroidetes in the gut, elevate intestinal short-chain fatty acid (SCFA)-producing flora, and influence the SCFA content of the intestine. Furthermore, the intestinal metabolites ornithine and fumaric acid, hepatic ω-6 unsaturated fatty acids, and SCFAs were significantly increased after administering EcN-OMVs. Discussion Overall, this study showed that EcN-OMVs might act as post-biotic agents that could modulate gut-liver metabolism and ameliorate the pathophysiology of obesity and diabetes.
Collapse
Affiliation(s)
- Jun Shi
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - DongXue Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - ShanHu Gao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Fei Long
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xin Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - XingYu Pu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Richard D. Cannon
- Department of Oral Sciences, Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Ting-Li Han
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Dong Y, Zhang K, Wei J, Ding Y, Wang X, Hou H, Wu J, Liu T, Wang B, Cao H. Gut microbiota-derived short-chain fatty acids regulate gastrointestinal tumor immunity: a novel therapeutic strategy? Front Immunol 2023; 14:1158200. [PMID: 37122756 PMCID: PMC10140337 DOI: 10.3389/fimmu.2023.1158200] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Tumor immune microenvironment (TIME), a tumor-derived immune component, is proven to be closely related to the development, metastasis, and recurrence of tumors. Gut microbiota and its fermented-metabolites short-chain fatty acids (SCFAs) play a critical role in maintaining the immune homeostasis of gastrointestinal tumors. Consisting mainly of acetate, propionate, and butyrate, SCFAs can interact with G protein-coupled receptors 43 of T helper 1 cell or restrain histone deacetylases (HDACs) of cytotoxic T lymphocytes to exert immunotherapy effects. Studies have shed light on SCFAs can mediate the differentiation and function of regulatory T cells, as well as cytokine production in TIME. Additionally, SCFAs can alter epigenetic modification of CD8+ T cells by inhibiting HDACs to participate in the immune response process. In gastrointestinal tumors, the abundance of SCFAs and their producing bacteria is significantly reduced. Direct supplementation of dietary fiber and probiotics, or fecal microbiota transplantation to change the structure of gut microbiota can both increase the level of SCFAs and inhibit tumor development. The mechanism by which SCFAs modulate the progression of gastrointestinal tumors has been elucidated in this review, aiming to provide prospects for the development of novel immunotherapeutic strategies.
Collapse
|
9
|
You H, Tan Y, Yu D, Qiu S, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. The Therapeutic Effect of SCFA-Mediated Regulation of the Intestinal Environment on Obesity. Front Nutr 2022; 9:886902. [PMID: 35662937 PMCID: PMC9157426 DOI: 10.3389/fnut.2022.886902] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal environment disorder is a potential pathological mechanism of obesity. There is increasing evidence that disorders in the homeostasis of the intestinal environment can affect various metabolic organs, such as fat and liver, and lead to metabolic diseases. However, there are few therapeutic approaches for obesity targeting the intestinal environment. In this review, on the one hand, we discuss how intestinal microbial metabolites SCFA regulate intestinal function to improve obesity and the possible mechanisms and pathways related to obesity-related pathological processes (depending on SCFA-related receptors such as GPCRs, MCT and SMCT, and through epigenetic processes). On the other hand, we discuss dietary management strategies to enrich SCFA-producing bacteria and target specific SCFA-producing bacteria and whether fecal bacteria transplantation therapy to restore the composition of the gut microbiota to regulate SCFA can help prevent or improve obesity. Finally, we believe that it will be of great significance to establish a working model of gut– SCFA– metabolic disease development in the future for the improvement this human health concern.
Collapse
Affiliation(s)
- Huimin You
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dawei Yu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
10
|
Kitagawa K, Hamaguchi A, Fukushima K, Nakano Y, Regan JW, Mashimo M, Fujino H. Down-regulation of the expression of cyclooxygenase-2 and prostaglandin E 2 by interleukin-4 is mediated via a reduction in the expression of prostanoid EP4 receptors in HCA-7 human colon cancer cells. Eur J Pharmacol 2022; 920:174863. [PMID: 35240193 DOI: 10.1016/j.ejphar.2022.174863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/17/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022]
Abstract
Chronic inflammatory bowel disease (IBD), which is characterized by prolonged inflammation of the gastrointestinal tract is associated with an increased risk of colorectal cancer. Recent studies revealed that the pathology of IBD is caused by hyperactivated immune responses mediated by differentiated CD4+ naïve helper T cells, such as Th1 and Th17 cells, but not Th2 cells. The human E-type prostanoid 4 (EP4) receptor and its pathways have also been implicated in and/or associated with the early developmental stages of colorectal cancer along with increases in the levels of prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2), the hallmarks of colorectal carcinogenesis. In the present study, using an in silico analysis and pharmacological experiments, we demonstrated that interleukin (IL)-4, a signature cytokine of Th2 cells, down-regulated the expression of COX-2 and PGE2 in the human colon cancer cell line, HCA-7. This result may be attributed to a reduction in the expression of prostanoid EP4 receptors through the induction of hypoxia inducible factor-1α via the interleukin-4 receptor-stimulated activation of signal transducer and activator of transcription 6. However, another major Th2 cytokine IL-13 had no effect on the expression of COX-2 or prostanoid EP4 receptors in HCA-7 cells. Therefore, instead of the hyperactivation of Th1/Th17 cells, the deactivation/down-regulation of Th2 cells followed by a decrease in the production of IL-4 in IBD may play a role in the cancerous transformation of cells, at least in prostanoid EP4 receptor-overactivated tumorigenesis.
Collapse
Affiliation(s)
- Kana Kitagawa
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Ayaka Hamaguchi
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Yuki Nakano
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - John W Regan
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721-0207, USA
| | - Masato Mashimo
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, 610-0311, Japan
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan.
| |
Collapse
|
11
|
Fukushima K, Senoo K, Kurata N, Regan JW, Fujino H. The Gαs‐protein‐mediated pathway may be steadily stimulated by prostanoid EP2 receptors, but not by EP4 receptors. FEBS Open Bio 2022; 12:775-783. [PMID: 35124898 PMCID: PMC8972045 DOI: 10.1002/2211-5463.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 11/11/2022] Open
Abstract
EP2 and EP4 prostanoid receptors have long been considered to have similar roles, since they are known to couple with Gαs‐protein and activate cAMP‐mediated signaling pathways. In this study, we re‐evaluated the results of cAMP assays with or without phosphodiesterase (PDE) inhibitor pretreatment. Here, we show that in the absence of PDE inhibitor pretreatment, prostaglandin E2 causes accumulation of cAMP in EP2 receptors, whereas markedly low levels of cAMP accumulated in EP4 receptors. By applying the Black/Leff operational model calculation, we found that EP2 receptors have a biased ability to intrinsically activate the Gαs‐protein‐mediated pathway, whereas EP4 receptors have strong biased activity for the Gαi‐protein‐mediated pathway. Thus, EP2 and EP4 receptors may not be similar Gαs‐coupled receptors but instead substantially different receptors with distinct roles.
Collapse
Affiliation(s)
- Keijo Fukushima
- Department of Pharmacology for Life Sciences Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences Tokushima University Tokushima 770‐8505 Japan
| | - Kanaho Senoo
- Department of Pharmacology for Life Sciences Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences Tokushima University Tokushima 770‐8505 Japan
| | - Naoki Kurata
- Department of Pharmacology for Life Sciences Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences Tokushima University Tokushima 770‐8505 Japan
- Laboratory of Chemical Pharmacology Graduate School of Pharmaceutical Sciences Chiba University 1‐8‐1 Inohana, Chuo‐ku Chiba 260‐8675 Japan
| | - John W. Regan
- Department of Pharmacology & Toxicology College of Pharmacy The University of Arizona Tucson AZ 85721‐0207 USA
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences Tokushima University Tokushima 770‐8505 Japan
| |
Collapse
|
12
|
Wen C, Li S, Wang J, Zhu Y, Zong X, Wang Y, Jin M. Heat Stress Alters the Intestinal Microbiota and Metabolomic Profiles in Mice. Front Microbiol 2021; 12:706772. [PMID: 34512584 PMCID: PMC8430895 DOI: 10.3389/fmicb.2021.706772] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background Heat stress has negative effects on the intestinal health of humans and animals. However, the impact of heat stress on intestinal microbial and metabolic changes remains elusive. Here, we investigated the cecal microbial and metabolic profiles in mice in response to heat stress. Methods The mouse heat stress model was constructed by simulating a high-temperature environment. Twenty mice were randomly assigned to two groups, the control group (CON, 25°C) and the heat treatment group (HS, 40°C from 13:00 to 15:00 every day for 7 days). Serum and cecal contents were collected from the mice for serum biochemical analysis, 16S rRNA high-throughput sequencing, and non-targeted metabolomics. Results Both core body temperature and water intake were significantly increased in the HS group. Serum biochemical indicators were also affected, including significantly increased triglyceride and decreased low-density lipoprotein in the heat stress group. The composition and structure of intestinal microbiota were remarkably altered in the HS group. At the species level, the relative abundance of Candidatus Arthromitus sp. SFB-mouse-Japan and Lactobacillus murinus significantly reduced, while that of Lachnospiraceae bacterium 3-1 obviously increased after HS. Metabolomic analysis of the cecal contents clearly distinguished metabolite changes between the groups. The significantly different metabolites identified were mainly involved in the fatty acid synthesis, purine metabolism, fatty acid metabolism, cyanoamino acid metabolism, glyceride metabolism, and plasmalogen synthesis. Conclusion In summary, high temperature disrupted the homeostatic balance of the intestinal microbiota in mice and also induced significant alterations in intestinal metabolites. This study provides a basis for treating intestinal disorders caused by elevated temperature in humans and animals and can further formulate nutritional countermeasures to reduce heat stress-induced damage.
Collapse
Affiliation(s)
- Chaoyue Wen
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Siyu Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jiaojiao Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yimin Zhu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xin Zong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mingliang Jin
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China.,School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
13
|
Roles of interstitial fluid pH and weak organic acids in development and amelioration of insulin resistance. Biochem Soc Trans 2021; 49:715-726. [PMID: 33769491 DOI: 10.1042/bst20200667] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common lifestyle-related diseases (metabolic disorders) due to hyperphagia and/or hypokinesia. Hyperglycemia is the most well-known symptom occurring in T2DM patients. Insulin resistance is also one of the most important symptoms, however, it is still unclear how insulin resistance develops in T2DM. Detailed understanding of the pathogenesis primarily causing insulin resistance is essential for developing new therapies for T2DM. Insulin receptors are located at the plasma membrane of the insulin-targeted cells such as myocytes, adipocytes, etc., and insulin binds to the extracellular site of its receptor facing the interstitial fluid. Thus, changes in interstitial fluid microenvironments, specially pH, affect the insulin-binding affinity to its receptor. The most well-known clinical condition regarding pH is systemic acidosis (arterial blood pH < 7.35) frequently observed in severe T2DM associated with insulin resistance. Because the insulin-binding site of its receptor faces the interstitial fluid, we should recognize the interstitial fluid pH value, one of the most important factors influencing the insulin-binding affinity. It is notable that the interstitial fluid pH is unstable compared with the arterial blood pH even under conditions that the arterial blood pH stays within the normal range, 7.35-7.45. This review article introduces molecular mechanisms on unstable interstitial fluid pH value influencing the insulin action via changes in insulin-binding affinity and ameliorating actions of weak organic acids on insulin resistance via their characteristics as bases after absorption into the body even with sour taste at the tongue.
Collapse
|
14
|
Abbasi A, Rad AH, Ghasempour Z, Sabahi S, Kafil HS, Hasannezhad P, Rahbar Saadat Y, Shahbazi N. The biological activities of postbiotics in gastrointestinal disorders. Crit Rev Food Sci Nutr 2021; 62:5983-6004. [PMID: 33715539 DOI: 10.1080/10408398.2021.1895061] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
According to outcomes from clinical studies, an intricate relationship occurs between the beneficial microbiota, gut homeostasis, and the host's health status. Numerous studies have confirmed the health-promoting effects of probiotics, particularly in gastrointestinal diseases. On the other hand, the safety issues regarding the consumption of some probiotics are still a matter of debate, thus to overcome the problems related to the application of live probiotic cells in terms of clinical, technological, and economic aspects, microbial-derived biomolecules (postbiotics) were introducing as a potential alternative agent. Presently scientific literature confirms that the postbiotic components can be used as promising tools for both prevention and treatment strategies in gastrointestinal disorders with less undesirable side-effects, particularly in infants and children. Future head-to-head trials are required to distinguish appropriate strains of parent cells, optimal dosages of postbiotics, and assessment of the cost-effectiveness of postbiotics compared to alternative drugs. This review provides an overview of the concept and safety issues regarding postbiotics, with emphasis on their biological role in the treatment of some important gastrointestinal disorders.
Collapse
Affiliation(s)
- Amin Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Ghasempour
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Sabahi
- Department of Nutritional Sciences, School of Paramedical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paniz Hasannezhad
- Department of Medical Engineering Science, University College of Rouzbahan, Sari, Iran
| | - Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nayyer Shahbazi
- Faculty of Agriculture Engineering, Department of Food Science, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
15
|
Homayouni Rad A, Aghebati Maleki L, Samadi Kafil H, Fathi Zavoshti H, Abbasi A. Postbiotics as Promising Tools for Cancer Adjuvant Therapy. Adv Pharm Bull 2020; 11:1-5. [PMID: 33747846 PMCID: PMC7961229 DOI: 10.34172/apb.2021.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/15/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
As many investigations have reported, there is a complicated relation between fermented foods, lactic acid bacteria (LAB), and human health. It seems that bioactive components such as prebiotics, probiotics, and postbiotics are key mediators of the complex and direct association between these factors. LAB activity in the matrix of fermented foods and improving their growth by prebiotic compounds ultimately results in the production of bioactive molecules (postbiotics), which possess specific biological and physiological properties. The term "postbiotics" refers to a complex of biological micro- and macromolecules, if consumed in adequate amounts, provides the host with different health-promoting effects. Different reports have suggested that postbiotics possess the ability to moderate the effectiveness of cancer treatment and reduce the side-effects of conventional therapies in cancer patients due to their anti-proliferative, anti-inflammatory and anti-cancer properties. Consequently, postbiotics, for their unique characteristics, have gained great scientific attention and are considered as a novel approach for adjuvant therapy in patients with cancer.
Collapse
Affiliation(s)
- Aziz Homayouni Rad
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamideh Fathi Zavoshti
- Department of Food Hygiene and Aquatics, Faculty of Veterinary Medicine, Tabriz University, Tabriz, Iran
| | - Amin Abbasi
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Chang SC, Shen MH, Liu CY, Pu CM, Hu JM, Huang CJ. A gut butyrate-producing bacterium Butyricicoccus pullicaecorum regulates short-chain fatty acid transporter and receptor to reduce the progression of 1,2-dimethylhydrazine-associated colorectal cancer. Oncol Lett 2020; 20:327. [PMID: 33101496 PMCID: PMC7577080 DOI: 10.3892/ol.2020.12190] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Gut microbes influence tumor development and progression in the intestines and may provide a novel paradigm for the treatment of colorectal cancer (CRC). Gut dysbiosis may be associated with the development and progression of CRC. Identifying the interactions between the colonic tract and gut microbiota may provide novel information relevant to CRC prevention. The present study examined the effects of butyrate-producing Butyricicoccus pullicaecorum (B. pullicaecorum) on mice with 1,2-dimethylhydrazine (DMH)-induced CRC and the microbial metabolite of B. pullicaecorum on CRC cells. Immunohistochemical staining of the mouse colon tissues and reverse transcription PCR of CRC cells were used to determine the protein and mRNA expression levels of the short-chain fatty acid (SCFA) transporter solute carrier family 5 member 8 (SLC5A8) and G-protein-coupled receptor 43 (GPR43). In CRC-bearing mice fed B. pullicaecorum, DMH-induced CRC regressed, body weight increased and serum carcinoembryonic antigen levels decreased. Notably, SLC5A8 and GPR43 were diffusely and moderately to strongly expressed in the neoplastic epithelial cells and underlying muscularis propria in the colons of the mice. In conclusion, administration of B. pullicaecorum or its metabolites improved the clinical outcome of CRC by activating the SCFA transporter and/or receptor. These results indicated that B. pullicaecorum was a probiotic with anti-CRC potential.
Collapse
Affiliation(s)
- Shih-Chang Chang
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Ming-Hung Shen
- Department of Surgery, Fu Jen Catholic University Hospital, New Taipei City 24352, Taiwan, R.O.C.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Chih-Yi Liu
- Department of Pathology, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan, R.O.C
| | - Chi-Ming Pu
- Division of Plastic Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Je-Ming Hu
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, Taipei 11490, Taiwan, R.O.C.,School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C
| | - Chi-Jung Huang
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C.,Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| |
Collapse
|
17
|
Rad AH, Aghebati-Maleki L, Kafil HS, Abbasi A. Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit Rev Food Sci Nutr 2020; 61:1787-1803. [PMID: 32410512 DOI: 10.1080/10408398.2020.1765310] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The occurrence of colorectal cancer (CRC) has been rising expeditiously and anticipated that 2.4 million new occasions of CRC will be detected yearly around the world until the year 2035. Due to some side-effects and complications of conventional CRC therapies, bioactive components such as microbial-derived biomolecules (postbiotics) have been attaining great significance by researchers for adjuvant therapy in CRC patients. The term 'postbiotics' encompasses an extensive range of complex micro- and macro-molecules (<50, 50-100, and 100< kDa) such as inactivated microbial cells, cell fractions or metabolites, which confer various physiological health benefits to the host when administered in adequate amounts. Postbiotics modulate the composition of the gut microbiota and the functionality of the immune system, as well as promote the CRC treatment effectiveness and reduces its side-effects in CRC patients due to possessing anti-oxidant, anti-proliferative, anti-inflammatory, and anti-cancer activities. Presently scientific literature confirms that postbiotics with their unique characteristics in terms of clinical (safe origin), technological (stability), and economic (low production costs) aspects can be used as promising tools for both prevent and adjuvant treat strategies in CRC patients without any serious undesirable side-effects. This review provides an overview of the concept and safety issues regarding postbiotics, with emphasis on their biological role in the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's research committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Feng S, Pan J, Li C, Zheng Y. Folic acid-conjugated nitrogen-doped graphene quantum dots as a fluorescent diagnostic material for MCF-7 cells. NANOTECHNOLOGY 2020; 31:135701. [PMID: 31810072 DOI: 10.1088/1361-6528/ab5f7f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This paper reports the preparation and application of folic acid-conjugated nitrogen-doped graphene quantum dots (N-GQDs) as a fluorescent diagnostic material for MCF-7 cells of breast cancer. N-GQDs were prepared by a hydrothermal method using citric acid as the carbon source and diethylamine as the nitrogen source. The doping of different amounts of nitrogen content was effectively controlled by diethylamine. As the amount of nitrogen increased, more binding sites on the N-GQDs were supplied to the folic acid. Laser confocal scanning microscopy showed that increased folic acid binding facilitated the recognition of and entry to cancer cells, which made the labeled cells emit a stronger fluorescence and thus the cancer cells could be better detected. Cytotoxicity tests showed that the material was of low cytotoxicity, making it a promising prospect for fluorescent probes.
Collapse
Affiliation(s)
- Shixuan Feng
- Department of Physics and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | | | | | | |
Collapse
|
19
|
Huang C, Shi G. Smoking and microbiome in oral, airway, gut and some systemic diseases. J Transl Med 2019; 17:225. [PMID: 31307469 PMCID: PMC6632217 DOI: 10.1186/s12967-019-1971-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022] Open
Abstract
The human microbiome harbors a diverse array of microbes which establishes a mutually beneficial relation with the host in healthy conditions, however, the dynamic homeostasis is influenced by both host and environmental factors. Smoking contributes to modifications of the oral, lung and gut microbiome, leading to various diseases, such as periodontitis, asthma, chronic obstructive pulmonary disease, Crohn’s disease, ulcerative colitis and cancers. However, the exact causal relationship between smoking and microbiome alteration remains to be further explored.
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China. .,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|