1
|
Avila-Ponce de León U, Vazquez-Jimenez A, Cervera A, Resendis-González G, Neri-Rosario D, Resendis-Antonio O. Machine Learning and COVID-19: Lessons from SARS-CoV-2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:311-335. [PMID: 37378775 DOI: 10.1007/978-3-031-28012-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Currently, methods in machine learning have opened a significant number of applications to construct classifiers with capacities to recognize, identify, and interpret patterns hidden in massive amounts of data. This technology has been used to solve a variety of social and health issues against coronavirus disease 2019 (COVID-19). In this chapter, we present some supervised and unsupervised machine learning techniques that have contributed in three aspects to supplying information to health authorities and diminishing the deadly effects of the current worldwide outbreak on the population. First is the identification and construction of powerful classifiers capable of predicting severe, moderate, or asymptomatic responses in COVID-19 patients starting from clinical or high-throughput technologies. Second is the identification of groups of patients with similar physiological responses to improve the triage classification and inform treatments. The final aspect is the combination of machine learning methods and schemes from systems biology to link associative studies with mechanistic frameworks. This chapter aims to discuss some practical applications in the use of machine learning techniques to handle data coming from social behavior and high-throughput technologies, associated with COVID-19 evolution.
Collapse
Affiliation(s)
- Ugo Avila-Ponce de León
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Aarón Vazquez-Jimenez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Alejandra Cervera
- Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Galilea Resendis-González
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Daniel Neri-Rosario
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico.
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación - Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico.
| |
Collapse
|
2
|
Rani P, Kapoor B, Gulati M, Atanasov AG, Alzahrani Q, Gupta R. Antimicrobial peptides: A plausible approach for COVID-19 treatment. Expert Opin Drug Discov 2022; 17:473-487. [PMID: 35255763 PMCID: PMC8935455 DOI: 10.1080/17460441.2022.2050693] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19), which emerged as a major public health threat, has affected >400 million people globally leading to >5 million mortalities to date. Treatments of COVID-19 are still to be developed as the available therapeutic approaches are not able to combat the virus causing the disease (severe acute respiratory syndrome coronavirus-2; SARS-CoV-2) satisfactorily. However, antiviral peptides (AVPs) have demonstrated prophylactic and therapeutic effects against many coronaviruses (CoVs). AREAS COVERED This review critically discusses various types of AVPs evaluated for the treatment of COVID-19 along with their mechanisms of action. Furthermore, the peptides inhibiting the entry of the virus by targeting its binding to angiotensin-converting enzyme 2 (ACE2) or integrins, fusion mechanism as well as activation of proteolytic enzymes (cathepsin L, transmembrane serine protease 2 (TMPRSS2), or furin) are also discussed. EXPERT OPINION Although extensively investigated, successful treatment of COVID-19 is still a challenge due to emergence of virus mutants. Antiviral peptides are anticipated to be blockbuster drugs for the management of this serious infection because of their formulation and therapeutic advantages. Although they may act on different pathways, AVPs having a multi-targeted approach are considered to have the upper hand in the management of this infection.
Collapse
Affiliation(s)
- Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Qushmua Alzahrani
- Department of Pharmacy/Nursing/Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) volunteer researcher, Joinville, Brazil
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
3
|
Kumari S, Raina A, Chandra D, Gupta N, Dey N, Bhardwaj AK, Anthwal A, Mishra VC, Raina V, Tiwari AK, Setia R, Bhatia A. Development and validation of novel kit for quantification of SARS-CoV-2 antibodies on clinical samples. J Virol Methods 2022; 300:114423. [PMID: 34919976 PMCID: PMC8669947 DOI: 10.1016/j.jviromet.2021.114423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/16/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022]
Abstract
Since the pandemic occurred due to the emergence of SARS-CoV-2, there has always been a demand for a simple and sensitive diagnostic kit for detection of SARS-Cov-2 infection. In January 2020, WHO approved the Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) for detecting the presence of Covid-19 genetic material in individuals. Till date many diagnostic kits have arrived in the market for quantification of SARS-CoV-2 antibodies. In spite of being the gold standard method of Covid-19 detection, there are some drawbacks associated with RT-PCR which leads to false-negative results. Hence, in order to fulfil the need for an antibody testing kit for evaluating seroconversion and immunity acquisition in the population, an efficient, highly specific and sensitive assay, Chimera Soochak, an enzyme-linked immunoassay (ELISA) Kit has been developed. It works on the principle of detecting IgG antibodies developed specifically against the S1-RBD by employing a recombinant strain of S1-RBD produced in the HEK293 cell line. The developed kit was validated using different modes and methods to attain the utmost confidence on the samples collected from patients. The validation methodology included, validation with known samples, blind study, third-party validation, validation using WHO Reference Panel and comparison with FDA approved Surrogate virus neutralization kit. The kit was found successful in detecting IgG against the S1-RBD of SARS-CoV-2. The kit had been validated on multiple parameters. A total of 900 samples had been tested by using this kit and it has exhibited the sensitivity, specificity and accuracy for all the above-mentioned parameters.
Collapse
Affiliation(s)
- Sneha Kumari
- Chimera Translational Research Fraternity Pvt Ltd, Delhi, India
| | - Anoushka Raina
- Chimera Translational Research Fraternity Pvt Ltd, Delhi, India
| | | | - Nikita Gupta
- Chimera Translational Research Fraternity Pvt Ltd, Delhi, India
| | - Nikki Dey
- Chimera Translational Research Fraternity Pvt Ltd, Delhi, India
| | | | | | - Vikash C. Mishra
- Chimera Transplant Research Foundation, Delhi, India,Corresponding author
| | - Vimarsh Raina
- Chimera Translational Research Fraternity Pvt Ltd, Delhi, India
| | | | | | | |
Collapse
|
4
|
Cryptococcal Protease(s) and the Activation of SARS-CoV-2 Spike (S) Protein. Cells 2022; 11:cells11030437. [PMID: 35159253 PMCID: PMC8834071 DOI: 10.3390/cells11030437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
In this contribution, we report on the possibility that cryptococcal protease(s) could activate the SARS-CoV-2 spike (S) protein. The S protein is documented to have a unique four-amino-acid sequence (underlined, SPRRAR↓S) at the interface between the S1 and S2 sites, that serves as a cleavage site for the human protease, furin. We compared the biochemical efficiency of cryptococcal protease(s) and furin to mediate the proteolytic cleavage of the S1/S2 site in a fluorogenic peptide. We show that cryptococcal protease(s) processes this site in a manner comparable to the efficiency of furin (p > 0.581). We conclude the paper by discussing the impact of these findings in the context of a SARS-CoV-2 disease manifesting while there is an underlying cryptococcal infection.
Collapse
|
5
|
Khan M, Mehran MT, Haq ZU, Ullah Z, Naqvi SR, Ihsan M, Abbass H. Applications of artificial intelligence in COVID-19 pandemic: A comprehensive review. EXPERT SYSTEMS WITH APPLICATIONS 2021; 185:115695. [PMID: 34400854 PMCID: PMC8359727 DOI: 10.1016/j.eswa.2021.115695] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 07/28/2021] [Indexed: 05/06/2023]
Abstract
During the current global public health emergency caused by novel coronavirus disease 19 (COVID-19), researchers and medical experts started working day and night to search for new technologies to mitigate the COVID-19 pandemic. Recent studies have shown that artificial intelligence (AI) has been successfully employed in the health sector for various healthcare procedures. This study comprehensively reviewed the research and development on state-of-the-art applications of artificial intelligence for combating the COVID-19 pandemic. In the process of literature retrieval, the relevant literature from citation databases including ScienceDirect, Google Scholar, and Preprints from arXiv, medRxiv, and bioRxiv was selected. Recent advances in the field of AI-based technologies are critically reviewed and summarized. Various challenges associated with the use of these technologies are highlighted and based on updated studies and critical analysis, research gaps and future recommendations are identified and discussed. The comparison between various machine learning (ML) and deep learning (DL) methods, the dominant AI-based technique, mostly used ML and DL methods for COVID-19 detection, diagnosis, screening, classification, drug repurposing, prediction, and forecasting, and insights about where the current research is heading are highlighted. Recent research and development in the field of artificial intelligence has greatly improved the COVID-19 screening, diagnostics, and prediction and results in better scale-up, timely response, most reliable, and efficient outcomes, and sometimes outperforms humans in certain healthcare tasks. This review article will help researchers, healthcare institutes and organizations, government officials, and policymakers with new insights into how AI can control the COVID-19 pandemic and drive more research and studies for mitigating the COVID-19 outbreak.
Collapse
Affiliation(s)
- Muzammil Khan
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Muhammad Taqi Mehran
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Zeeshan Ul Haq
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Zahid Ullah
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Salman Raza Naqvi
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Mehreen Ihsan
- Peshawar Medical College, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Haider Abbass
- National Cyber Security Auditing and Evaluation LAb, National University of Sciences & Technology, MCS Campus, Rawalpindi 43600, Pakistan
| |
Collapse
|
6
|
Kandimalla R, Chakraborty P, Vallamkondu J, Chaudhary A, Samanta S, Reddy PH, De Feo V, Dewanjee S. Counting on COVID-19 Vaccine: Insights into the Current Strategies, Progress and Future Challenges. Biomedicines 2021; 9:1740. [PMID: 34829969 PMCID: PMC8615473 DOI: 10.3390/biomedicines9111740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
The emergence of a novel coronavirus viz., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 and its subsequent substantial spread produced the coronavirus disease 2019 (COVID-19) pandemic worldwide. Given its unprecedented infectivity and pathogenicity, the COVID-19 pandemic had a devastating impact on human health, and its clinical management has been a great challenge, which has led to the development and speedy trials of several vaccine candidates against SARS-CoV-2 at an exceptional pace. As a result, several COVID-19 vaccines were made commercially available in the first half of 2021. Although several COVID-19 vaccines showed promising results, crucial insights into their epidemiology, protective mechanisms, and the propensities of reinfection are not largely reviewed. In the present report, we provided insights into the prospects of vaccination against COVID-19 and assessed diverse vaccination strategies including DNA, mRNA, protein subunits, vector-based, live attenuated, and inactivated whole/viral particle-based vaccines. Next, we reviewed major aspects of various available vaccines approved by the World Health Organization and by the local administrations to use against COVID-19. Moreover, we comprehensively assessed the success of these approved vaccines and also their untoward effects, including the possibility of reinfection. We also provided an update on the vaccines that are under development and could be promising candidates in the future. Conclusively, we provided insights into the COVID-19 vaccine epidemiology, their potency, and propensity for SARS-CoV-2 reinfection, while a careful review of their current status, strategies, success, and future challenges was also presented.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | | | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal 132001, Haryana, India;
| | - Sonalinandini Samanta
- Department of Dermatology (Skin & Venereology), ESIC Medical College & Hospital, Patna 801103, Bihar, India;
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Department of Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| |
Collapse
|
7
|
Corrie L, Muzaffar-Ur-Rehman MD, Kukatil L, Manasa D, Shirisha A. Antifibrotic Drugs for COVID-19: From Orphan Drugs to Blockbusters? CURRENT RESPIRATORY MEDICINE REVIEWS 2021. [DOI: 10.2174/1573398x17666210304100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Antifibrotic agents are known to treat idiopathic pulmonary fibrosis. The two antifibrotic
agents approved and in usage are Pirfenidone and Nintedanib granted by the USFDA in 2014.
They are both known to decrease inflammation in the lungs. The fact that COVID-19 has shown to
cause inflammation and fibrosis in the lungs frames the theory of their usage in the treatment of the
disease by reducing lung scaring and allowing faster discharge of patients with post-COVID complications.
The need for them to change their status from orphans to blockbusters has not happened
yet due to fewer data and less research available on them as well as various other economic and patient-
related factors. Since COVID-19 is widespread and causes many complications of the lungs
that are similar to what these two drugs treat. We believe that the status of these drugs could be
changed due to an increase in demand for them.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - MD Muzaffar-Ur-Rehman
- Nalla Narasimha Reddy Educational Society, Chowdariguda, Narapally, Telangana State, 500088, India
| | - Latha Kukatil
- G. Pulla Reddy College of Pharmacy, Pillar No : 23 (PVNR elevated Expressway) Mehdipatnam, Hyderabad, Telangana State, 500028, India
| | - Devasari Manasa
- G. Pulla Reddy College of Pharmacy, Pillar No : 23 (PVNR elevated Expressway) Mehdipatnam, Hyderabad, Telangana State, 500028, India
| | - Adepu Shirisha
- G. Pulla Reddy College of Pharmacy, Pillar No : 23 (PVNR elevated Expressway) Mehdipatnam, Hyderabad, Telangana State, 500028, India
| |
Collapse
|
8
|
Friedrich B, Auger JP, Dutz S, Cicha I, Schreiber E, Band J, Boccacccini AR, Krönke G, Alexiou C, Tietze R. Hydroxyapatite-Coated SPIONs and Their Influence on Cytokine Release. Int J Mol Sci 2021; 22:ijms22084143. [PMID: 33923700 PMCID: PMC8072956 DOI: 10.3390/ijms22084143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022] Open
Abstract
Hydroxyapatite- or calcium phosphate-coated iron oxide nanoparticles have a high potential for use in many biomedical applications. In this study, a co-precipitation method for the synthesis of hydroxyapatite-coated nanoparticles (SPIONHAp), was used. The produced nanoparticles have been characterized by dynamic light scattering, X-ray diffraction, vibrating sample magnetometry, Fourier transform infrared spectrometry, atomic emission spectroscopy, scanning electron microscopy, transmission electron microscopy, selected area diffraction, and energy-dispersive X-ray spectroscopy. The results showed a successful synthesis of 190 nm sized particles and their stable coating, resulting in SPIONHAp. Potential cytotoxic effects of SPIONHAp on EL4, THP-1, and Jurkat cells were tested, showing only a minor effect on cell viability at the highest tested concentration (400 µg Fe/mL). The results further showed that hydroxyapatite-coated SPIONs can induce minor TNF-α and IL-6 release by murine macrophages at a concentration of 100 µg Fe/mL. To investigate if and how such particles interact with other substances that modulate the immune response, SPIONHAp-treated macrophages were incubated with LPS (lipopolysaccharides) and dexamethasone. We found that cytokine release in response to these potent pro- and anti-inflammatory agents was modulated in the presence of SPIONHAp. Knowledge of this behavior is important for the management of inflammatory processes following in vivo applications of this type of SPIONs.
Collapse
Affiliation(s)
- Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (B.F.); (I.C.); (E.S.); (J.B.); (C.A.)
| | - Jean-Philippe Auger
- Department of Internal Medicine 3—Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.-P.A.); (G.K.)
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany;
| | - Iwona Cicha
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (B.F.); (I.C.); (E.S.); (J.B.); (C.A.)
| | - Eveline Schreiber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (B.F.); (I.C.); (E.S.); (J.B.); (C.A.)
| | - Julia Band
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (B.F.); (I.C.); (E.S.); (J.B.); (C.A.)
| | - Aldo R. Boccacccini
- Institute of Biomaterials, Department of Materials Science and Engineering, FAU, 91058 Erlangen, Germany;
| | - Gerhard Krönke
- Department of Internal Medicine 3—Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.-P.A.); (G.K.)
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (B.F.); (I.C.); (E.S.); (J.B.); (C.A.)
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (B.F.); (I.C.); (E.S.); (J.B.); (C.A.)
- Correspondence:
| |
Collapse
|
9
|
Booz GW, Zouein FA. Science unites a troubled world: Lessons from the pandemic. Eur J Pharmacol 2020; 890:173696. [PMID: 33130278 PMCID: PMC7598756 DOI: 10.1016/j.ejphar.2020.173696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022]
Abstract
European Journal of Pharmacology has published a special issue entitled Therapeutic targets and pharmacological treatment of COVID-19 that contains more than 30 manuscripts. Scientists from around the world contributed both review articles and original manuscripts that are remarkable in their diversity. Each contribution offers a unique perspective on the current approaches of the discipline called pharmacology. Yet the contributions share an enthusiasm to put forward a fresh viewpoint and make a positive difference by the exchange of ideas during the troubled times of this pandemic. What other enterprise but science can unite so many diverse cultures and nationalities in global uncertainty and discord, and mobilize an effective response against a common enemy. The efforts of science are in stark contrast to those of populism that has introduced division and a self-serving attitude that are not simply ill-matched to tackle the pandemic, but foster its spread and severity. We trust that the readers of European Journal of Pharmacology will discover new ideas and concepts in our special COVID-19 series as members of the scientific community and shared world.
Collapse
Affiliation(s)
- George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon.
| |
Collapse
|