1
|
Wang N, Luo L, Xu X, Zhou H, Li F. Focused ultrasound-induced cell apoptosis for the treatment of tumours. PeerJ 2024; 12:e17886. [PMID: 39184389 PMCID: PMC11344538 DOI: 10.7717/peerj.17886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Cancer is a serious public health problem worldwide. Traditional treatments, such as surgery, radiotherapy, chemotherapy, and immunotherapy, do not always yield satisfactory results; therefore, an efficient treatment for tumours is urgently needed. As a convenient and minimally invasive modality, focused ultrasound (FUS) has been used not only as a diagnostic tool but also as a therapeutic tool in an increasing number of studies. FUS can help treat malignant tumours by inducing apoptosis. This review describes the three apoptotic pathways, apoptotic cell clearance, and how FUS affects these three apoptotic pathways. This review also discusses the role of thermal and cavitation effects on apoptosis, including caspase activity, mitochondrial dysfunction, and Ca2+ elease. Finally, this article reviews various aspects of FUS combination therapy, including sensitization by radiotherapy and chemotherapy, gene expression upregulation, and the introduction of therapeutic gases, to provide new ideas for clinical tumour therapy.
Collapse
Affiliation(s)
- Na Wang
- Chongqing University, School of Medicine, Chongqing, China
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Li Luo
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Xinzhi Xu
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Hang Zhou
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Fang Li
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| |
Collapse
|
2
|
Guan L, Ge R, Ma S. Newsights of endoplasmic reticulum in hypoxia. Biomed Pharmacother 2024; 175:116812. [PMID: 38781866 DOI: 10.1016/j.biopha.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The endoplasmic reticulum (ER) is important to cells because of its essential functions, including synthesizing three major nutrients and ion transport. When cellular homeostasis is disrupted, ER quality control (ERQC) system is activated effectively to remove misfolded and unfolded proteins through ER-phagy, ER-related degradation (ERAD), and molecular chaperones. When unfolded protein response (UPR) and ER stress are activated, the cell may be suffering a huge blow, and the most probable consequence is apoptosis. The membrane contact points between the ER and sub-organelles contribute to communication between the organelles. The decrease in oxygen concentration affects the morphology and structure of the ER, thereby affecting its function and further disrupting the stable state of cells, leading to the occurrence of disease. In this study, we describe the functions of ER-, ERQC-, and ER-related membrane contact points and their changes under hypoxia, which will help us further understand ER and treat ER-related diseases.
Collapse
Affiliation(s)
- Lu Guan
- Qinghai University, Xining, Qinghai, China
| | - Rili Ge
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China
| | - Shuang Ma
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
3
|
Roy R, Kuo PL, Candia J, Sarantopoulou D, Ubaida-Mohien C, Hernandez D, Kaileh M, Arepalli S, Singh A, Bektas A, Kim J, Moore AZ, Tanaka T, McKelvey J, Zukley L, Nguyen C, Wallace T, Dunn C, Wood W, Piao Y, Coletta C, De S, Sen J, Weng NP, Sen R, Ferrucci L. Epigenetic signature of human immune aging in the GESTALT study. eLife 2023; 12:e86136. [PMID: 37589453 PMCID: PMC10506794 DOI: 10.7554/elife.86136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood-borne immune cell types (naive B, naive CD4+ and CD8+ T cells, granulocytes, monocytes, and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousands of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1β) and REST transcription factor (TF) motifs, respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to TF motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.
Collapse
Affiliation(s)
- Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Pei-Lun Kuo
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| | - Julián Candia
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| | - Dimitra Sarantopoulou
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | | | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on AgingBethesdaUnited States
| | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Sampath Arepalli
- Laboratory of Neurogenetics, National Institute on AgingBethesdaUnited States
| | - Amit Singh
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Arsun Bektas
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| | - Jaekwan Kim
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Ann Z Moore
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| | - Julia McKelvey
- Clinical Research Core, National Institute on AgingBaltimoreUnited States
| | - Linda Zukley
- Clinical Research Core, National Institute on AgingBaltimoreUnited States
| | - Cuong Nguyen
- Flow Cytometry Unit, National Institute on AgingBaltimoreUnited States
| | - Tonya Wallace
- Flow Cytometry Unit, National Institute on AgingBaltimoreUnited States
| | - Christopher Dunn
- Flow Cytometry Unit, National Institute on AgingBaltimoreUnited States
| | - William Wood
- Laboratory of Genetics and Genomics, National Institute on AgingBaltimoreUnited States
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on AgingBaltimoreUnited States
| | - Christopher Coletta
- Laboratory of Genetics and Genomics, National Institute on AgingBaltimoreUnited States
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on AgingBaltimoreUnited States
| | - Jyoti Sen
- Laboratory of Clinical Investigation, National Institute on AgingBaltimoreUnited States
| | - Nan-ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| |
Collapse
|
4
|
Miao M, Cao S, Tian Y, Liu D, Chen L, Chai Q, Wei M, Sun S, Wang L, Xin S, Liu G, Zheng M. Potential diagnostic biomarkers: 6 cuproptosis- and ferroptosis-related genes linking immune infiltration in acute myocardial infarction. Genes Immun 2023; 24:159-170. [PMID: 37422588 PMCID: PMC10435388 DOI: 10.1038/s41435-023-00209-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
The current diagnostic biomarkers of acute myocardial infarction (AMI), troponins, lack specificity and exist as false positives in other non-cardiac diseases. Previous studies revealed that cuproptosis, ferroptosis, and immune infiltration are all involved in the development of AMI. We hypothesize that combining the analysis of cuproptosis, ferroptosis, and immune infiltration in AMI will help identify more precise diagnostic biomarkers. The results showed that a total of 19 cuproptosis- and ferroptosis-related genes (CFRGs) were differentially expressed between the healthy and AMI groups. Functional enrichment analysis showed that the differential CFRGs were mostly enriched in biological processes related to oxidative stress and the inflammatory response. The immune infiltration status analyzed by ssGSEA found elevated levels of macrophages, neutrophils, and CCR in AMI. Then, we screened 6 immune-related CFRGs (CXCL2, DDIT3, DUSP1, CDKN1A, TLR4, STAT3) to construct a nomogram for predicting AMI and validated it in the GSE109048 dataset. Moreover, we also identified 5 pivotal miRNAs and 10 candidate drugs that target the 6 feature genes. Finally, RT-qPCR analysis verified that all 6 feature genes were upregulated in both animals and patients. In conclusion, our study reveals the significance of immune-related CFRGs in AMI and provides new insights for AMI diagnosis and treatment.
Collapse
Affiliation(s)
- Mengdan Miao
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China
- Department of Cardiology, Handan First Hospital, Handan, 056000, Hebei, China
| | - Shanhu Cao
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China
| | - Yifei Tian
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China
| | - Da Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China
| | - Lixia Chen
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China
| | - Qiaoying Chai
- Department of Cardiology, Handan First Hospital, Handan, 056000, Hebei, China
| | - Mei Wei
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology, Hebei Medical University, 050017, Shijiazhuang, China
| | - Le Wang
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
| | - Shuanli Xin
- Department of Cardiology, Handan First Hospital, Handan, 056000, Hebei, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China.
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
5
|
Popov SV, Mukhomedzyanov AV, Voronkov NS, Derkachev IA, Boshchenko AA, Fu F, Sufianova GZ, Khlestkina MS, Maslov LN. Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis 2023; 28:55-80. [PMID: 36369366 DOI: 10.1007/s10495-022-01786-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Ischemia/reperfusion (I/R) of the heart leads to increased autophagic flux. Preconditioning stimulates autophagic flux by AMPK and PI3-kinase activation and mTOR inhibition. The cardioprotective effect of postconditioning is associated with activation of autophagy and increased activity of NO-synthase and AMPK. Oxidative stress stimulates autophagy in the heart during I/R. Superoxide radicals generated by NADPH-oxidase acts as a trigger for autophagy, possibly due to AMPK activation. There is reason to believe that AMPK, GSK-3β, PINK1, JNK, hexokinase II, MEK, PKCα, and ERK kinases stimulate autophagy, while mTOR, PKCδ, Akt, and PI3-kinase can inhibit autophagy in the heart during I/R. However, there is evidence that PI3-kinase could stimulate autophagy in ischemic preconditioning of the heart. It was found that transcription factors FoxO1, FoxO3, NF-κB, HIF-1α, TFEB, and Nrf-2 enhance autophagy in the heart in I/R. Transcriptional factors STAT1, STAT3, and p53 inhibit autophagy in I/R. MicroRNAs could stimulate and inhibit autophagy in the heart in I/R. Long noncoding RNAs regulate the viability and autophagy of cardiomyocytes in hypoxia/reoxygenation (H/R). Nitric oxide (NO) donors and endogenous NO could activate autophagy of cardiomyocytes. Activation of heme oxygenase-1 promotes cardiomyocyte tolerance to H/R and enhances autophagy. Hydrogen sulfide increases cardiac tolerance to I/R and inhibits apoptosis and autophagy via mTOR and PI3-kinase activation.
Collapse
Affiliation(s)
- Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Alexander V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Nikita S Voronkov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Feng Fu
- School of Basic Medicine, Fourth Military Medical University, No.169, West Changle Road, Xi'an, 710032, China
| | | | | | - Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012.
| |
Collapse
|
6
|
Li X, Abdel-Moneim AME, Hu Z, Mesalam NM, Yang B. Effects of chronic hypoxia on the gene expression profile in the embryonic heart in three Chinese indigenous chicken breeds (Gallus gallus). Front Vet Sci 2022; 9:942159. [PMID: 35990266 PMCID: PMC9390884 DOI: 10.3389/fvets.2022.942159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia exposure (HE) has adverse impacts on the embryonic development of chicken, whereas the mechanism underlying the response of the heart to HE during embryo development in birds is still unclear. Therefore, our study was designed to reveal the hub genes and the signaling pathways linked to chronic hypoxia stress. Thus, the gene expression microarray GSE12675, downloaded from the GEO database, included 12 embryonic heart samples in hypoxia and normoxia of three Chinese indigenous chicken breeds [Shouguang (SG), Tibetan (TB), and Dwarf Recessive White (DRW) chickens]. A total of 653 to 714 breed-specific differentially expressed genes (DEGs) were detected in each pairwise comparison. Gene ontology (GO) showed that the DEGs were mainly involved in biological processes, including vasoconstriction, cell differentiation, and the positive regulation of vasoconstriction. KEGG enrichment revealed that the DEGs were mainly enriched in MAPK, PPAR, insulin, adrenergic signaling in cardiomyocytes, etc. Moreover, 48 genes (e.g., SGCD, DHRS9, HELQ, MCMDC2, and ESCO2) might contribute to the response of the heart to HE. Taken together, the current study provides important clues for understanding the molecular mechanism of the heart's response to HE during the embryonic period of chicken.
Collapse
Affiliation(s)
- Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | | | - Zhongze Hu
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Noura M. Mesalam
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
- *Correspondence: Bing Yang
| |
Collapse
|
7
|
Liu J, Ning L. Protective role of emodin in rats with post-myocardial infarction heart failure and influence on extracellular signal-regulated kinase pathway. Bioengineered 2021; 12:10246-10253. [PMID: 34839778 PMCID: PMC8809930 DOI: 10.1080/21655979.2021.1983977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022] Open
Abstract
We aimed to explore the effects of emodin on the energy metabolism of myocardial cells in rats with post-myocardial infarction (MI) heart failure (HF) and the extracellular signal-regulated kinase (ERK) pathway. The model of MI was established by ligation of the left anterior descending branch. After 4 weeks, the rats with left ventricular ejection fraction (LVEF) of ≤45% were used aspost-MI HF model animals and randomly divided into model, low-dose, middle-dose, high-dose and control groups (n=10). Low-, middle- and high-dose groups were gavaged with 20 mg/kg, 40 mg/kg and 60 mg/kg emodin daily, respectively. After administration for 14 d, the changes in LVEF, left ventricular end-systolic diameter (LVESD), left ventricular end-diastolic diameter (LVEDD) and interventricular septum thickness (IVS) were analyzed. The apoptosis rate of myocardial cells was detected by TUNEL staining. The levels of serum cardiac troponin I (cTnI) and peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) were determined using ELISA, and the expressions of mitochondrial respiratory chain complex I protein and phosphorylated-ERK (p-ERK) in myocardial tissues were determined by Western blotting. Compared with model group, LVEDD, LVESD, apoptosis rate of myocardial cells, levels of serum cTnI and PGC-1, and expressions of complex I and p-ERK in myocardial tissues significantly decreased, while LVEF and IVS increased in low-dose, middle-dose, high-dose and control groups (P<0.05). The changes in the above indices were significantly dependent on the dose of emodin (P<0.05).Emodin can significantly relieve post-MI HF, reduce the apoptosis rate of myocardial tissues, and ameliorate the cardiac function of rats.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Cardiovascular Medicine, Avic 363 Hospital, Chengdu, Sichuan Province, China
| | - Liang Ning
- Department of Cardiovascular Medicine, Avic 363 Hospital, Chengdu, Sichuan Province, China
| |
Collapse
|
8
|
Anitha RE, Janani R, Peethambaran D, Baskaran V. Lactucaxanthin protects retinal pigment epithelium from hyperglycemia-regulated hypoxia/ER stress/VEGF pathway mediated angiogenesis in ARPE-19 cell and rat model. Eur J Pharmacol 2021; 899:174014. [PMID: 33705802 DOI: 10.1016/j.ejphar.2021.174014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Hyperglycemia mediated perturbations in biochemical pathways induce angiogenesis in diabetic retinopathy (DR) pathogenesis. The present study aimed to investigate the protective effects of lactucaxanthin, a predominant lettuce carotenoid, on hyperglycemia-mediated activation of angiogenesis in vitro and in vivo diabetic model. ARPE-19 cells cultured in 30 mM glucose concentration were treated with lactucaxanthin (5 μM and 10 μM) for 48 h. They were assessed for antioxidant enzyme activity, mitochondrial membrane potential, reactive oxygen species, and cell migration. In the animal experiment, streptozotocin-induced diabetic male Wistar rats were gavaged with lactucaxanthin (200 μM) for 8 weeks. Parameters like animal weight gain, feed intake, water intake, urine output, and fasting blood glucose level were monitored. In both models, lutein-treated groups were considered as a positive control. Hyperglycemia-mediated angiogenic marker expressions in ARPE-19 and retina of diabetic rats were quantified through the western blot technique. Expression of hypoxia, endoplasmic reticulum stress markers, and vascular endothelial growth factor were found to be augmented in the hyperglycemia group compared to control (P < 0.05). Hyperglycemia plays a crucial role in increasing cellular migration and reactive oxygen species besides disrupting tight junction protein. Compared to lutein, lactucaxanthin aids retinal pigment epithelium (RPE) function from hyperglycemia-induced stress conditions via downregulating angiogenesis markers expression. Lactucaxanthin potentiality observed in protecting tight junction protein expression via modulating reactive oxygen species found to conserve RPE integrity. Results demonstrate that lactucaxanthin exhibits robust anti-angiogenic activity for the first time and, therefore, would be useful as an alternative therapy to prevent or delay DR progression.
Collapse
Affiliation(s)
- Rani Elavarasan Anitha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Rajasekar Janani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Divya Peethambaran
- CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Vallikannan Baskaran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.
| |
Collapse
|
9
|
Zou H, Liu G. Inhibition of endoplasmic reticulum stress through activation of MAPK/ERK signaling pathway attenuates hypoxia-mediated cardiomyocyte damage. J Recept Signal Transduct Res 2020; 41:532-537. [PMID: 33023351 DOI: 10.1080/10799893.2020.1831534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huanxue Zou
- Department of Cardiology, Yuyao People’s Hospital, Yuyao, China
| | - Gang Liu
- Department of Cardiology, Yuyao People’s Hospital, Yuyao, China
| |
Collapse
|