1
|
Giacomoni J, Sabatier JM. Vitamin D and Mitochondrial Activity Preservation in COVID-19. Infect Disord Drug Targets 2025; 25:e190424229153. [PMID: 38644705 DOI: 10.2174/0118715265304580240405064250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Affiliation(s)
- Julien Giacomoni
- Independent Researcher, 245 chemin du château 13119, Saint Savournin, France
| | - Jean-Marc Sabatier
- Institut de NeuroPhysiopathologie (INP), CNRS UMR 7051, 27 Bd Jean Moulin, 13005, Marseille, France
| |
Collapse
|
2
|
Xuan X, Zhang Y, Song Y, Zhang B, Liu J, Liu D, Lu S. Role of protein arginine methyltransferase 1 in obesity-related metabolic disorders: Research progress and implications. Diabetes Obes Metab 2024; 26:3491-3500. [PMID: 38747214 DOI: 10.1111/dom.15640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 08/06/2024]
Abstract
Obesity has become a major global problem that significantly confers an increased risk of developing life-threatening complications, including type 2 diabetes mellitus, fatty liver disease and cardiovascular diseases. Protein arginine methyltransferases (PRMTs) are enzymes that catalyse the methylation of target proteins. They are ubiquitous in eukaryotes and regulate transcription, splicing, cell metabolism and RNA biology. As a key, epigenetically modified enzyme, protein arginine methyltransferase 1 (PRMT1) is involved in obesity-related metabolic processes, such as lipid metabolism, the insulin signalling pathway, energy balance and inflammation, and plays an important role in the pathology of obesity-related metabolic disorders. This review summarizes recent research on the role of PRMT1 in obesity-related metabolic disorders. The primary objective was to comprehensively elucidate the functional role and regulatory mechanisms of PRMT1. Moreover, this study attempts to review the pathogenesis of PRMT1-mediated obesity-related metabolic disorders, thereby offering pivotal information for further studies and clinical treatment.
Collapse
Affiliation(s)
- Xiaolei Xuan
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yongjiao Zhang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Yufan Song
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Bingyang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Junjun Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Dong Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Sumei Lu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
3
|
Zhang Y, Wei S, Jin EJ, Jo Y, Oh CM, Bae GU, Kang JS, Ryu D. Protein Arginine Methyltransferases: Emerging Targets in Cardiovascular and Metabolic Disease. Diabetes Metab J 2024; 48:487-502. [PMID: 39043443 PMCID: PMC11307121 DOI: 10.4093/dmj.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders stand as formidable challenges that significantly impact the clinical outcomes and living quality for afflicted individuals. An intricate comprehension of the underlying mechanisms is paramount for the development of efficacious therapeutic strategies. Protein arginine methyltransferases (PRMTs), a class of enzymes responsible for the precise regulation of protein methylation, have ascended to pivotal roles and emerged as crucial regulators within the intrinsic pathophysiology of these diseases. Herein, we review recent advancements in research elucidating on the multifaceted involvements of PRMTs in cardiovascular system and metabolic diseases, contributing significantly to deepen our understanding of the pathogenesis and progression of these maladies. In addition, this review provides a comprehensive analysis to unveil the distinctive roles of PRMTs across diverse cell types implicated in cardiovascular and metabolic disorders, which holds great potential to reveal novel therapeutic interventions targeting PRMTs, thus presenting promising perspectives to effectively address the substantial global burden imposed by CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Eun-Ju Jin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Gyu-Un Bae
- Muscle Physiome Institute, College of Pharmacy, Sookmyung Women’s University, Seoul, Korea
- Research Institute of Aging-Related Diseases, AniMusCure Inc., Suwon, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
- Research Institute of Aging-Related Diseases, AniMusCure Inc., Suwon, Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
4
|
Lin H, Deng H, Jiang Z, Hua P, Hu S, Ao H, Zhong M, Liu M, Guo G. Microarray analysis of tRNA-derived small RNA (tsRNA) in LPS-challenged macrophages treated with metformin. Gene 2024; 913:148399. [PMID: 38518902 DOI: 10.1016/j.gene.2024.148399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Metformin, a widely used anti-diabetic drug, has demonstrated its efficacy in addressing various inflammatory conditions. tRNA-derived small RNA (tsRNA), a novel type of small non-coding RNA, exhibits diverse regulatory functions and holds promise as both a diagnostic biomarker and a therapeutic target for various diseases. The purpose of this study is to investigate whether the abundance of tsRNAs changed in LPS versus LPS + metformin-treated cells, utilizing microarray technology. Firstly, we established an in vitro lipopolysaccharide (LPS)-induced inflammation model using RAW264.7 macrophages and assessed the protective effects of metformin against inflammatory damage. Subsequently, we extracted total RNA from both LPS-treated and metformin + LPS-treated cell samples for microarray analysis to identify differentially abundant tsRNAs (DA-tsRNAs). Furthermore, we conducted bioinformatics analysis to predict target genes for validated DA-tsRNAs and explore the biological functions and signaling pathways associated with DA-tsRNAs. Notably, metformin was found to inhibit the inflammatory response in RAW264.7 macrophages. The microarray results revealed a total of 247 DA-tsRNAs, with 58 upregulated and 189 downregulated tsRNAs in the Met + LPS group compared to the LPS group. The tsRNA-mRNA network was visualized, shedding light on potential interactions. The results of bioinformatics analysis suggested that these potential targets of specific tsRNAs were mainly related to inflammation and immunity. Our study provides compelling evidence that metformin exerts anti-inflammatory effects and modulates the abundance of tsRNAs in LPS-treated RAW264.7 macrophages. These findings establish a valuable foundation for using tsRNAs as potential biomarkers for metformin in the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Huan Lin
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongao Deng
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhengying Jiang
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peng Hua
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shiqiang Hu
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, China
| | - Meiling Zhong
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, China
| | - Mingzhuo Liu
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Guanghua Guo
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
5
|
Chen T, Liu J, Li S, Wang P, Shang G. The role of protein arginine N-methyltransferases in inflammation. Semin Cell Dev Biol 2024; 154:208-214. [PMID: 36075843 DOI: 10.1016/j.semcdb.2022.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Protein arginine methyltransferases (PRMTs) promote the methylation of numerous proteins at their arginine residues. An increasing number of publications have suggested that dysregulation of PRMTs participates in various human diseases, such as cardiovascular diseases, cancer, diabetes and neurodegenerative disorders. Inflammation is one normal response to infection or injury by immune system, which can keep body homeostasis. Emerging data reveal that inflammation is associated with the development of numerous diseases. Moreover, accumulated evidence proves that PRMTs have been characterized to regulate inflammation in various diseases. In this review article, we delineate the function and molecular mechanism of PRMTs in regulation of inflammation in current literature. Moreover, we discuss that targeting PRMTs by its inhibitors and compounds could have therapeutic potential.
Collapse
Affiliation(s)
- Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jinxin Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shizhe Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Peter Wang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui 233030, China.
| | - Guanning Shang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
6
|
Bettiol A, Urban ML, Emmi G, Galora S, Argento FR, Fini E, Borghi S, Bagni G, Mattioli I, Prisco D, Fiorillo C, Becatti M. SIRT1 and thrombosis. Front Mol Biosci 2024; 10:1325002. [PMID: 38304233 PMCID: PMC10833004 DOI: 10.3389/fmolb.2023.1325002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
Thrombosis is a major cause of morbidity and mortality worldwide, with a complex and multifactorial pathogenesis. Recent studies have shown that SIRT1, a member of the sirtuin family of NAD + -dependent deacetylases, plays a crucial role in regulating thrombosis, modulating key pathways including endothelial activation, platelet aggregation, and coagulation. Furthermore, SIRT1 displays anti-inflammatory activity both in vitro, in vivo and in clinical studies, particularly via the reduction of oxidative stress. On these bases, several studies have investigated the therapeutic potential of targeting SIRT1 for the prevention of thrombosis. This review provides a comprehensive and critical overview of the main preclinical and clinical studies and of the current understanding of the role of SIRT1 in thrombosis.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Maria Letizia Urban
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Silvia Galora
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Irene Mattioli
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| |
Collapse
|
7
|
Abdelgawad IY, Agostinucci K, Sadaf B, Grant MKO, Zordoky BN. Metformin mitigates SASP secretion and LPS-triggered hyper-inflammation in Doxorubicin-induced senescent endothelial cells. FRONTIERS IN AGING 2023; 4:1170434. [PMID: 37168843 PMCID: PMC10164964 DOI: 10.3389/fragi.2023.1170434] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Introduction: Doxorubicin (DOX), a chemotherapeutic drug, induces senescence and increases the secretion of senescence-associated secretory phenotype (SASP) in endothelial cells (ECs), which contributes to DOX-induced inflammaging. Metformin, an anti-diabetic drug, demonstrates senomorphic effects on different models of senescence. However, the effects of metformin on DOX-induced endothelial senescence have not been reported before. Senescent ECs exhibit a hyper-inflammatory response to lipopolysachharide (LPS). Therefore, in our current work, we identified the effects of metformin on DOX-induced endothelial senescence and LPS-induced hyper-inflammation in senescent ECs. Methods: ECs were treated with DOX ± metformin for 24 h followed by 72 h incubation without DOX to establish senescence. Effects of metformin on senescence markers expression, SA-β-gal activity, and SASP secretion were assessed. To delineate the molecular mechanisms, the effects of metformin on major signaling pathways were determined. The effect of LPS ± metformin was determined by stimulating both senescent and non-senescent ECs with LPS for an additional 24 h. Results: Metformin corrected DOX-induced upregulation of senescence markers and decreased the secretion of SASP factors and adhesion molecules. These effects were associated with a significant inhibition of the JNK and NF-κB pathway. A significant hyper-inflammatory response to LPS was observed in DOX-induced senescent ECs compared to non-senescent ECs. Metformin blunted LPS-induced upregulation of pro-inflammatory SASP factors. Conclusion: Our study demonstrates that metformin mitigates DOX-induced endothelial senescence phenotype and ameliorates the hyper-inflammatory response to LPS. These findings suggest that metformin may protect against DOX-induced vascular aging and endothelial dysfunction and ameliorate infection-induced hyper-inflammation in DOX-treated cancer survivors.
Collapse
Affiliation(s)
| | | | | | | | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| |
Collapse
|
8
|
Du Y, Zhu YJ, Zhou YX, Ding J, Liu JY. Metformin in therapeutic applications in human diseases: its mechanism of action and clinical study. MOLECULAR BIOMEDICINE 2022; 3:41. [PMID: 36484892 PMCID: PMC9733765 DOI: 10.1186/s43556-022-00108-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a biguanide drug, is the most commonly used first-line medication for type 2 diabetes mellites due to its outstanding glucose-lowering ability. After oral administration of 1 g, metformin peaked plasma concentration of approximately 20-30 μM in 3 h, and then it mainly accumulated in the gastrointestinal tract, liver and kidney. Substantial studies have indicated that metformin exerts its beneficial or deleterious effect by multiple mechanisms, apart from AMPK-dependent mechanism, also including several AMPK-independent mechanisms, such as restoring of redox balance, affecting mitochondrial function, modulating gut microbiome and regulating several other signals, such as FBP1, PP2A, FGF21, SIRT1 and mTOR. On the basis of these multiple mechanisms, researchers tried to repurpose this old drug and further explored the possible indications and adverse effects of metformin. Through investigating with clinical studies, researchers concluded that in addition to decreasing cardiovascular events and anti-obesity, metformin is also beneficial for neurodegenerative disease, polycystic ovary syndrome, aging, cancer and COVID-19, however, it also induces some adverse effects, such as gastrointestinal complaints, lactic acidosis, vitamin B12 deficiency, neurodegenerative disease and offspring impairment. Of note, the dose of metformin used in most studies is much higher than its clinically relevant dose, which may cast doubt on the actual effects of metformin on these disease in the clinic. This review summarizes these research developments on the mechanism of action and clinical evidence of metformin and discusses its therapeutic potential and clinical safety.
Collapse
Affiliation(s)
- Yang Du
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ya-Juan Zhu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yi-Xin Zhou
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Ding
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Ji-Yan Liu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Sosa-Díaz E, Hernández-Cruz EY, Pedraza-Chaverri J. The role of vitamin D on redox regulation and cellular senescence. Free Radic Biol Med 2022; 193:253-273. [PMID: 36270517 DOI: 10.1016/j.freeradbiomed.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Vitamin D is considered an essential micronutrient for human health that is metabolized into a multifunctional secosteroid hormone. We can synthesize it in the skin through ultraviolet B (UVB) rays or acquire it from the diet. Its deficiency is a major global health problem that affects all ages and ethnic groups. Furthermore, dysregulation of vitamin D homeostasis has been associated with premature aging, driven by various cellular processes, including oxidative stress and cellular senescence. Various studies have shown that vitamin D can attenuate oxidative stress and delay cellular senescence, mainly by inducing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Klotho and improving mitochondrial homeostasis, proposing this vitamin as an excellent candidate for delaying aging. However, the mechanisms around these processes are not yet fully explored. Therefore, in this review, the effects of vitamin D on redox regulation and cellular senescence are discussed to propose new lines of research and clinical applications of vitamin D in the context of age-related diseases.
Collapse
Affiliation(s)
- Emilio Sosa-Díaz
- Faculty of Medicine, National Autonomous University of Mexico, 04360, Mexico City, Mexico; Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Estefani Yaquelin Hernández-Cruz
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico; Postgraduate in Biological Sciences, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| |
Collapse
|
10
|
Love KM, Barrett EJ, Horton WB. Metformin's Impact on the Microvascular Response to Insulin. Endocrinology 2022; 163:bqac162. [PMID: 36201598 PMCID: PMC10233257 DOI: 10.1210/endocr/bqac162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 11/19/2022]
Abstract
Metformin improves insulin's action on whole-body glucose metabolism in various insulin-resistant populations. The detailed cellular mechanism(s) for its metabolic actions are multiple and still incompletely understood. Beyond metabolic actions, metformin also impacts microvascular function. However, the effects of metformin on microvascular function and microvascular insulin action specifically are poorly defined. In this mini-review, we summarize what is currently known about metformin's beneficial impact on both microvascular function and the microvascular response to insulin while highlighting methodologic issues in the literature that limit straightforward mechanistic understanding of these effects. We examine potential mechanisms for these effects based on pharmacologically dosed studies and propose that metformin may improve human microvascular insulin resistance by attenuating oxidative stress, inflammation, and endothelial dysfunction. Finally, we explore several important evidence gaps and discuss avenues for future investigation that may clarify whether metformin's ability to improve microvascular insulin sensitivity is linked to its positive impact on vascular outcomes.
Collapse
Affiliation(s)
- Kaitlin M Love
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - William B Horton
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
11
|
Kumar IP, Snega Priya P, Meenatchi R, Oyouni AAA, Al-Amer OM, Aljohani SAS, Pashameah RA, Hamadi A, Alanazi MA, Arockiaraj J. Potential mechanism of Jatropha gossypifolia phenolic derivatives in enhancing insulin-signalling cascades GLUT 4, IRβ and GSK-3β in streptozotocin nicotinamide induced type II diabetic in wistar rat model. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102223. [DOI: 10.1016/j.jksus.2022.102223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
12
|
Li T, Yu X, Zhu X, Wen Y, Zhu M, Cai W, Hou B, Xu F, Qiu L. Vaccarin alleviates endothelial inflammatory injury in diabetes by mediating miR-570-3p/HDAC1 pathway. Front Pharmacol 2022; 13:956247. [PMID: 36120375 PMCID: PMC9475173 DOI: 10.3389/fphar.2022.956247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Vaccarin is a flavonoid glycoside, which has a variety of pharmacological properties and plays a protective role in diabetes and its complications, but its mechanism is unclear. In this study, we aim to investigate whether histone deacetylase 1(HDAC1), a gene that plays a pivotal role in regulating eukaryotic gene expression, is the target of miR-570-3p in diabetic vascular endothelium, and the potential molecular mechanism of vaccarin regulating endothelial inflammatory injury through miR-570-3p/HDAC1 pathway. The HFD and streptozotocin (STZ) induced diabetes mice model, a classical type 2 diabetic model, was established. The aorta of diabetic mice displayed a decrease of miR-570-3p, the elevation of HDAC1, and inflammatory injury, which were alleviated by vaccarin. Next, we employed the role of vaccarin in regulating endothelial cells miR-570-3p and HDAC1 under hyperglycemia conditions in vitro. We discovered that overexpression of HDAC1 counteracted the inhibitory effect of vaccarin on inflammatory injury in human umbilical vein endothelial cells (HUVECs). Manipulation of miRNA levels in HUVECs was achieved by transfecting cells with miR-570-3p mimic and inhibitor. Overexpression of miR-570-3p could decrease the expression of downstream components of HDAC1 including TNF-α, IL-1β, and malondialdehyde, while increasing GSH-Px activity in HUVECs under hyperglycemic conditions. Nevertheless, such phenomenon was completely reversed by miR-570-3p inhibitor, and administration of miR-570-3p inhibitor could block the inhibition of vaccarin on HDAC1 and inflammatory injury. Luciferase reporter assay confirmed the 3′- UTR of the HDAC1 gene was a direct target of miR-570-3p. In summary, our findings suggest that vaccarin alleviates endothelial inflammatory injury in diabetes by mediating miR-570-3p/HDAC1 pathway. Our study provides a new pathogenic link between deregulation of miRNA expression in the vascular endothelium of diabetes and inflammatory injury and provides new ideas, insights, and choices for the scope of application and medicinal value of vaccarin and some potential biomarkers or targets in diabetic endothelial dysfunction and vascular complications.
Collapse
Affiliation(s)
- Taiyue Li
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaoyi Yu
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuerui Zhu
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuanyuan Wen
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Meizhen Zhu
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Weiwei Cai
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Bao Hou
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Fei Xu
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
- *Correspondence: Fei Xu, ; Liying Qiu,
| | - Liying Qiu
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
- *Correspondence: Fei Xu, ; Liying Qiu,
| |
Collapse
|
13
|
Borojević A, Jauković A, Kukolj T, Mojsilović S, Obradović H, Trivanović D, Živanović M, Zečević Ž, Simić M, Gobeljić B, Vujić D, Bugarski D. Vitamin D3 Stimulates Proliferation Capacity, Expression of Pluripotency Markers, and Osteogenesis of Human Bone Marrow Mesenchymal Stromal/Stem Cells, Partly through SIRT1 Signaling. Biomolecules 2022; 12:biom12020323. [PMID: 35204824 PMCID: PMC8868595 DOI: 10.3390/biom12020323] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
The biology of vitamin D3 is well defined, as are the effects of its active metabolites on various cells, including mesenchymal stromal/stem cells (MSCs). However, the biological potential of its precursor, cholecalciferol (VD3), has not been sufficiently investigated, although its significance in regenerative medicine—mainly in combination with various biomaterial matrices—has been recognized. Given that VD3 preconditioning might also contribute to the improvement of cellular regenerative potential, the aim of this study was to investigate its effects on bone marrow (BM) MSC functions and the signaling pathways involved. For that purpose, the influence of VD3 on BM-MSCs obtained from young human donors was determined via MTT test, flow cytometric analysis, immunocytochemistry, and qRT-PCR. Our results revealed that VD3, following a 5-day treatment, stimulated proliferation, expression of pluripotency markers (NANOG, SOX2, and Oct4), and osteogenic differentiation potential in BM-MSCs, while it reduced their senescence. Moreover, increased sirtuin 1 (SIRT1) expression was detected upon treatment with VD3, which mediated VD3-promoted osteogenesis and, partially, the stemness features through NANOG and SOX2 upregulation. In contrast, the effects of VD3 on proliferation, Oct4 expression, and senescence were SIRT1-independent. Altogether, these data indicate that VD3 has strong potential to modulate BM-MSCs’ features, partially through SIRT1 signaling, although the precise mechanisms merit further investigation.
Collapse
Affiliation(s)
- Ana Borojević
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
- Correspondence: ; Tel.: +381-11-3108-175
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Tamara Kukolj
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Hristina Obradović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics, Röntgenring 11, 97070 Würzburg, Germany
- Bernhard-Heine-Center for Locomotion Research, University Würzburg, Sanderring 2, 97070 Würzburg, Germany
| | - Milena Živanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Željko Zečević
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Simić
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
| | - Borko Gobeljić
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
| | - Dragana Vujić
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Diana Bugarski
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| |
Collapse
|