1
|
Li Z, Hu F, Xiong L, Zhou X, Dong C, Zheng Y. Underlying mechanisms of traditional Chinese medicine in the prevention and treatment of diabetic retinopathy: Evidences from molecular and clinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118641. [PMID: 39084273 DOI: 10.1016/j.jep.2024.118641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
As one of the most serious microvascular complications of diabetes mellitus (DM), diabetic retinopathy (DR) can cause visual impairment and even blindness. With the rapid increase in the prevalence of DM, the incidence of DR is also rising year by year. Preventing and effectively treating DR has become a major focus in the medical field. Traditional Chinese medicine (TCM) has a wealth of experience in treating DR and has achieved significant results with various herbs and TCM prescriptions. Traditional Chinese Medicine (TCM) provides a comprehensive therapeutic strategy for diabetic retinopathy (DR), encompassing anti-inflammatory and antioxidant actions, anti-neovascularization, neuroprotection, regulation of glucose metabolism, and inhibition of apoptosis. This review provides an overview of the current status of TCM treatment for DR in recent years, including experimental studies and clinical researches, to explore the clinical efficacy and the underlying modern mechanisms of herbs and TCM prescriptions. Besides, we also discussed the challenges TCM faces in treating DR, such as drug-drug interactions among TCM components and the lack of high-quality evidence-based medicine practice, which pose significant obstacles to TCM's application in DR.
Collapse
Affiliation(s)
- Zhengpin Li
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Faquan Hu
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Liyuan Xiong
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Xuemei Zhou
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Changwu Dong
- The Second Clinical Medical School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yujiao Zheng
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China.
| |
Collapse
|
2
|
Ren Y, Liang H, Xie M, Zhang M. Natural plant medications for the treatment of retinal diseases: The blood-retinal barrier as a clue. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155568. [PMID: 38795692 DOI: 10.1016/j.phymed.2024.155568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Retinal diseases significantly contribute to the global burden of visual impairment and blindness. The occurrence of retinal diseases is often accompanied by destruction of the blood‒retinal barrier, a vital physiological structure responsible for maintaining the stability of the retinal microenvironment. However, detailed summaries of the factors damage the blood‒retinal barrier and treatment methods involving natural plant medications are lacking. PURPOSE To comprehensively summarize and analyze the protective effects of active substances in natural plant medications on damage to the blood-retina barrier that occurs when retinal illnesses, particularly diabetic retinopathy, and examine their medicinal value and future development prospects. METHODS In this study, we searched for studies published in the ScienceDirect, PubMed, and Web of Science databases. The keywords used included natural plant medications, plants, natural herbs, blood retinal barrier, retinal diseases, diabetic retinopathy, age-related macular degeneration, and uveitis. Chinese herbal compound articles, non-English articles, warning journals, and duplicates were excluded from the analysis. RESULTS The blood‒retinal barrier is susceptible to high glucose, aging, immune responses, and other factors that destroy retinal homeostasis, resulting in pathological changes such as apoptosis and increased vascular permeability. Existing studies have shown that the active compounds or extracts of many natural plants have the effect of repairing blood-retinal barrier dysfunction. Notably, berberine, puerarin, and Lycium barbarum polysaccharides exhibited remarkable therapeutic effects. Additionally, curcumin, astragaloside IV, hesperidin, resveratrol, ginsenoside Rb1, luteolin, and Panax notoginseng saponins can effectively protect the blood‒retinal barrier by interfering with distinct pathways. The active ingredients found in natural plant medications primarily repair the blood‒retinal barrier by modulating pathological factors such as oxidative stress, inflammation, pyroptosis, and autophagy, thereby alleviating retinal diseases. CONCLUSION This review summarizes a series of plant extracts and plant active compounds that can treat retinal diseases by preventing and treating blood‒retinal barrier damage and provides reference for the research of new drugs for treating retinal diseases.
Collapse
Affiliation(s)
- Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Mengjun Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
3
|
Liang H, Ren Y, Huang Y, Xie X, Zhang M. Treatment of diabetic retinopathy with herbs for tonifying kidney and activating blood circulation: A review of pharmacological studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118078. [PMID: 38513781 DOI: 10.1016/j.jep.2024.118078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes. Chinese medicine believes that kidney deficiency and blood stasis are significant pathogenesis of DR. A characteristic therapeutic approach for this pathogenesis is the kidney-tonifying and blood-activating method. By literature retrieval from several databases, we methodically summarized the commonly used kidney-tonifying and blood-activating herbs for treating DR, including Lycii Fructus, Rehmanniane Radix Praeparata, and Corni Fructus with the function of nourishing kidney; Salvia Miltiorrhizae Radix et Rhizoma with the function of enhancing blood circulation; Rehmanniae Radix with the function of nourishing kidney yin; and Astragali Radix with the function of tonifying qi. It has been demonstrated that these Chinese herbs described above, by tonifying the kidney and activating blood circulation, significantly improve the course of DR. AIM OF THE STUDY Through literature research, to gain a thorough comprehension of the pathogenesis of DR. Simultaneously, through the traditional application analysis, modern pharmacology research and network pharmacology analysis of kidney-tonifying and blood-activating herbs, to review the effectiveness and advantages of kidney-tonifying and blood-activating herbs in treating DR comprehensively. MATERIALS AND METHODS PubMed, the China National Knowledge Infrastructure (CNKI), and Wanfang Data were used to filter the most popular herbs for tonifying kidney and activating blood in the treatment of DR. The search terms were "diabetic retinopathy" and "tonifying kidney and activating blood". Mostly from 2000 to 2023. Network pharmacology was applied to examine the key active components and forecast the mechanisms of kidney-tonifying and blood-activating herbs in the treatment of DR. RESULTS Kidney deficiency and blood stasis are the pathogenesis of DR, and the pathogenesis is linked to oxidative stress, inflammation, hypoxia, and hyperglycemia. Scientific data and network pharmacology analysis have demonstrated the benefit of tonifying kidney and activating blood herbs in treating DR through several channels, multiple components, and multiple targets. CONCLUSIONS This review first presents useful information for subsequent research into the material foundation and pharmacodynamics of herbs for tonifying kidney and activating blood, and offers fresh insights into the treatment of DR.
Collapse
Affiliation(s)
- Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxia Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Lin QR, Jia LQ, Lei M, Gao D, Zhang N, Sha L, Liu XH, Liu YD. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatment of diabetes and its complications: An update since 2010. Pharmacol Res 2024; 200:107054. [PMID: 38181858 DOI: 10.1016/j.phrs.2023.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Diabetes, characterized as a well-known chronic metabolic syndrome, with its associated complications pose a substantial and escalating health and healthcare challenge on a global scale. Current strategies addressing diabetes are mainly symptomatic and there are fewer available curative pharmaceuticals for diabetic complications. Thus, there is an urgent need to identify novel pharmacological targets and agents. The impaired mitochondria have been associated with the etiology of diabetes and its complications, and the intervention of mitochondrial dysfunction represents an attractive breakthrough point for the treatments of diabetes and its complications. Natural products (NPs), with multicenter characteristics, multi-pharmacological activities and lower toxicity, have been caught attentions as the modulators of mitochondrial functions in the therapeutical filed of diabetes and its complications. This review mainly summarizes the recent progresses on the potential of 39 NPs and 2 plant-extracted mixtures to improve mitochondrial dysfunction against diabetes and its complications. It is expected that this work may be useful to accelerate the development of innovative drugs originated from NPs and improve upcoming therapeutics in diabetes and its complications.
Collapse
Affiliation(s)
- Qian-Ru Lin
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lian-Qun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 116600, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Di Gao
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xu-Han Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China.
| | - Yu-Dan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
5
|
Wang S, Zhao H, Lin S, Lv Y, Lin Y, Liu Y, Peng R, Jin H. New therapeutic directions in type II diabetes and its complications: mitochondrial dynamics. Front Endocrinol (Lausanne) 2023; 14:1230168. [PMID: 37670891 PMCID: PMC10475949 DOI: 10.3389/fendo.2023.1230168] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
As important organelles of energetic and metabolism, changes in the dynamic state of mitochondria affect the homeostasis of cellular metabolism. Mitochondrial dynamics include mitochondrial fusion and mitochondrial fission. The former is coordinated by mitofusin-1 (Mfn1), mitofusin-2 (Mfn2), and optic atrophy 1 (Opa1), and the latter is mediated by dynamin related protein 1 (Drp1), mitochondrial fission 1 (Fis1) and mitochondrial fission factor (MFF). Mitochondrial fusion and fission are generally in dynamic balance and this balance is important to preserve the proper mitochondrial morphology, function and distribution. Diabetic conditions lead to disturbances in mitochondrial dynamics, which in return causes a series of abnormalities in metabolism, including decreased bioenergy production, excessive production of reactive oxygen species (ROS), defective mitophagy and apoptosis, which are ultimately closely linked to multiple chronic complications of diabetes. Multiple researches have shown that the incidence of diabetic complications is connected with increased mitochondrial fission, for example, there is an excessive mitochondrial fission and impaired mitochondrial fusion in diabetic cardiomyocytes, and that the development of cardiac dysfunction induced by diabetes can be attenuated by inhibiting mitochondrial fission. Therefore, targeting the restoration of mitochondrial dynamics would be a promising therapeutic target within type II diabetes (T2D) and its complications. The molecular approaches to mitochondrial dynamics, their impairment in the context of T2D and its complications, and pharmacological approaches targeting mitochondrial dynamics are discussed in this review and promise benefits for the therapy of T2D and its comorbidities.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Suxian Lin
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yang Lv
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yue Lin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Huanzhi Jin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| |
Collapse
|
6
|
Sekar P, Hsiao G, Hsu SH, Huang DY, Lin WW, Chan CM. Metformin inhibits methylglyoxal-induced retinal pigment epithelial cell death and retinopathy via AMPK-dependent mechanisms: Reversing mitochondrial dysfunction and upregulating glyoxalase 1. Redox Biol 2023; 64:102786. [PMID: 37348156 PMCID: PMC10363482 DOI: 10.1016/j.redox.2023.102786] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Diabetic retinopathy (DR) is a major cause of blindness in adult, and the accumulation of advanced glycation end products (AGEs) is a major pathologic event in DR. Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is a precursor of AGEs. Although the therapeutic potential of metformin for retinopathy disorders has recently been elucidated, possibly through AMPK activation, it remains unknown how metformin directly affects the MGO-induced stress response in retinal pigment epithelial cells. Therefore, in this study, we compared the effects of metformin and the AMPK activator A769662 on MGO-induced DR in mice, as well as evaluated cytotoxicity, mitochondrial dynamic changes and dysfunction in ARPE-19 cells. We found MGO can induce mitochondrial ROS production and mitochondrial membrane potential loss, but reduce cytosolic ROS level in ARPE-19 cells. Although these effects of MGO can be reversed by both metformin and A769662, we demonstrated that reduction of mitochondrial ROS production rather than restoration of cytosolic ROS level contributes to cell protective effects of metformin and A769662. Moreover, MGO inhibits AMPK activity, reduces LC3II accumulation, and suppresses protein and gene expressions of MFN1, PGC-1α and TFAM, leading to mitochondrial fission, inhibition of mitochondrial biogenesis and autophagy. In contrast, these events of MGO were reversed by metformin in an AMPK-dependent manner as evidenced by the effects of compound C and AMPK silencing. In addition, we observed an AMPK-dependent upregulation of glyoxalase 1, a ubiquitous cellular enzyme that participates in the detoxification of MGO. In intravitreal drug-treated mice, we found that AMPK activators can reverse the MGO-induced cotton wool spots, macular edema and retinal damage. Functional, histological and optical coherence tomography analysis support the protective actions of both agents against MGO-elicited retinal damage. Metformin and A769662 via AMPK activation exert a strong protection against MGO-induced retinal pigment epithelial cell death and retinopathy. Therefore, metformin and AMPK activator can be therapeutic agents for DR.
Collapse
Affiliation(s)
- Ponarulselvam Sekar
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Shu-Hao Hsu
- Medical Research Center, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan.
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
7
|
Wu Y, Zou H. Research Progress on Mitochondrial Dysfunction in Diabetic Retinopathy. Antioxidants (Basel) 2022; 11:2250. [PMID: 36421435 PMCID: PMC9686704 DOI: 10.3390/antiox11112250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 09/07/2023] Open
Abstract
Diabetic Retinopathy (DR) is one of the most important microvascular complications of diabetes mellitus, which can lead to blindness in severe cases. Mitochondria are energy-producing organelles in eukaryotic cells, which participate in metabolism and signal transduction, and regulate cell growth, differentiation, aging, and death. Metabolic changes of retinal cells and epigenetic changes of mitochondria-related genes under high glucose can lead to mitochondrial dysfunction and induce mitochondrial pathway apoptosis. In addition, mitophagy and mitochondrial dynamics also change adaptively. These mechanisms may be related to the occurrence and progression of DR, and also provide valuable clues for the prevention and treatment of DR. This article reviews the mechanism of DR induced by mitochondrial dysfunction, and the prospects for related treatment.
Collapse
Affiliation(s)
- Yiwei Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
8
|
Liu D, Cheng Y, Tang Z, Chen J, Xia Y, Xu C, Cao X. Potential mechanisms of methylglyoxal-induced human embryonic kidney cells damage: Regulation of oxidative stress, DNA damage, and apoptosis. Chem Biodivers 2021; 19:e202100829. [PMID: 34962083 DOI: 10.1002/cbdv.202100829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/27/2021] [Indexed: 11/09/2022]
Abstract
Methylglyoxal (MGO) is a reactive carbonyl species that can cause cellular damage and is closely related to kidney disease, especially diabetic nephropathy. The toxic effect of MGO (0.5, 1, and 2 mM) on human embryonic kidney (HEK293) cells and its underlying mechanism were explored in this study. Cell viability, apoptosis and the signaling pathways were measured with MTT, fluorescent staining and western blot experiments, the results showed that MGO could induce oxidative stress and cell inflammation, the level of reactive oxygen species (ROS) increased, and p38MAPK, JNK and NF-κB signaling pathways were activated. Meanwhile, MGO also induced DNA damage. The expression of DNA oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) increased, the expression of double-strand break marker γH2AX increased significantly, and ATM/Chk2/p53 DNA damage response signaling pathway was activated. Furthermore, the expression of the receptor for advanced glycation end products (RAGE) also increased. Finally, mitochondrial membrane potential (MMP) decreased, fluorescence intensity of Hoechst33258 increased, and the protein expression ratio of Bax/Bcl-2 increased significantly after the treatment of MGO. These results demonstrated that MGO might induce HEK293 cells damage by regulating oxidative stress, inflammation, DNA damage, and cell apoptosis, which revealed the specific mechanism of MGO-induced damage to HEK293 cells.
Collapse
Affiliation(s)
- Dan Liu
- Liaoning University, School of life science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Ye Cheng
- Liaoning University, School of life science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Zhipeng Tang
- Liaoning University, School of life science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Junliang Chen
- Liaoning University, School of life science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Ying Xia
- Liaoning University, School of life science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Chengbin Xu
- Liaoning University, School of environment science, 66 Chongshan Road, Huanggu District, Shenyang, CHINA
| | - Xiangyu Cao
- Liaoning University, School of Life Science, 66 Chongshan Road, Huanggu District, 110036, Shenyang, CHINA
| |
Collapse
|
9
|
The Glyoxalase System in Age-Related Diseases: Nutritional Intervention as Anti-Ageing Strategy. Cells 2021; 10:cells10081852. [PMID: 34440621 PMCID: PMC8393707 DOI: 10.3390/cells10081852] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022] Open
Abstract
The glyoxalase system is critical for the detoxification of advanced glycation end-products (AGEs). AGEs are toxic compounds resulting from the non-enzymatic modification of biomolecules by sugars or their metabolites through a process called glycation. AGEs have adverse effects on many tissues, playing a pathogenic role in the progression of molecular and cellular aging. Due to the age-related decline in different anti-AGE mechanisms, including detoxifying mechanisms and proteolytic capacities, glycated biomolecules are accumulated during normal aging in our body in a tissue-dependent manner. Viewed in this way, anti-AGE detoxifying systems are proposed as therapeutic targets to fight pathological dysfunction associated with AGE accumulation and cytotoxicity. Here, we summarize the current state of knowledge related to the protective mechanisms against glycative stress, with a special emphasis on the glyoxalase system as the primary mechanism for detoxifying the reactive intermediates of glycation. This review focuses on glyoxalase 1 (GLO1), the first enzyme of the glyoxalase system, and the rate-limiting enzyme of this catalytic process. Although GLO1 is ubiquitously expressed, protein levels and activities are regulated in a tissue-dependent manner. We provide a comparative analysis of GLO1 protein in different tissues. Our findings indicate a role for the glyoxalase system in homeostasis in the eye retina, a highly oxygenated tissue with rapid protein turnover. We also describe modulation of the glyoxalase system as a therapeutic target to delay the development of age-related diseases and summarize the literature that describes the current knowledge about nutritional compounds with properties to modulate the glyoxalase system.
Collapse
|
10
|
Anitha RE, Janani R, Peethambaran D, Baskaran V. Lactucaxanthin protects retinal pigment epithelium from hyperglycemia-regulated hypoxia/ER stress/VEGF pathway mediated angiogenesis in ARPE-19 cell and rat model. Eur J Pharmacol 2021; 899:174014. [PMID: 33705802 DOI: 10.1016/j.ejphar.2021.174014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Hyperglycemia mediated perturbations in biochemical pathways induce angiogenesis in diabetic retinopathy (DR) pathogenesis. The present study aimed to investigate the protective effects of lactucaxanthin, a predominant lettuce carotenoid, on hyperglycemia-mediated activation of angiogenesis in vitro and in vivo diabetic model. ARPE-19 cells cultured in 30 mM glucose concentration were treated with lactucaxanthin (5 μM and 10 μM) for 48 h. They were assessed for antioxidant enzyme activity, mitochondrial membrane potential, reactive oxygen species, and cell migration. In the animal experiment, streptozotocin-induced diabetic male Wistar rats were gavaged with lactucaxanthin (200 μM) for 8 weeks. Parameters like animal weight gain, feed intake, water intake, urine output, and fasting blood glucose level were monitored. In both models, lutein-treated groups were considered as a positive control. Hyperglycemia-mediated angiogenic marker expressions in ARPE-19 and retina of diabetic rats were quantified through the western blot technique. Expression of hypoxia, endoplasmic reticulum stress markers, and vascular endothelial growth factor were found to be augmented in the hyperglycemia group compared to control (P < 0.05). Hyperglycemia plays a crucial role in increasing cellular migration and reactive oxygen species besides disrupting tight junction protein. Compared to lutein, lactucaxanthin aids retinal pigment epithelium (RPE) function from hyperglycemia-induced stress conditions via downregulating angiogenesis markers expression. Lactucaxanthin potentiality observed in protecting tight junction protein expression via modulating reactive oxygen species found to conserve RPE integrity. Results demonstrate that lactucaxanthin exhibits robust anti-angiogenic activity for the first time and, therefore, would be useful as an alternative therapy to prevent or delay DR progression.
Collapse
Affiliation(s)
- Rani Elavarasan Anitha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Rajasekar Janani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Divya Peethambaran
- CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Vallikannan Baskaran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.
| |
Collapse
|
11
|
Bi Z, Wang Y, Zhang W. A comprehensive review of tanshinone IIA and its derivatives in fibrosis treatment. Biomed Pharmacother 2021; 137:111404. [PMID: 33761617 DOI: 10.1016/j.biopha.2021.111404] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Tanshinone IIA (Tan IIA) is the most abundant lipid-soluble component in Salvia miltiorrhiza. Both Tan IIA and its derivatives including Sodium tanshinone IIA sulfonate (STS) have been widely used in clinic due to their proved anti-inflammation, anti-oxidation, and anti-fibrosis functions. Recently, combinations containing Tan IIA and active components have attracted intensive interest in fibrosis. Multiple studies have been conducted to attempt to decipher the mechanisms of this traditional Chinese medicine and found that Tan IIA can attenuate fibrosis through different pathways such as Smad2/3, NF-κB, Nrf2, E2F and snail/twist axis. However, some of the studies were contradictory and confusing. Therefore, it was important to develop an easy-to-access reference for clinic use. In this study, we reviewed the pharmacological mechanisms, pharmacokinetics, and toxicology of Tan IIA and its derivatives in the treatment of fibrosis and introduced the cutting-edge new formulation of Tan IIA compound.
Collapse
Affiliation(s)
- Zhangyang Bi
- Traditional Chinese Medicine College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yayun Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Pneumology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
12
|
Network Pharmacology-Based Approach to Comparatively Predict the Active Ingredients and Molecular Targets of Compound Xueshuantong Capsule and Hexuemingmu Tablet in the Treatment of Proliferative Diabetic Retinopathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6642600. [PMID: 33747106 PMCID: PMC7954618 DOI: 10.1155/2021/6642600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/26/2022]
Abstract
Background Compound Xueshuantong capsule (CXC) and Hexuemingmu tablet (HXMMT) are two important Chinese patent medicines (CPMs) frequently used to treat proliferative diabetic retinopathy (PDR), especially when complicated with vitreous hemorrhage (VH). However, a network pharmacology approach to understand the therapeutic mechanisms of these two CPMs in PDR has not been applied. Objective To identify differences in the active ingredients between CXC and HXMMT and to comparatively predict and further analyze the molecular targets shared by these CPMs and PDR. Materials and methods. The differentially expressed messenger RNAs (mRNAs) between normal retinal tissues in healthy individuals and active fibrovascular membranes in PDR patients were retrieved from the Gene Expression Omnibus database. The active ingredients of CXC and HXMMT and the targets of these ingredients were retrieved from the Traditional Chinese Medicine Systems Pharmacology database. The intersections of the CPM (CXC and HXMMT) targets and PDR targets were determined. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed, and the ingredient-target networks, protein-protein interaction networks, and KEGG-target (KEGG-T) networks were constructed. Results CXC contains 4 herbs, and HXMMT contains 19. Radix salviae is the only herb common to both. CXC had 34 potential therapeutic targets in PDR, while HXMMT had these 34 and 10 additional targets. Both CPMs shared the following main processes: response to reactive oxygen species and oxidative stress, regulation of blood vessel diameter and size, vasoconstriction, smooth muscle contraction, hemostasis, and blood coagulation. The shared pathways included the AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, relaxin signaling pathway, and IL-17 signaling pathway. Conclusions Both CXC and HXMMT include components effective at treating PDR and affect the following main processes: response to reactive oxygen species and oxidative stress, regulation of blood vessels, and blood coagulation. Radix salviae, the only herb common to both CPMs, contains many useful active ingredients. The PDR-CXC and PDR-HXMMT networks shared 34 common genes (RELA, HSPA8, HSP90AA, HSP90AB1, BRCA, EWSR1, CUL7, HNRNPU, MYC, CTNNB1, MDM2, YWHAZ, CDK2, AR, FN1, HUWE1, TP53, TUBB, EP300, GRB2, VCP, MCM2, EEF1A1, NTRK1, TRAF6, EGFR, PRKDC, SRC, HDAC5, APP, ESR1, AKT1, UBC, and COPS5), and the PDR-HXMMT network has 10 additional genes (RNF2, VNL, RPS27, COPS5, XPO1, PARP1, RACK1, YWHAB, and ITGA4). The top 5 pathways with the highest gene ratio in both networks were the AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, relaxin signaling pathway, IL-17 signaling pathway, and focal adhesion. Additional pathways such as neuroactive ligand-receptor interaction, chemokine signaling pathway, and AMPK signaling pathway were enriched with HXMMT targets. Thus, HXMMT has more therapeutic targets shared by different active ingredients and more abundant gene functions than CXC, which may be two major reasons why HXMMT is more strongly recommended than CXC as an auxiliary treatment for new-onset VH secondary to PDR. However, the underlying mechanisms still need to be further explored.
Collapse
|
13
|
Chang X, Zhao Z, Zhang W, Liu D, Ma C, Zhang T, Meng Q, Yan P, Zou L, Zhang M. Natural Antioxidants Improve the Vulnerability of Cardiomyocytes and Vascular Endothelial Cells under Stress Conditions: A Focus on Mitochondrial Quality Control. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6620677. [PMID: 33552385 PMCID: PMC7847351 DOI: 10.1155/2021/6620677] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease has become one of the main causes of human death. In addition, many cardiovascular diseases are accompanied by a series of irreversible damages that lead to organ and vascular complications. In recent years, the potential therapeutic strategy of natural antioxidants in the treatment of cardiovascular diseases through mitochondrial quality control has received extensive attention. Mitochondria are the main site of energy metabolism in eukaryotic cells, including myocardial and vascular endothelial cells. Mitochondrial quality control processes ensure normal activities of mitochondria and cells by maintaining stable mitochondrial quantity and quality, thus protecting myocardial and endothelial cells against stress. Various stresses can affect mitochondrial morphology and function. Natural antioxidants extracted from plants and natural medicines are becoming increasingly common in the clinical treatment of diseases, especially in the treatment of cardiovascular diseases. Natural antioxidants can effectively protect myocardial and endothelial cells from stress-induced injury by regulating mitochondrial quality control, and their safety and effectiveness have been preliminarily verified. This review summarises the damage mechanisms of various stresses in cardiomyocytes and vascular endothelial cells and the mechanisms of natural antioxidants in improving the vulnerability of these cell types to stress by regulating mitochondrial quality control. This review is aimed at paving the way for novel treatments for cardiovascular diseases and the development of natural antioxidant drugs.
Collapse
Affiliation(s)
- Xing Chang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
- Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Zhenyu Zhao
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
| | - Wenjin Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Dong Liu
- China Academy of Chinese Medical Sciences, Institute of the History of Chinese Medicine and Medical Literature, Beijing, China
| | - Chunxia Ma
- Shandong Analysis and Test Centre, Qilu University of Technology, Jinan, China
| | - Tian Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qingyan Meng
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Peizheng Yan
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Longqiong Zou
- Chongqing Sanxia Yunhai Pharmaceutical Co., Ltd., Chongqing, China
| | - Ming Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
| |
Collapse
|
14
|
Xiang H, Song R, Ouyang J, Zhu R, Shu Z, Liu Y, Wang X, Zhang D, Zhao J, Lu H. Organelle dynamics of endothelial mitochondria in diabetic angiopathy. Eur J Pharmacol 2021; 895:173865. [PMID: 33460616 DOI: 10.1016/j.ejphar.2021.173865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Diabetes, a chronic non-communicable disease, has become one of the most serious and critical public health problems with increasing incidence trends. Chronic vascular complications are the major causes of disability and death in diabetic patients with endothelial dysfunction. Diabetes is intimately associated with endothelial mitochondrial dysfunction, indicated by increased oxidative stress, decreased biogenesis, increased DNA damage, and weakened autophagy in mitochondria. All these morphological and functional changes of mitochondria play important roles in diabetic endothelial dysfunction. Herein, we reviewed the roles and mechanisms of endothelial mitochondrial dysfunction, particularly mitochondrial dynamics in the vascular complications of diabetes and summarized the potential mitochondria-targeted therapies in diabetic vascular complications.
Collapse
Affiliation(s)
- Hong Xiang
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Ruipeng Song
- Department of Endocrinology, The Third People's Provincial Hospital of Henan Province, Zhengzhou, 450000, Henan, China
| | - Jie Ouyang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Ruifang Zhu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihao Shu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Yulan Liu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Xuewen Wang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Dongtao Zhang
- Department of Geriatrics, Tongxu Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475400, China
| | - Jiangwei Zhao
- Department of Internal Medicine 3, People's Hospital of Weihui, Xinxiang, Henan, 453100, China
| | - Hongwei Lu
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
15
|
Zhang S, Xu Y, Zhu J, Ma J, Niu Q, Wang X. Carbon monoxide attenuates LPS-induced myocardial dysfunction in rats by regulating the mitochondrial dynamic equilibrium. Eur J Pharmacol 2020; 889:173726. [PMID: 33159931 DOI: 10.1016/j.ejphar.2020.173726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/07/2023]
Abstract
Lipopolysaccharide (LPS) induces myocardial dysfunction by damaging the mitochondrial structure in cardiomyocytes. Since low levels of carbon monoxide can confer cytoprotective effects against end-organ damage from endotoxic shock, we tested whether treatment with carbon monoxide-releasing molecule-2 (CORM-2) could ameliorate LPS-induced myocardial dysfunction in rats by maintaining the dynamic equilibrium between the mitochondrial fusion and fission processes. Cardiac function, myocardial histopathology, myocardial enzymes, and changes in myocardial mitochondrial function and mitochondrial fusion-fission protein expression were assessed in rats. The mitochondrial structure and morphology were studied by electron microscopy, and the expression levels of key proteins involved in the mitochondrial dynamics were assessed by Western blot assay. Cardiac dysfunction and increased myocardial enzyme activity together with myocardial pathological damage, mitochondrial dysfunction, and impaired mitochondrial dynamics homeostasis were observed in the LPS-challenged septic rats. However, these observations were reversed by CORM-2, which effectively inhibited cardiac and mitochondrial damage in the LPS-challenged rats and improved the survival rate of the animals. In conclusion, CORM-2 regulates the LPS-induced imbalance of the dynamic mitochondrial fusion and fission processes, thereby effectively ameliorating the LPS-induced myocardial dysfunction and improving the survival of the rats.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China; Cangzhou Central Hospital, Cangzhou, 061000, Hebei Province, People's Republic of China
| | - Yanping Xu
- Department of Cardiac Functions Examination, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Jinyuan Zhu
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Jinlan Ma
- Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Qingsheng Niu
- Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Xiaohong Wang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.
| |
Collapse
|
16
|
Guo R, Li L, Su J, Li S, Duncan SE, Liu Z, Fan G. Pharmacological Activity and Mechanism of Tanshinone IIA in Related Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4735-4748. [PMID: 33192051 PMCID: PMC7653026 DOI: 10.2147/dddt.s266911] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
Salvia miltiorrhiza: (Danshen) is a significant (traditional Chinese medication) natural remedy, enhancing blood circulation and clear blood stasis. In this view, it is widely used against several heart diseases, eg, cardiomyopathy, arrhythmia, and congenital heart defects. Tanshinone IIA (tan-IIA) is the main fat-soluble component of Salvia miltiorrhiza. Modern pharmacological study shows that tan-IIA has anti-inflammatory and anti-oxidant activities. Tan-IIA induces remarkable cardioprotective effects via enhancing angiogenesis which may serve as an effective treatment against cardiovascular diseases (CVD). There is also evidence that tan-IIA has extensive immunomodulatory effects and plays a significant role in the development and function of immune cells. Tan-IIA reduces the production of inflammatory mediators and restores abnormal signaling pathways via regulating the function and activation of immune cells. It can also regulate signal transduction pathways, ie, TLR/NF-κB pathway and MAPKs/NF-κB pathway, thereby tan-IIA has an anti-inflammatory, anticoagulant, antithrombotic and neuroprotective role. It plays a protective role in the pathogenesis of cardiovascular disorders (ie, atherosclerosis, hypertension) and Alzheimer’s disease. It has also been revealed that tan-IIA has an anti-tumor role by killing various tumor cells, inducing differentiation and apoptosis, and has potential activity against carcinoma progression. In the review of this fact, the tan-IIA role in different diseases and its mechanism have been summarized while its clinical applications are also explored to provide a new perspective of Salvia miltiorrhiza. An extensive study on the mechanism of action of tan-IIA is of great significance for the effective use of Chinese herbal medicine and the promotion of its status and influence on the world.
Collapse
Affiliation(s)
- Rui Guo
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Lan Li
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jing Su
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Sheng Li
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Sophia Esi Duncan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Zhihao Liu
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Guanwei Fan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
17
|
Exploring the Mechanism of Action Compound-Xueshuantong Capsule in Diabetic Retinopathy Treatment Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8467046. [PMID: 32963574 PMCID: PMC7499338 DOI: 10.1155/2020/8467046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/17/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022]
Abstract
Materials and Methods The components with oral bioavailability ≥30% and drug similarity ≥0.18 were screened by the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), and the effective grouping of Compound-Xueshuantong Capsule was obtained. At the same time, the targets of each drug active component in the Compound-Xueshuantong Capsule were obtained by searching the TCMSP. The effective components and targets of the Compound-Xueshuantong Capsule were annotated by the UniProt database, and the disease treatment targets were searched by the GeneCards database. The disease treatment target is intersected with the drug target and the Wayne diagram is drawn by VennDiagram. The active ingredient targets of the intersection and Compound-Xueshuantong Capsule were inputted into Cytoscape 3.7.2 software to construct the active ingredient-target-disease interaction network. The above targets were inputted into the String database for protein-protein interaction network prediction. Finally, by using the DAVID database, GO and KEGG enrichment analysis was carried out to reveal the potential signal pathway of the Compound-Xueshuantong Capsule in diabetic retinopathy treatment. Results 93 active components of the Compound-Xueshuantong Capsule and 92 targets for treating diabetic retinopathy were screened. The main active components of the Compound-Xueshuantong Capsule in treating diabetic retinopathy were quercetin, luteolin, kaempferol, beta-sitosterol, isorhamnetin, and tanshinone IIa. The effect of the Compound-Xueshuantong Capsule on diabetic retinopathy may be related to IL6, EFGR, CASP3, and VEGFA. In addition, the treatment of diabetic retinopathy mainly involves in the regulation of nuclear receptors and transcription factors in vivo. The target of the Compound-Xueshuantong Capsule in diabetic retinopathy treatment is significantly enriched in the AGE-RAGE signal pathway, TNF signal pathway, HIF-1 signal pathway, and VEGF signal pathway in diabetic complications. Conclusion Compound-Xueshuantong Capsule can treat diabetic retinopathy through multitarget, multipathway, and multipathway regulation of the biomolecular network. The potential biological mechanism of the Compound-Xueshuantong Capsule in diabetic retinopathy treatment may be related to the AGE-RAGE signal pathway, TNF signal pathway, HIF-1 signal pathway, and VEGF signal pathway in diabetic complications, but these findings still need to be confirmed by further clinical research.
Collapse
|
18
|
Oduro PK, Fang J, Niu L, Li Y, Li L, Zhao X, Wang Q. Pharmacological management of vascular endothelial dysfunction in diabetes: TCM and western medicine compared based on biomarkers and biochemical parameters. Pharmacol Res 2020; 158:104893. [PMID: 32434053 DOI: 10.1016/j.phrs.2020.104893] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/18/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Abstract
Diabetes, a worldwide health concern while burdening significant populace of countries with time due to a hefty increase in both incidence and prevalence rates. Hyperglycemia has been buttressed both in clinical and experimental studies to modulate widespread molecular actions that effect macro and microvascular dysfunctions. Endothelial dysfunction, activation, inflammation, and endothelial barrier leakage are key factors contributing to vascular complications in diabetes, plus the development of diabetes-induced cardiovascular diseases. The recent increase in molecular, transcriptional, and clinical studies has brought a new scope to the understanding of molecular mechanisms and the therapeutic targets for endothelial dysfunction in diabetes. In this review, an attempt made to discuss up to date critical and emerging molecular signaling pathways involved in the pathophysiology of endothelial dysfunction and viable pharmacological management targets. Importantly, we exploit some Traditional Chinese Medicines (TCM)/TCM isolated bioactive compounds modulating effects on endothelial dysfunction in diabetes. Finally, clinical studies data on biomarkers and biochemical parameters involved in the assessment of the efficacy of treatment in vascular endothelial dysfunction in diabetes was compared between clinically used western hypoglycemic drugs and TCM formulas.
Collapse
Affiliation(s)
- Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Jingmei Fang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
19
|
Dicarbonyl Stress and S-Glutathionylation in Cerebrovascular Diseases: A Focus on Cerebral Cavernous Malformations. Antioxidants (Basel) 2020; 9:antiox9020124. [PMID: 32024152 PMCID: PMC7071005 DOI: 10.3390/antiox9020124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Dicarbonyl stress is a dysfunctional state consisting in the abnormal accumulation of reactive α-oxaldehydes leading to increased protein modification. In cells, post-translational changes can also occur through S-glutathionylation, a highly conserved oxidative post-translational modification consisting of the formation of a mixed disulfide between glutathione and a protein cysteine residue. This review recapitulates the main findings supporting a role for dicarbonyl stress and S-glutathionylation in the pathogenesis of cerebrovascular diseases, with specific emphasis on cerebral cavernous malformations (CCM), a vascular disease of proven genetic origin that may give rise to various clinical signs and symptoms at any age, including recurrent headaches, seizures, focal neurological deficits, and intracerebral hemorrhage. A possible interplay between dicarbonyl stress and S-glutathionylation in CCM is also discussed.
Collapse
|