1
|
Yun M, Regen ND, Anchondo Y, Eddinger K, Malkmus S, Roberts SW, Donati E, Leonardi A, Yaksh TL. Acetaminophen effects upon formalin-evoked flinching, postformalin, and postincisional allodynia and conditioned place preference. Pain Rep 2024; 9:e1168. [PMID: 39139364 PMCID: PMC11321755 DOI: 10.1097/pr9.0000000000001168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction We explored in mice, the analgesic, tolerance, dependency, and rewarding effects of systemic acetaminophen (APAP). Methods Studies employed adult mice (C57Bl6). (1) Intraplantar formalin flinching + post formalin allodynia. Mice were given intraperitoneal APAP in a DMSO (5%)/Tween 80 (5%) or a water-based formulation before formalin flinching on day 1 and tactile thresholds assessed before and after APAP at day 12. (2) Paw incision. At 24 hours and 8 days after hind paw incision in male mice, effects of intraperitoneal APAP on tactile allodynia were assessed. (3) Repeated delivery. Mice received daily (4 days) analgesic doses of APAP or vehicle and tested upon formalin flinching on day 5. (4) Conditioned place preference. For 3 consecutive days, vehicle was given in the morning in either of 2 chambers and in each afternoon, an analgesic dose of morphine or APAP in the other chamber. On days 5 and 10, animals were allowed to select a "preferred" chamber. Results Formalin in male mice resulted in biphasic flinching and an enduring postformalin tactile allodynia. Acetaminophen dose dependently decreased phase 2 flinching, and reversed allodynia was observed postflinching. At a comparable APAP dose, female mice showed similarly reduced phase 2 flinching. Incision allodynia was transiently reversed by APAP. Repeated APAP delivery showed no loss of effect after sequential injections or signs of withdrawal. Morphine, but not APAP or vehicle, resulted in robust place preference. Conclusions APAP decreased flinching and allodynia observed following formalin and paw incision and an absence of tolerance, dependence, or rewarding properties.
Collapse
Affiliation(s)
- Mijung Yun
- Department of Anesthesiology, University of California, San Diego, CA, USA
- Pain Clinic, Department of Anesthesiology and Pain Medicine, National Medical Center, Jung-gu, Seoul, Korea
| | | | - Yuvicza Anchondo
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Kelly Eddinger
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Shelle Malkmus
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Steven W. Roberts
- Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| | | | | | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, USA
| |
Collapse
|
2
|
Ferreira T, Faustino-Rocha AI, Gaspar VM, Medeiros R, Mano JF, Oliveira PA. Contribution of non-steroidal anti-inflammatory drugs to breast cancer treatment: In vitro and in vivo studies. Vet World 2024; 17:1052-1072. [PMID: 38911075 PMCID: PMC11188899 DOI: 10.14202/vetworld.2024.1052-1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/19/2024] [Indexed: 06/25/2024] Open
Abstract
Chronic inflammation plays a crucial role in carcinogenesis. High levels of serum prostaglandin E2 and tissue overexpression of cyclooxygenase-2 (COX-2) have been described in breast, urinary, colorectal, prostate, and lung cancers as being involved in tumor initiation, promotion, progression, angiogenesis, and immunosuppression. Non-steroidal anti-inflammatory drugs (NSAIDs) are prescribed for several medical conditions to not only decrease pain and fever but also reduce inflammation by inhibiting COX and its product synthesis. To date, significant efforts have been made to better understand and clarify the interplay between cancer development, inflammation, and NSAIDs with a view toward addressing their potential for cancer management. This review provides readers with an overview of the potential use of NSAIDs and selective COX-2 inhibitors for breast cancer treatment, highlighting pre-clinical in vitro and in vivo studies employed to evaluate the efficacy of NSAIDs and their use in combination with other antineoplastic drugs.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000–801 Vila Real, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC), 4200–072 Porto, Portugal
- Department of Chemistry, Aveiro Institute of Materials (CICECO), University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
| | - Ana I. Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000–801 Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, Évora 7004-516, Portugal
- Comprehensive Health Research Center, 7004–516 Évora, Portugal
| | - Vítor M. Gaspar
- Department of Chemistry, Aveiro Institute of Materials (CICECO), University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC), 4200–072 Porto, Portugal
- Faculty of Medicine of the University of Porto, 4200–319 Porto, Portugal
- Department of Research, Portuguese League against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200–177 Porto, Portugal
- Virology Service, IPO Porto, 4200-072 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences, Fernando Pessoa University, Porto 4249-004, Portugal
| | - João F. Mano
- Department of Chemistry, Aveiro Institute of Materials (CICECO), University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000–801 Vila Real, Portugal
| |
Collapse
|
3
|
Bashir S, Morgan WA. Inhibition of mitochondrial function: An alternative explanation for the antipyretic and hypothermic actions of acetaminophen. Life Sci 2022; 312:121194. [PMID: 36379307 DOI: 10.1016/j.lfs.2022.121194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
AIMS Acetaminophen is the medication of choice when treating fever because of its limited anti-inflammatory effects. However at overdose it can cause mitochondrial dysfunction and damage, often associated with metabolism to N-acetyl-p-benzoquinone imine (NAPQI). What has never been investigated is whether the inhibition of mitochondrial function, particularly fatty acid uptake and oxidation could be the key to its antipyretic and hypothermic properties. METHODS Mitochondrial function and fatty acid oxidation (FAO) was determined by measuring oxygen consumption rate (OCR) in isolated mitochondria and in 3T3-L1 adipocytes using the XFp Analyser. Basal fatty acids and adrenergic stimulated OCR of mitochondria and 3T3-L1 adipocytes were assessed with acetaminophen and compared to NAPQI, etomoxir, and various mitochondrial stress compounds. KEY FINDINGS Using the XFp Analyser, acetaminophen (10 mM) decreased FAO by 31 % and 29 % in basal and palmitate stimulated adipocytes. NAPQI (50 μM) caused a 63 % decrease in both basal and palmitate stimulated FAO. Acetaminophen (10 mM) caused a 34 % reduction in basal and adrenergic stimulated OCR. In addition acetaminophen also inhibited complex I and II activity at 5 mM. NAPQI was far more potent at reducing mitochondrial respiratory capacity, maximum respiratory rates and ATP production than acetaminophen. SIGNIFICANCE These studies demonstrate the direct inhibition of mitochondrial function by acetaminophen at concentrations which have been shown to reduce fever and hypothermia in mammals. Understanding how antipyretics directly affect mitochondrial function and heat generation could lead to the development of new antipyretics which are not compromised by the anti-inflammatory and toxicity of the current medications.
Collapse
Affiliation(s)
- Shazma Bashir
- The Medicines Research Group, School of Health, Sport and Bioscience, University of East London, Stratford Campus, Water Lane, London E15 4LZ, UK
| | - Winston A Morgan
- The Medicines Research Group, School of Health, Sport and Bioscience, University of East London, Stratford Campus, Water Lane, London E15 4LZ, UK.
| |
Collapse
|
4
|
Paracetamol-Induced Hypothermia in Rodents: A Review on Pharmacodynamics. Processes (Basel) 2022. [DOI: 10.3390/pr10040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Paracetamol can induce hypothermia in humans and rodents. The study’s aim is to review the mechanisms of paracetamol-induced hypothermia in rodents or the results issued from in vitro studies on the same species’ tissues (in doses that do not produce hepatic impairment) using the latest developments published in scientific journals over the last 15 years. Available human studies are also analysed. An extensive search in PubMed databases exploring the hypothermic response to paracetamol was conducted. 4669 articles about paracetamol’s effects on body temperature in mice or rats were found. After applying additional filters, 20 articles were selected for review, with 9 of them presented in tabular forms. The analysis of these articles found that the hypothermic effect of paracetamol is due to the inhibition of a cyclooxygenase-1 variant, is potentiated by endothelin receptor antagonists, and can be mediated through GABAA receptors and possibly through transient receptor potential cation channel subfamily A member 1 via N-acetyl-p-benzoquinone imine in the central nervous system. Human studies confirm the in vivo and in vitro experiments in rodents regarding the presence of a hypothermic effect after high, non-toxic doses of paracetamol. Further research is required to understand the mechanisms behind paracetamol’s hypothermic effect in humans.
Collapse
|
5
|
Garrido-Suárez BB, Garrido G, Bellma Menéndez A, Merino N, Valdés O, Delgado-Hernández R, Granados-Soto V. Synergistic interaction between amitriptyline and paracetamol in persistent and neuropathic pain models: An isobolografic analysis. Neurochem Int 2021; 150:105160. [PMID: 34411687 DOI: 10.1016/j.neuint.2021.105160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/26/2021] [Accepted: 08/15/2021] [Indexed: 01/07/2023]
Abstract
The current study was designed to evaluate the transient antinociceptive interaction between amitriptyline and paracetamol in the formalin test. In addition, considering other long-term neuroprotective mechanisms of these drugs, we hypothesized that this combination might exert some synergistic effects on neuropathic pain linked with its possible ability to prevent Wallerian degeneration (WD). The effects of individual and fixed-ratio of 1:1 combinations of orally administered amitriptyline and paracetamol were assayed in the two phases of the formalin test and in the chronic constriction injury (CCI) model in rats. Isobolographic analysis was employed to characterize the synergism produced by the combinations. Amitriptyline, paracetamol, and fixed-ratio amitriptyline-paracetamol combinations produced dose-dependent antinociceptive effects mainly on the inflammatory tonic phase. Repeated doses of individual drugs and their combination decreased CCI-induced mechanical allodynia in a dose-dependent manner. ED30 (formalin) and ED50 (CCI) values were estimated for the individual drugs, and isobolograms were constructed. Theoretical ED30/50 values for the combination estimated from the isobolograms were 16.5 ± 3.9 mg/kg and 26.0 ± 7.2 mg/kg for the single and repeated doses in persistent and neuropathic pain models, respectively. These values were significantly higher than the actually observed ED30/50 values, which were 0.39 ± 0.1 mg/kg and 8.2 ± 0.8 mg/kg in each model, respectively, indicating a synergistic interaction. Remarkably, CCI-induced sciatic nerve WD-related histopathological changes were prevented by this combination compared to either drug administered alone.
Collapse
Affiliation(s)
- Bárbara B Garrido-Suárez
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Ave. 26 No. 1605, Nuevo Vedado, Havana, Cuba; Instituto de Ciencias Del Mar, Loma y 37, CP 10300, Nuevo Vedado, Havana, Cuba.
| | - Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Edificio Ñ3, Universidad Católica Del Norte, Angamos, 0610, Antofagasta, Chile; Fundación ACPHARMA, Antofagasta, Chile.
| | - Addis Bellma Menéndez
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Ave. 26 No. 1605, Nuevo Vedado, Havana, Cuba
| | - Nelson Merino
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Ave. 26 No. 1605, Nuevo Vedado, Havana, Cuba
| | - Odalys Valdés
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Ave. 26 No. 1605, Nuevo Vedado, Havana, Cuba
| | - René Delgado-Hernández
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Ave. 26 No. 1605, Nuevo Vedado, Havana, Cuba; Centro de Estudio para Las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana. Calle 222, N° 2317 e/23 y 31, La Coronela, La Lisa, CP 13600, La Habana, Cuba
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| |
Collapse
|
6
|
Esh CJ, Chrismas BCR, Mauger AR, Taylor L. Pharmacological hypotheses: Is acetaminophen selective in its cyclooxygenase inhibition? Pharmacol Res Perspect 2021; 9:e00835. [PMID: 34278737 PMCID: PMC8287062 DOI: 10.1002/prp2.835] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The precise mechanistic action of acetaminophen (ACT; paracetamol) remains debated. ACT's analgesic and antipyretic actions are attributed to cyclooxygenase (COX) inhibition preventing prostaglandin (PG) synthesis. Two COX isoforms (COX1/2) share 60% sequence structure, yet their functions vary. COX variants have been sequenced among various mammalian species including humans. A COX1 splice variant (often termed COX3) is purported by some as the elusive target of ACT's mechanism of action. Yet a physiologically functional COX3 isoform has not been sequenced in humans, refuting these claims. ACT may selectively inhibit COX2, with evidence of a 4.4-fold greater COX2 inhibition than COX1. However, this is markedly lower than other available selective COX2 inhibitors (up to 433-fold) and tempered by proof of potent COX1 inhibition within intact cells when peroxide tone is low. COX isoform inhibition by ACT may depend on subtle in vivo physiological variations specific to ACT. In vivo ACT efficacy is reliant on intact cells and low peroxide tone while the arachidonic acid concentration state can dictate the COX isoform preferred for PG synthesis. ACT is an effective antipyretic (COX2 preference for PG synthesis) and can reduce afebrile core temperature (likely COX1 preference for PG synthesis). Thus, we suggest with specificity to human in vivo physiology that ACT: (i) does not act on a third COX isoform; (ii) is not selective in its COX inhibition; and (iii) inhibition of COX isoforms are determined by subtle and nuanced physiological variations. Robust research designs are required in humans to objectively confirm these hypotheses.
Collapse
Affiliation(s)
- Christopher J Esh
- Aspetar-Qatar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support, Aspire Zone, Doha, Qatar
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Bryna C R Chrismas
- Department of Physical Education, College of Education, Qatar University, Doha, Qatar
| | - Alexis R Mauger
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, UK
| | - Lee Taylor
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
| |
Collapse
|
7
|
Nagaoka K, Nagashima T, Asaoka N, Yamamoto H, Toda C, Kayanuma G, Siswanto S, Funahashi Y, Kuroda K, Kaibuchi K, Mori Y, Nagayasu K, Shirakawa H, Kaneko S. Striatal TRPV1 activation by acetaminophen ameliorates dopamine D2 receptor antagonist-induced orofacial dyskinesia. JCI Insight 2021; 6:145632. [PMID: 33857021 PMCID: PMC8262333 DOI: 10.1172/jci.insight.145632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/07/2021] [Indexed: 01/01/2023] Open
Abstract
Antipsychotics often cause tardive dyskinesia, an adverse symptom of involuntary hyperkinetic movements. Analysis of the US Food and Drug Administration Adverse Event Reporting System and JMDC insurance claims revealed that acetaminophen prevented the dyskinesia induced by dopamine D2 receptor antagonists. In vivo experiments further showed that a 21-day treatment with haloperidol increased the number of vacuous chewing movements (VCMs) in rats, an effect that was inhibited by oral acetaminophen treatment or intracerebroventricular injection of N-(4-hydroxyphenyl)-arachidonylamide (AM404), an acetaminophen metabolite that acts as an activator of the transient receptor potential vanilloid 1 (TRPV1). In mice, haloperidol-induced VCMs were also mitigated by treatment with AM404 applied to the dorsal striatum, an effect not seen in TRPV1-deficient mice. Acetaminophen prevented the haloperidol-induced decrease in the number of c-Fos+preproenkephalin+ striatal neurons in wild-type mice but not in TRPV1-deficient mice. Finally, chemogenetic stimulation of indirect pathway medium spiny neurons in the dorsal striatum decreased haloperidol-induced VCMs. These results suggest that acetaminophen activates the indirect pathway neurons by activating TRPV1 channels via AM404.
Collapse
Affiliation(s)
- Koki Nagaoka
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takuya Nagashima
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nozomi Asaoka
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Yamamoto
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Chihiro Toda
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Gen Kayanuma
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Soni Siswanto
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiro Funahashi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Research project for neural and tumor signaling, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Keisuke Kuroda
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Research project for neural and tumor signaling, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering and Faculty of Engineering, Kyoto University, Katsura Campus, Kyoto, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
The influence of environmental and core temperature on cyclooxygenase and PGE2 in healthy humans. Sci Rep 2021; 11:6531. [PMID: 33753764 PMCID: PMC7985197 DOI: 10.1038/s41598-021-84563-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/21/2021] [Indexed: 11/08/2022] Open
Abstract
Whether cyclooxygenase (COX)/prostaglandin E2 (PGE2) thermoregulatory pathways, observed in rodents, present in humans? Participants (n = 9) were exposed to three environments; cold (20 °C), thermoneutral (30 °C) and hot (40 °C) for 120 min. Core (Tc)/skin temperature and thermal perception were recorded every 15 min, with COX/PGE2 concentrations determined at baseline, 60 and 120 min. Linear mixed models identified differences between and within subjects/conditions. Random coefficient models determined relationships between Tc and COX/PGE2. Tc [mean (range)] increased in hot [+ 0.8 (0.4-1.2) °C; p < 0.0001; effect size (ES): 2.9], decreased in cold [- 0.5 (- 0.8 to - 0.2) °C; p < 0.0001; ES 2.6] and was unchanged in thermoneutral [+ 0.1 (- 0.2 to 0.4) °C; p = 0.3502]. A relationship between COX2/PGE2 in cold (p = 0.0012) and cold/thermoneutral [collapsed, condition and time (p = 0.0243)] was seen, with higher PGE2 associated with higher Tc. A within condition relationship between Tc/PGE2 was observed in thermoneutral (p = 0.0202) and cold/thermoneutral [collapsed, condition and time (p = 0.0079)] but not cold (p = 0.0631). The data suggests a thermogenic response of the COX/PGE2 pathway insufficient to defend Tc in cold. Further human in vivo research which manipulates COX/PGE2 bioavailability and participant acclimation/acclimatization are warranted to elucidate the influence of COX/PGE2 on Tc.
Collapse
|
9
|
Ayoub SS. Paracetamol (acetaminophen): A familiar drug with an unexplained mechanism of action. Temperature (Austin) 2021; 8:351-371. [PMID: 34901318 PMCID: PMC8654482 DOI: 10.1080/23328940.2021.1886392] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 02/02/2023] Open
Abstract
Paracetamol (acetaminophen) is undoubtedly one of the most widely used drugs worldwide. As an over-the-counter medication, paracetamol is the standard and first-line treatment for fever and acute pain and is believed to remain so for many years to come. Despite being in clinical use for over a century, the precise mechanism of action of this familiar drug remains a mystery. The oldest and most prevailing theory on the mechanism of analgesic and antipyretic actions of paracetamol relates to the inhibition of CNS cyclooxygenase (COX) enzyme activities, with conflicting views on the COX isoenzyme/variant targeted by paracetamol and on the nature of the molecular interactions with these enzymes. Paracetamol has been proposed to selectively inhibit COX-2 by working as a reducing agent, despite the fact that in vitro screens demonstrate low potency on the inhibition of COX-1 and COX-2. In vivo data from COX-1 transgenic mice suggest that paracetamol works through inhibition of a COX-1 variant enzyme to mediate its analgesic and particularly thermoregulatory actions (antipyresis and hypothermia). A separate line of research provides evidence on potentiation of the descending inhibitory serotonergic pathway to mediate the analgesic action of paracetamol, but with no evidence of binding to serotonergic molecules. AM404 as a metabolite for paracetamol has been proposed to activate the endocannabinoid and the transient receptor potential vanilloid-1 (TRPV1) systems. The current review gives an update and in some cases challenges the different theories on the pharmacology of paracetamol and raises questions on some of the inadequately explored actions of paracetamol. List of Abbreviations: AM404, N-(4-hydroxyphenyl)-arachidonamide; CB1R, Cannabinoid receptor-1; Cmax, Maximum concentration; CNS, Central nervous system; COX, Cyclooxygenase; CSF, Cerebrospinal fluid; ED50, 50% of maximal effective dose; FAAH, Fatty acid amidohydrolase; IC50, 50% of the maximal inhibitor concentration; LPS, Lipopolysaccharide; NSAIDs, Non-steroidal anti-inflammatory drugs; PGE2, Prostaglandin E2; TRPV1, Transient receptor potential vanilloid-1.
Collapse
Affiliation(s)
- Samir S Ayoub
- School of Health, Sport and Bioscience, Medicines Research Group, University of East London, London, UK
| |
Collapse
|
10
|
Przybyła GW, Szychowski KA, Gmiński J. Paracetamol - An old drug with new mechanisms of action. Clin Exp Pharmacol Physiol 2021; 48:3-19. [PMID: 32767405 DOI: 10.1111/1440-1681.13392] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/09/2020] [Accepted: 08/02/2020] [Indexed: 12/26/2022]
Abstract
Paracetamol (acetaminophen) is the most commonly used over-the-counter (OTC) drug in the world. Despite its popularity and use for many years, the safety of its application and its mechanism of action are still unclear. Currently, it is believed that paracetamol is a multidirectional drug and at least several metabolic pathways are involved in its analgesic and antipyretic action. The mechanism of paracetamol action consists in inhibition of cyclooxygenases (COX-1, COX-2, and COX-3) and involvement in the endocannabinoid system and serotonergic pathways. Additionally, paracetamol influences transient receptor potential (TRP) channels and voltage-gated Kv7 potassium channels and inhibits T-type Cav3.2 calcium channels. It also exerts an impact on L-arginine in the nitric oxide (NO) synthesis pathway. However, not all of these effects have been clearly confirmed. Therefore, the aim of our paper was to summarize the current state of knowledge of the mechanism of paracetamol action with special attention to its safety concerns.
Collapse
Affiliation(s)
| | - Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| |
Collapse
|
11
|
Bashir S, Elegunde B, Morgan WA. Inhibition of lipolysis: A novel explanation for the hypothermic actions of acetaminophen in non-febrile rodents. Biochem Pharmacol 2019; 172:113774. [PMID: 31870769 DOI: 10.1016/j.bcp.2019.113774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
Abstract
Acetaminophen is both widely used to treat children with fever and is also responsible for thousands being hospitalised annually. Historically the antipyretic actions of acetaminophen were attributed to the inhibition of cyclooxygenase (COX-1/2) enzymes and more recently a novel COX-1 variant (COX-3) located in the brain. However, the evidence for acetaminophen-mediated COX inhibition remains contentious. This study assesses the impact of acetaminophen and other putative COX-3 inhibitors on the release of fatty acids during lipolysis as an alternative mechanism by which antipyretics can reduce body temperature during fever. 3T3-L1 adipocytes, primary brown adipocytes and isolated mitochondria were exposed to COX-3 inhibitors and lipolysis and mitochondrial electron transport chain function assessed. Acetaminophen, aminopyrine and antipyrine at 1-10 mM caused a significant decrease (up to 70%; P < 0.01, from control) in lipolysis within 1, 3 and 24 h without affecting cell viability. The inhibition was observed regardless of where along its signalling pathway lipolysis was stimulated. All three compounds were found to significantly attenuate mitochondrial function by up to 30% for complex I and 40% for complex II (P < 0.01, from control). These novel observations combined with the known limited inhibition of the COX enzymes by acetaminophen suggest both the antipyretic and hypothermia induced by acetaminophen and related compounds could be attributed to the direct inhibition of lipolysis and mitochondrial function, rather than cyclooxygenase inhibition centrally. Further these observations could provide new drug targets for reducing fever with the added bonus of fewer individuals being hospitalized by accidental acetaminophen overdose.
Collapse
Affiliation(s)
- Shazma Bashir
- The Medicines Research Group, School of Health, Sport and Bioscience, University of East London, Romford Road, Stratford, London E15 4 LZ, UK
| | - Busayo Elegunde
- The Medicines Research Group, School of Health, Sport and Bioscience, University of East London, Romford Road, Stratford, London E15 4 LZ, UK
| | - Winston A Morgan
- The Medicines Research Group, School of Health, Sport and Bioscience, University of East London, Romford Road, Stratford, London E15 4 LZ, UK.
| |
Collapse
|