1
|
Neiswanger C, Ruiz MV, Kimball K, Lee JD, Land B, Berndt A, Chavkin C. G protein Inactivation as a Mechanism for Addiction Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628727. [PMID: 39763910 PMCID: PMC11702588 DOI: 10.1101/2024.12.16.628727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The endogenous dynorphin/kappa opioid receptor (KOR) system in the brain mediates the dysphoric effects of stress, and KOR antagonists may have therapeutic potential for the treatment of drug addiction, depression, and psychosis. One class of KOR antagonists, the long-acting norBNI-like antagonists, have been suggested to act by causing KOR inactivation through a cJun-kinase mechanism rather than by competitive inhibition. In this study, we screened for other opioid ligands that might produce norBNI-like KOR inactivation and found that nalfurafine (a G-biased KOR agonist) and nalmefene (a KOR partial agonist) also produce long-lasting KOR inactivation. Neither nalfurafine nor nalmefene are completely selective KOR ligands, but KOR inactivation was observed at doses 10-100 fold lower than necessary for mu opioid receptor actions. Daily microdosing with nalfurafine or nalmefene blocked KORs responsible for antinociceptive effects, blocked KORs mediating stress-induced aversion, and mitigated the aversion during acute and protracted withdrawal in fentanyl-dependent mice. Both nalfurafine and nalmefene have long histories of safety and use in humans and could potentially be repurposed for the treatment of dynorphin-mediated stress disorders.
Collapse
Affiliation(s)
| | | | | | - Justin D. Lee
- Bioengineering, University of Washington; Seattle, WA
| | | | - Andre Berndt
- Bioengineering, University of Washington; Seattle, WA
| | | |
Collapse
|
2
|
Thakur N, Ray AP, Jin B, Afsharian NP, Lyman E, Gao ZG, Jacobson KA, Eddy MT. Membrane mimetic-dependence of GPCR energy landscapes. Structure 2024; 32:523-535.e5. [PMID: 38401537 PMCID: PMC11069452 DOI: 10.1016/j.str.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/03/2024] [Accepted: 01/30/2024] [Indexed: 02/26/2024]
Abstract
We leveraged variable-temperature 19F-NMR spectroscopy to compare the conformational equilibria of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor (GPCR), across a range of temperatures ranging from lower temperatures typically employed in 19F-NMR experiments to physiological temperature. A2AAR complexes with partial agonists and full agonists showed large increases in the population of a fully active conformation with increasing temperature. NMR data measured at physiological temperature were more in line with functional data. This was pronounced for complexes with partial agonists, where the population of active A2AAR was nearly undetectable at lower temperature but became evident at physiological temperature. Temperature-dependent behavior of complexes with either full or partial agonists exhibited a pronounced sensitivity to the specific membrane mimetic employed. Cellular signaling experiments correlated with the temperature-dependent conformational equilibria of A2AAR in lipid nanodiscs but not in some detergents, underscoring the importance of the membrane environment in studies of GPCR function.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Arka Prabha Ray
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Beining Jin
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | | | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew T Eddy
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
3
|
Olson KM, Hillhouse TM, Burgess GE, West JL, Hallahan JE, Dripps IJ, Ladetto AG, Rice KC, Jutkiewicz EM, Traynor JR. Delta Opioid Receptor-Mediated Antidepressant-Like Effects of Diprenorphine in Mice. J Pharmacol Exp Ther 2023; 384:343-352. [PMID: 36456196 PMCID: PMC9976798 DOI: 10.1124/jpet.122.001182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Major depressive disorder is a highly common disorder, with a lifetime prevalence in the United States of approximately 21%. Traditional antidepressant treatments are limited by a delayed onset of action and minimal efficacy in some patients. Ketamine is effective and fast-acting, but there are concerns over its abuse liability. Thus, there is a need for safe, fast-acting antidepressant drugs. The opioid buprenorphine shows promise but also has abuse liability due to its mu-agonist component. Preclinical evidence indicates that the delta-opioid system contributes to mood disorders, and delta-opioid agonists are effective in preclinical models of depression- and anxiety-like states. In this study, we test the hypothesis that the mu-opioid antagonist diprenorphine by virtue of its partial delta opioid agonist activity may offer a beneficial profile for an antidepressant medication without abuse liability. Diprenorphine was confirmed to bind with high affinity to all three opioid receptors, and functional experiments for G protein activation verified diprenorphine to be a partial agonist at delta- and kappa-opioid receptors and a mu-antagonist. Studies in C57BL/6 mice demonstrated that an acute dose of diprenorphine produced antidepressant-like effects in the tail suspension test and the novelty-induced hypophagia test that were inhibited in the presence of the delta-selective antagonist, naltrindole. Diprenorphine did not produce convulsions, a side effect of many delta agonists but rather inhibited convulsions caused by the full delta agonist SNC80; however, diprenorphine did potentiate pentylenetetrazole-induced convulsions. Diprenorphine, and compounds with a similar pharmacological profile, may provide efficient and safe rapidly acting antidepressants. SIGNIFICANCE STATEMENT: The management of major depressive disorder, particularly treatment-resistant depression, is a significant unmet medical need. Here we show that the opioid diprenorphine, a compound with mu-opioid receptor antagonist activity and delta- and kappa-opioid receptor partial agonist activities, has rapid onset antidepressant-like activity in animal models. Diprenorphine and compounds with a similar pharmacological profile to diprenorphine should be explored as novel antidepressant drugs.
Collapse
MESH Headings
- Animals
- Mice
- Analgesics, Opioid/pharmacology
- Antidepressive Agents/pharmacology
- Depressive Disorder, Major
- Diprenorphine/pharmacology
- Mice, Inbred C57BL
- Receptors, Opioid
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Seizures/chemically induced
Collapse
Affiliation(s)
- Keith M Olson
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Todd M Hillhouse
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Gwendolyn E Burgess
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Joshua L West
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - James E Hallahan
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Isaac J Dripps
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Allison G Ladetto
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Kenner C Rice
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Emily M Jutkiewicz
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - John R Traynor
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| |
Collapse
|
5
|
Wulf HA, Browne CA, Zarate CA, Lucki I. Mediation of the behavioral effects of ketamine and (2R,6R)-hydroxynorketamine in mice by kappa opioid receptors. Psychopharmacology (Berl) 2022; 239:2309-2316. [PMID: 35459958 DOI: 10.1007/s00213-022-06118-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/12/2022] [Indexed: 11/26/2022]
Abstract
Emerging evidence has implicated the endogenous opioid system in mediating ketamine's antidepressant activity in subjects with major depressive disorder. To date, mu opioid receptors have been suggested as the primary opioid receptor of interest. However, this hypothesis relies primarily on observations that the opioid antagonist naltrexone blocked the effects of ketamine in humans and rodents. This report confirms previous findings that pretreatment with naltrexone (1 mg/kg) just prior to ketamine (10 mg/kg) administration effectively blocks the behavioral effect of ketamine in the mouse forced swim test 24 h post-treatment. Furthermore, pharmacological blockade of kappa opioid receptors prior to ketamine administration with the selective, short-acting antagonist LY2444296 successfully blocked ketamine's effects in the forced swim test. Likewise, the ability of the ketamine metabolite (2R,6R)-hydroxynorketamine to reduce immobility scores in the forced swim test was also blocked following pretreatment with either naltrexone or LY2444296. These data support a potential role of kappa opioid receptors in mediating the behavioral activity of ketamine and its non-dissociate metabolite (2R,6R)-hydroxynorketamine.
Collapse
Affiliation(s)
- Hildegard A Wulf
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Caroline A Browne
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Carlos A Zarate
- National Institute on Mental Health, MD, 20814, Bethesda, USA
| | - Irwin Lucki
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA.
| |
Collapse
|
6
|
Turan Yücel N, Evren AE, Kandemir Ü, Can ÖD. Antidepressant-like effect of tofisopam in mice: A behavioural, molecular docking and MD simulation study. J Psychopharmacol 2022; 36:819-835. [PMID: 35638175 DOI: 10.1177/02698811221095528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Depression is a disease that affects millions of people worldwide, and the discovery and development of effective and safe antidepressant drugs is one of the important topics of psychopharmacology. OBJECTIVES In this study, it was aimed to investigate the antidepressant-like activity potential of tofisopam, an anxiolytic drug with 2,3-benzodiazepine structure, and to elucidate the pharmacological mechanisms mediating this effect. METHODS The antidepressant-like activity of tofisopam was investigated using tail suspension and modified forced swimming tests. Possible interactions of tofisopam with µ- and δ-opioid receptor subtypes were clarified by pharmacological antagonism, molecular docking and molecular dynamics simulation studies. RESULTS Tofisopam (50 and 100 mg/kg) significantly shortened the immobility time of mice in both the tail suspension and the modified forced swimming tests. The drug, at the same doses, prolonged the duration of swimming and climbing behaviours measured in modified forced swimming tests. A dosage of 25 mg/kg was ineffective. Mechanistic studies showed that the pretreatment with p-chlorophenylalanine methyl ester (serotonin synthesis inhibitor; 4 consecutive days, 100 mg/kg), α-methyl-para-tyrosine methyl ester (catecholamine synthesis inhibitor; 100 mg/kg), naloxonazine (selective µ-opioid receptor blocker, 7 mg/kg) and naltrindole (a selective δ-opioid receptor blocker, 0.99 mg/kg) abolished the anti-immobility effect induced by the 50 mg/kg dose of tofisopam in the tail suspension tests. Our in silico studies supported the behavioural findings that the antidepressant-like effect of tofisopam is mediated by μ- and δ-opioid receptors. CONCLUSION This study is the first to show that tofisopam has antidepressant-like activity mediated by the serotonergic, catecholaminergic and opioidergic systems.
Collapse
Affiliation(s)
- Nazlı Turan Yücel
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Pharmacy Services, Vocational School of Health Services, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Ümmühan Kandemir
- Department of Pharmacology, Institute of Health Sciences, Anadolu University, Eskişehir, Turkey
| | - Özgür Devrim Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
7
|
Namchuk AB, Lucki I, Browne CA. Buprenorphine as a Treatment for Major Depression and Opioid Use Disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10254. [PMID: 36177442 PMCID: PMC9518754 DOI: 10.3389/adar.2022.10254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rates of major depressive disorder (MDD) are disproportionally high in subjects with opioid use disorder (OUD) relative to the general population. MDD is often more severe in OUD patients, leading to compliance issues with maintenance therapies and poor outcomes. A growing body of literature suggests that endogenous opioid system dysregulation may play a role in the emergence of MDD. Buprenorphine, a mixed opioid receptor agonist/antagonist approved for the treatment of OUD and chronic pain, may have potential as a novel therapeutic for MDD, especially for patients with a dual diagnosis of MDD and OUD. This paper presents a comprehensive review of papers relevant to the assessment of buprenorphine as a treatment for MDD, OUD, and/or suicide compiled using electronic databases per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The principal goal of this literature review was to compile the clinical studies that have interrogated the antidepressant activity of buprenorphine in opioid naïve MDD patients and OUD patients with comorbid MDD. Evidence supporting buprenorphine's superiority over methadone for treating comorbid OUD and MDD was also considered. Finally, recent evidence for the ability of buprenorphine to alleviate suicidal ideation in both opioid-naïve patients and opioid-experienced patients was evaluated. Synthesizing all of this information, buprenorphine emerges as a potentially effective therapeutic for the dual purposes of treating MDD and OUD.
Collapse
Affiliation(s)
- Amanda B. Namchuk
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, 20814, USA
| | - Irwin Lucki
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, 20814, USA
- Department of Psychiatry, Uniformed Services University, Bethesda, Maryland, 20814, USA
| | - Caroline A. Browne
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, 20814, USA
| |
Collapse
|
9
|
Eddy MT, Martin BT, Wüthrich K. A 2A Adenosine Receptor Partial Agonism Related to Structural Rearrangements in an Activation Microswitch. Structure 2020; 29:170-176.e3. [PMID: 33238145 DOI: 10.1016/j.str.2020.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/13/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
In drug design, G protein-coupled receptor (GPCR) partial agonists enable one to fine-tune receptor output between basal and maximal signaling levels. Here, we add to the structural basis for rationalizing and monitoring partial agonism. NMR spectroscopy of partial agonist complexes of the A2A adenosine receptor (A2AAR) revealed conformations of the P-I-F activation motif that are distinctly different from full agonist complexes. At the intracellular surface, different conformations of helix VI observed for partial and full agonist complexes manifest a correlation between the efficacy-related structural rearrangement of this activation motif and intracellular signaling to partner proteins. While comparisons of A2AAR in complexes with partial and full agonists with different methods showed close similarity of the global folds, this NMR study now reveals subtle but distinct local structural differences related to partial agonism.
Collapse
Affiliation(s)
- Matthew T Eddy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Departments of Biological Sciences and Chemistry, Bridge Institute, The University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| | - Bryan T Martin
- Departments of Biological Sciences and Chemistry, Bridge Institute, The University of Southern California, Los Angeles, CA 90089, USA
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|