1
|
Crespin M, Siquier-Pernet K, Marzin P, Bole-Feysot C, Malan V, Nitschké P, Hully M, Roux CJ, Lemoine M, Rio M, Boddaert N, Courtin T, Cantagrel V. LSM7 variants involving key amino acids for LSM complex function cause a neurodevelopmental disorder with leukodystrophy and cerebellar atrophy. HGG ADVANCES 2025; 6:100372. [PMID: 39420558 PMCID: PMC11583803 DOI: 10.1016/j.xhgg.2024.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Cerebellar atrophy and hypoplasia are usually identified on MRI performed on children presenting signs of cerebellar ataxias, developmental delay, and intellectual disability. These signs can be associated with hypo- or de-myelinating leukodystrophies. A recent study reported two cases: one child diagnosed with leukodystrophy and cerebellar atrophy, harboring a homozygous variant in LSM7, and another who died in utero, presumed to have another homozygous variant in LSM7, based on the parents' genotype. LSM7 encodes a subunit of the LSM complex, involved in pre-RNA maturation and mRNA degradation. Consequently, it has been suggested as a strong candidate disease gene. This hypothesis was supported by functional investigations of the variants. Here, we report a patient with neurodevelopmental defects, leukodystrophy, and cerebellar atrophy, harboring compound heterozygous missense variants in the LSM7 gene. One of these variants is the same as the one carried by the first case reported previously. The other one is at the same position as the variant potentially carried by the second case reported previously. Based on comparable neuroimaging, clinical features, and the involvement of the same amino acids previously demonstrated as key for LSM complex function, we confirm that LSM7 disruption causes a neurodevelopmental disorder characterized by leukodystrophy and cerebellar atrophy.
Collapse
Affiliation(s)
- Matis Crespin
- AP-HP, Necker Enfants-Malades Hospital, Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, 75015 Paris, France
| | - Karine Siquier-Pernet
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Developmental Brain Disorders Laboratory, 75015 Paris, France
| | - Pauline Marzin
- AP-HP, Necker Enfants-Malades Hospital, Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, 75015 Paris, France
| | - Christine Bole-Feysot
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Valérie Malan
- AP-HP, Necker Enfants-Malades Hospital, Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, 75015 Paris, France; Université Paris Cité, INSERM UMR1163, Imagine Institute, Developmental Brain Disorders Laboratory, 75015 Paris, France
| | - Patrick Nitschké
- Université Paris Cité, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Marie Hully
- Département de Neurologie Pédiatrique, Necker Enfants-Malades Hospital, APHP Centre, Université Paris Cité, 75015 Paris, France; AP-HP, Necker Enfant Malade Hospital, Unité de Médecine Physique et de Réadaptation, 75015 Paris, France
| | - Charles-Joris Roux
- Département de Radiologie Pédiatrique, INSERM UMR 1163 and INSERM U1299, Institut Imagine, AP-HP, Necker Enfant Malade Hospital, 75015 Paris, France
| | - Michel Lemoine
- AP-HP, Necker Enfant Malade Hospital, Unité de Médecine Physique et de Réadaptation, 75015 Paris, France
| | - Marlène Rio
- AP-HP, Necker Enfants-Malades Hospital, Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, 75015 Paris, France
| | - Nathalie Boddaert
- Département de Radiologie Pédiatrique, INSERM UMR 1163 and INSERM U1299, Institut Imagine, AP-HP, Necker Enfant Malade Hospital, 75015 Paris, France
| | - Thomas Courtin
- AP-HP, Necker Enfants-Malades Hospital, Fédération de Génétique et Médecine Génomique, Service de Médecine Génomique des Maladies Rares, 75015 Paris, France; Université Paris Cité, INSERM UMR1163, Imagine Institute, Developmental Brain Disorders Laboratory, 75015 Paris, France
| | - Vincent Cantagrel
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Developmental Brain Disorders Laboratory, 75015 Paris, France.
| |
Collapse
|
2
|
Ferrera G, Izzo R, Ghezzi D, Nanetti L, Lamantea E, Ardissone A. A Novel Pathogenic Variant in the SCA25-Related Gene Expanding the Etiology of Early-Onset and Progressive Cerebellar Ataxia in Childhood. Neuropediatrics 2024; 55:135-139. [PMID: 37935417 DOI: 10.1055/a-2205-2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Spinocerebellar ataxias (SCAs) are heterogeneous autosomal dominant progressive ataxic disorders. SCA25 has been linked to PNPT1 pathogenic variants. Although pediatric onset is not unusual, to date only one patient with onset in the first years of life has been reported. This study presents an additional case, wherein symptoms emerged during the toddler phase, accompanied by the identification of a novel PNPT1 variant. The child was seen at 3 years because of frequent falls. Neurological examination revealed cerebellar signs and psychomotor delay. Brain MRI showed cerebellar atrophy (CA), cerebellar cortex, and dentate nuclei hyperintensities. Metabolic and genetic testing was inconclusive. At follow-up (age 6), the child had clinically and radiologically worsened; electroneurography (ENG) revealed axonal sensory neuropathy. Screening of genes associated with ataxias and mitochondrial disease identified a novel, heterozygous variant in PNPT1, which was probably pathogenic. This variant was also detected in the proband's mother and maternal grandmother, both asymptomatic, which aligns with the previously documented incomplete penetrance of heterozygous PNPT1 variants. Our study confirms that SCA25 can have onset in early childhood and characterizes natural history in pediatric cases: progressive cerebellar ataxia with sensory neuropathy, which manifests during the course of the disease. We report for the first time cerebellar gray matter hyperintensities, suggesting that SCA25 should be included in the differential diagnosis of cerebellar ataxias associated with such brain imaging features. In summary, SCA25 should be considered in the diagnostic workup of early onset pediatric progressive ataxias. Additionally, we confirm an incomplete penetrance and highly variable expressivity of PNPT1-associated SCA25.
Collapse
Affiliation(s)
- Giulia Ferrera
- Department of Pediatric Neurosciences, Child Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rossella Izzo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Ardissone
- Department of Pediatric Neurosciences, Child Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
3
|
Martínez-Rubio D, Hinarejos I, Argente-Escrig H, Marco-Marín C, Lozano MA, Gorría-Redondo N, Lupo V, Martí-Carrera I, Miranda C, Vázquez-López M, García-Pérez A, Marco-Hernández AV, Tomás-Vila M, Aguilera-Albesa S, Espinós C. Genetic Heterogeneity Underlying Phenotypes with Early-Onset Cerebellar Atrophy. Int J Mol Sci 2023; 24:16400. [PMID: 38003592 PMCID: PMC10671053 DOI: 10.3390/ijms242216400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cerebellar atrophy (CA) is a frequent neuroimaging finding in paediatric neurology, usually associated with cerebellar ataxia. The list of genes involved in hereditary forms of CA is continuously growing and reveals its genetic complexity. We investigated ten cases with early-onset cerebellar involvement with and without ataxia by exome sequencing or by a targeted panel with 363 genes involved in ataxia or spastic paraplegia. Novel variants were investigated by in silico or experimental approaches. Seven probands carry causative variants in well-known genes associated with CA or cerebellar hypoplasia: SETX, CACNA1G, CACNA1A, CLN6, CPLANE1, and TBCD. The remaining three cases deserve special attention; they harbour variants in MAST1, PI4KA and CLK2 genes. MAST1 is responsible for an ultrarare condition characterised by global developmental delay and cognitive decline; our index case added ataxia to the list of concomitant associated symptoms. PIK4A is mainly related to hypomyelinating leukodystrophy; our proband presented with pure spastic paraplegia and normal intellectual capacity. Finally, in a patient who suffers from mild ataxia with oculomotor apraxia, the de novo novel CLK2 c.1120T>C variant was found. The protein expression of the mutated protein was reduced, which may indicate instability that would affect its kinase activity.
Collapse
Affiliation(s)
- Dolores Martínez-Rubio
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
| | - Isabel Hinarejos
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
| | | | - Clara Marco-Marín
- Structural Enzymopathology Unit, Instituto de Biomedicina de Valencia (IBV), Consejo Superior de Investigaciones Científicas (CSIC), 46022 València, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - María Ana Lozano
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
| | - Nerea Gorría-Redondo
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Vincenzo Lupo
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
| | - Itxaso Martí-Carrera
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario Donostia, 20014 Donostia, Spain
| | - Concepción Miranda
- Paediatric Neurology Unit, Department of Paediatrics, Hospital General Universitario Gregorio Marañón, 28027 Madrid, Spain
| | - María Vázquez-López
- Paediatric Neurology Unit, Department of Paediatrics, Hospital General Universitario Gregorio Marañón, 28027 Madrid, Spain
| | - Asunción García-Pérez
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain
| | - Ana Victoria Marco-Hernández
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitari Doctor, Peset, 46017 València, Spain
| | - Miguel Tomás-Vila
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitari i Politècnic La Fe, 46026 València, Spain
| | - Sergio Aguilera-Albesa
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Biotechnology Department, Universitat Politècnica de València, 46022 València, Spain
| |
Collapse
|
4
|
Sakamoto M, Iwama K, Sasaki M, Ishiyama A, Komaki H, Saito T, Takeshita E, Shimizu-Motohashi Y, Haginoya K, Kobayashi T, Goto T, Tsuyusaki Y, Iai M, Kurosawa K, Osaka H, Tohyama J, Kobayashi Y, Okamoto N, Suzuki Y, Kumada S, Inoue K, Mashimo H, Arisaka A, Kuki I, Saijo H, Yokochi K, Kato M, Inaba Y, Gomi Y, Saitoh S, Shirai K, Morimoto M, Izumi Y, Watanabe Y, Nagamitsu SI, Sakai Y, Fukumura S, Muramatsu K, Ogata T, Yamada K, Ishigaki K, Hirasawa K, Shimoda K, Akasaka M, Kohashi K, Sakakibara T, Ikuno M, Sugino N, Yonekawa T, Gürsoy S, Cinleti T, Kim CA, Teik KW, Yan CM, Haniffa M, Ohba C, Ito S, Saitsu H, Saida K, Tsuchida N, Uchiyama Y, Koshimizu E, Fujita A, Hamanaka K, Misawa K, Miyatake S, Mizuguchi T, Miyake N, Matsumoto N. Genetic and clinical landscape of childhood cerebellar hypoplasia and atrophy. Genet Med 2022; 24:2453-2463. [PMID: 36305856 DOI: 10.1016/j.gim.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Cerebellar hypoplasia and atrophy (CBHA) in children is an extremely heterogeneous group of disorders, but few comprehensive genetic studies have been reported. Comprehensive genetic analysis of CBHA patients may help differentiating atrophy and hypoplasia and potentially improve their prognostic aspects. METHODS Patients with CBHA in 176 families were genetically examined using exome sequencing. Patients with disease-causing variants were clinically evaluated. RESULTS Disease-causing variants were identified in 96 of the 176 families (54.5%). After excluding 6 families, 48 patients from 42 families were categorized as having syndromic associations with CBHA, whereas the remaining 51 patients from 48 families had isolated CBHA. In 51 patients, 26 aberrant genes were identified, of which, 20 (76.9%) caused disease in 1 family each. The most prevalent genes were CACNA1A, ITPR1, and KIF1A. Of the 26 aberrant genes, 21 and 1 were functionally annotated to atrophy and hypoplasia, respectively. CBHA+S was more clinically severe than CBHA-S. Notably, ARG1 and FOLR1 variants were identified in 2 families, leading to medical treatments. CONCLUSION A wide genetic and clinical diversity of CBHA was revealed through exome sequencing in this cohort, which highlights the importance of comprehensive genetic analyses. Furthermore, molecular-based treatment was available for 2 families.
Collapse
Affiliation(s)
- Masamune Sakamoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Saito
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Tomoko Kobayashi
- Department of Pediatrics, Tohoku University Hospital, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Tomohide Goto
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yu Tsuyusaki
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mizue Iai
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hitoshi Osaka
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan; Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Jun Tohyama
- Department of Child Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan
| | - Yu Kobayashi
- Department of Child Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yume Suzuki
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Kenji Inoue
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Hideaki Mashimo
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Atsuko Arisaka
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Ichiro Kuki
- Department of Pediatric Neurology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Harumi Saijo
- Department of Pediatrics, Tokyo Metropolitan Higashiyamato Medical Center for Developmental/Multiple Disabilities, Tokyo, Japan
| | - Kenji Yokochi
- Department of Pediatric Neurology, Seirei-Mikatahara General Hospital, Hamamatsu, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Yuji Inaba
- Division of Neurology, Nagano Children's Hospital, Azumino, Nagano, Japan
| | - Yuko Gomi
- Division of Rehabilitation, Nagano Children's Hospital, Azumino, Nagano, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kentaro Shirai
- Department of Pediatrics, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Masafumi Morimoto
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoriko Watanabe
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | | | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinobu Fukumura
- Department of Pediatrics, School of Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuhiro Muramatsu
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan; Department of Pediatrics, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Tomomi Ogata
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Keitaro Yamada
- Department of Pediatric Neurology, Aichi Developmental Disability Center Central Hospital, Aichi, Japan
| | - Keiko Ishigaki
- Department of Pediatrics, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kyoko Hirasawa
- Department of Pediatrics, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Konomi Shimoda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Manami Akasaka
- Department of Pediatrics, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Kosuke Kohashi
- Department of Pediatrics, Matsudo City General Hospital, Matsudo, Japan
| | | | - Masashi Ikuno
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noriko Sugino
- Department of Neonatology, Mie Chuo Medical Center, National Hospital Organization, Tsu, Japan
| | - Takahiro Yonekawa
- Department of Pediatrics, Mie University School of Medicine, Mie, Japan
| | - Semra Gürsoy
- Department of Pediatric Genetics, S.B.Ü. Dr. Behçet Uz Children's Education and Research Hospital, Izmir, Turkey
| | - Tayfun Cinleti
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Chong Ae Kim
- Unidade de Genética Clínica, Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Keng Wee Teik
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Chan Mei Yan
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Muzhirah Haniffa
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Chihiro Ohba
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shuuichi Ito
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
5
|
Radhakrishnan R, Shea LAG, Pruthi S, Silvera VM, Bosemani T, Desai NK, Gilbert DL, Glenn OA, Guimaraes CV, Ho ML, Lam HFS, Maheshwari M, Mirsky DM, Nadel HR, Partap S, Schooler GR, Udayasankar UK, Whitehead MT, Wright JN, Rigsby CK. ACR Appropriateness Criteria® Ataxia-Child. J Am Coll Radiol 2022; 19:S240-S255. [PMID: 36436955 DOI: 10.1016/j.jacr.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
Abstract
Childhood ataxia may be due to multifactorial causes of impairment in the coordination of movement and balance. Acutely presenting ataxia in children may be due to infectious, inflammatory, toxic, ischemic, or traumatic etiology. Intermittent or episodic ataxia in children may be manifestations of migraine, benign positional vertigo, or intermittent metabolic disorders. Nonprogressive childhood ataxia suggests a congenital brain malformation or early prenatal or perinatal brain injury, and progressive childhood ataxia indicates inherited causes or acquired posterior fossa lesions that result in gradual cerebellar dysfunction. CT and MRI of the central nervous system are the usual modalities used in imaging children presenting with ataxia, based on the clinical presentation. This document provides initial imaging guidelines for a child presenting with acute ataxia with or without a history of recent trauma, recurrent ataxia with interval normal neurological examination, chronic progressive ataxia, and chronic nonprogressive ataxia. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances in which peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
- Rupa Radhakrishnan
- Associate Division Chief, Neuroradiology, Indiana University Health, Indianapolis, Indiana.
| | - Lindsey A G Shea
- Research Author, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sumit Pruthi
- Panel Chair, Vanderbilt Children's Hospital, Nashville, Tennessee
| | | | | | | | - Donald L Gilbert
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; American Academy of Neurology
| | - Orit A Glenn
- Director, Pediatric Neuroradiology, University of California, San Francisco, San Francisco, California
| | - Carolina V Guimaraes
- Division Chief, Pediatric Radiology, Lucile Packard Children's Hospital at Stanford, Stanford, California
| | - Mai-Lan Ho
- Nationwide Children's Hospital, Columbus, Ohio
| | - H F Samuel Lam
- Sutter Medical Center Sacramento, Sacramento, California; American College of Emergency Physicians
| | - Mohit Maheshwari
- Director of Pediatric Neuroradiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David M Mirsky
- Director of the Pediatric Neuroradiology Fellowship, Children's Hospital Colorado, Aurora, Colorado
| | - Helen R Nadel
- Lucile Packard Children's Hospital at Stanford, Stanford, California
| | - Sonia Partap
- Neuro-Oncology Fellowship Director, Stanford University, Stanford, California; American Academy of Pediatrics
| | - Gary R Schooler
- Associate Division Director, Pediatric Radiology, UT Southwestern Medical Center, Dallas, Texas
| | | | | | | | - Cynthia K Rigsby
- Specialty Chair; Chair, Medical Imaging Department, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| |
Collapse
|
6
|
Serrallach BL, Orman G, Boltshauser E, Hackenberg A, Desai NK, Kralik SF, Huisman TAGM. Neuroimaging in cerebellar ataxia in childhood: A review. J Neuroimaging 2022; 32:825-851. [PMID: 35749078 DOI: 10.1111/jon.13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
Ataxia is one of the most common pediatric movement disorders and can be caused by a large number of congenital and acquired diseases affecting the cerebellum or the vestibular or sensory system. It is mainly characterized by gait abnormalities, dysmetria, intention tremor, dysdiadochokinesia, dysarthria, and nystagmus. In young children, ataxia may manifest as the inability or refusal to walk. The diagnostic approach begins with a careful clinical history including the temporal evolution of ataxia and the inquiry of additional symptoms, is followed by a meticulous physical examination, and, depending on the results, is complemented by laboratory assays, electroencephalography, nerve conduction velocity, lumbar puncture, toxicology screening, genetic testing, and neuroimaging. Neuroimaging plays a pivotal role in either providing the final diagnosis, narrowing the differential diagnosis, or planning targeted further workup. In this review, we will focus on the most common form of ataxia in childhood, cerebellar ataxia (CA). We will discuss and summarize the neuroimaging findings of either the most common or the most important causes of CA in childhood or present causes of pediatric CA with pathognomonic findings on MRI. The various pediatric CAs will be categorized and presented according to (a) the cause of ataxia (acquired/disruptive vs. inherited/genetic) and (b) the temporal evolution of symptoms (acute/subacute, chronic, progressive, nonprogressive, and recurrent). In addition, several illustrative cases with their key imaging findings will be presented.
Collapse
Affiliation(s)
- Bettina L Serrallach
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Gunes Orman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Eugen Boltshauser
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Annette Hackenberg
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nilesh K Desai
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Stephen F Kralik
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Thierry A G M Huisman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Superior Cerebellar Atrophy: An Imaging Clue to Diagnose ITPR1-Related Disorders. Int J Mol Sci 2022; 23:ijms23126723. [PMID: 35743164 PMCID: PMC9223788 DOI: 10.3390/ijms23126723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
The inositol 1,4,5-triphosphate receptor type 1 (ITPR1) gene encodes an InsP3-gated calcium channel that modulates intracellular Ca2+ release and is particularly expressed in cerebellar Purkinje cells. Pathogenic variants in the ITPR1 gene are associated with different types of autosomal dominant spinocerebellar ataxia: SCA15 (adult onset), SCA29 (early-onset), and Gillespie syndrome. Cerebellar atrophy/hypoplasia is invariably detected, but a recognizable neuroradiological pattern has not been identified yet. With the aim of describing ITPR1-related neuroimaging findings, the brain MRI of 14 patients with ITPR1 variants (11 SCA29, 1 SCA15, and 2 Gillespie) were reviewed by expert neuroradiologists. To further evaluate the role of superior vermian and hemispheric cerebellar atrophy as a clue for the diagnosis of ITPR1-related conditions, the ITPR1 gene was sequenced in 5 patients with similar MRI pattern, detecting pathogenic variants in 4 of them. Considering the whole cohort, a distinctive neuroradiological pattern consisting in superior vermian and hemispheric cerebellar atrophy was identified in 83% patients with causative ITPR1 variants, suggesting this MRI finding could represent a hallmark for ITPR1-related disorders.
Collapse
|
8
|
Arora M, Boruah DK, Thakker V, Bhanwra S. 'Phenytoin: Shepherd or Wolf in Disguise? Phenytoin-Induced Neurotoxicity: A Case Series. Neurol India 2021; 69:1014-1017. [PMID: 34507432 DOI: 10.4103/0028-3886.323888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Phenytoin is a commonly used antiepileptic drug for various types of seizure disorders except for absent seizures. Long-term dose-dependent neurological side effects of phenytoin therapy include cerebellar atrophy, cerebral atrophy, and brain stem atrophy. Skull hyperostosis, gum hypertrophy, and megaloblastic anemia are other known effects of long-term therapy. We present four cases depicting clinical and neuroimaging findings of phenytoin-induced toxicity.
Collapse
Affiliation(s)
- Manali Arora
- Department of Radio-Diagnosis, Pramukhswami Medical College, Anand, Gujarat, India
| | - Deb K Boruah
- Department of Radio-Diagnosis, Assam Medical College, Dibrugarh, Assam, India
| | - Vishal Thakker
- Department of Radio-Diagnosis, Pramukhswami Medical College, Anand, Gujarat, India
| | - Sangeeta Bhanwra
- Department of Pharmacology, Government Medical College, Punjab, India
| |
Collapse
|
9
|
Gauquelin L, Hartley T, Tarnopolsky M, Dyment DA, Brais B, Geraghty MT, Tétreault M, Ahmed S, Rojas S, Choquet K, Majewski J, Bernier F, Innes AM, Rouleau G, Suchowersky O, Boycott KM, Yoon G. Channelopathies Are a Frequent Cause of Genetic Ataxias Associated with Cerebellar Atrophy. Mov Disord Clin Pract 2020; 7:940-949. [PMID: 33163565 DOI: 10.1002/mdc3.13086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 11/08/2022] Open
Abstract
Background Cerebellar atrophy is a nonspecific imaging finding observed in a number of neurological disorders. Genetic ataxias associated with cerebellar atrophy are a heterogeneous group of conditions, rendering the approach to diagnosis challenging. Objectives To define the spectrum of genetic ataxias associated with cerebellar atrophy in a Canadian cohort and the diagnostic yield of exome sequencing for this group of conditions. Methods A total of 92 participants from 66 families with cerebellar atrophy were recruited for this multicenter prospective cohort study. Exome sequencing was performed for all participants between 2011 and 2017 as part of 1 of 2 national research programs, Finding of Rare Genetic Disease Genes or Enhanced Care for Rare Genetic Diseases in Canada. Results A genetic diagnosis was established in 53% of families (35/66). Pathogenic variants were found in 21 known genes, providing a diagnosis for 31/35 families (89%), and in 4 novel genes, accounting for 4/35 families (11%). Of the families, 31/66 (47%) remained without a genetic diagnosis. The most common diagnoses were channelopathies, which were established in 9/35 families (26%). Additional clinical findings provided useful clues to specific diagnoses. Conclusions We report on the high frequency of channelopathies as a cause of genetic ataxias associated with cerebellar atrophy and the utility of exome sequencing for this group of conditions.
Collapse
Affiliation(s)
- Laurence Gauquelin
- Division of Clinical and Metabolic Genetics, Department of Paediatrics The Hospital for Sick Children, University of Toronto Toronto Ontario Canada.,Division of Paediatric Neurology, Department of Paediatrics The Hospital for Sick Children, University of Toronto Toronto Ontario Canada
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute University of Ottawa Ottawa Ontario Canada
| | - Mark Tarnopolsky
- Department of Paediatrics McMaster University Medical Centre Hamilton Ontario Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute University of Ottawa Ottawa Ontario Canada
| | - Bernard Brais
- Department of Neurology and Neurosurgery McGill University, Montreal Neurological Institute Montreal Qubec Canada.,Department of Human Genetics McGill University Montreal Qubec Canada
| | - Michael T Geraghty
- Children's Hospital of Eastern Ontario Research Institute University of Ottawa Ottawa Ontario Canada
| | - Martine Tétreault
- Department of Human Genetics McGill University Montreal Qubec Canada.,Department of Neuroscience Université de Montréal CHUM, Montreal Qubec Canada
| | - Sohnee Ahmed
- Division of Clinical and Metabolic Genetics, Department of Paediatrics The Hospital for Sick Children, University of Toronto Toronto Ontario Canada
| | - Samantha Rojas
- Children's Hospital of Eastern Ontario Research Institute University of Ottawa Ottawa Ontario Canada
| | - Karine Choquet
- Department of Neurology and Neurosurgery McGill University, Montreal Neurological Institute Montreal Qubec Canada
| | - Jacek Majewski
- Department of Human Genetics McGill University Montreal Qubec Canada
| | - François Bernier
- Department of Medical Genetics University of Calgary Calgary Alberta Canada
| | | | - Guy Rouleau
- Department of Neurology and Neurosurgery McGill University, Montreal Neurological Institute Montreal Qubec Canada
| | - Oksana Suchowersky
- Department of Medicine Division of Neurology, University of Alberta Edmonton Alberta Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute University of Ottawa Ottawa Ontario Canada
| | - Grace Yoon
- Division of Clinical and Metabolic Genetics, Department of Paediatrics The Hospital for Sick Children, University of Toronto Toronto Ontario Canada.,Division of Paediatric Neurology, Department of Paediatrics The Hospital for Sick Children, University of Toronto Toronto Ontario Canada
| |
Collapse
|
10
|
Inherited Metabolic Disorders Presenting with Ataxia. Int J Mol Sci 2020; 21:ijms21155519. [PMID: 32752260 PMCID: PMC7432519 DOI: 10.3390/ijms21155519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Ataxia is a common clinical feature in inherited metabolic disorders. There are more than 150 inherited metabolic disorders in patients presenting with ataxia in addition to global developmental delay, encephalopathy episodes, a history of developmental regression, coarse facial features, seizures, and other types of movement disorders. Seizures and a history of developmental regression especially are important clinical denominators to consider an underlying inherited metabolic disorder in a patient with ataxia. Some of the inherited metabolic disorders have disease specific treatments to improve outcomes or prevent early death. Early diagnosis and treatment affect positive neurodevelopmental outcomes, so it is important to think of inherited metabolic disorders in the differential diagnosis of ataxia.
Collapse
|
11
|
Scola E, Ganau M, Robinson R, Cleary M, De Cocker LJL, Mankad K, Triulzi F, D'Arco F. Neuroradiological findings in three cases of pontocerebellar hypoplasia type 9 due to AMPD2 mutation: typical MRI appearances and pearls for differential diagnosis. Quant Imaging Med Surg 2019; 9:1966-1972. [PMID: 31929969 DOI: 10.21037/qims.2019.08.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pontocerebellar hypoplasia type 9 (PCH9) is a rare autosomal recessive neurodegenerative disorder with prenatal onset caused by mutations in adenosine monophosphate deaminase 2 (AMPD2). PCH9 patients demonstrate severe neurodevelopmental delay with early onset and typical magnetic resonance imaging (MRI) findings consisting in: pontine hypoplasia or atrophy with dragonfly cerebellar atrophy appearance on coronal images, reduction in size of the pons and middle cerebellar peduncles, abnormal midbrain describing a figure of "8" on axial images, diffuse loss of cerebral white matter with striking periventricular leukomalacia (PVL), and absence or extreme thinning of the corpus callosum. A review of the literature on PCH9 shows that the MRI phenotype observed in the series herein presented is similar to the eleven cases of PCH9 previously reported. Finally, the main radiological elements which differentiate this diagnosis from other PCH subtypes are described.
Collapse
Affiliation(s)
- Elisa Scola
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Ganau
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert Robinson
- Department of Neurology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Maureen Cleary
- Department of Metabolic Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | | | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Fabio Triulzi
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Università degli Studi Milano, Milan, Italy
| | - Felice D'Arco
- Department of Radiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Howley MM, Keppler-Noreuil KM, Cunniff CM, Browne ML. Descriptive epidemiology of cerebellar hypoplasia in the National Birth Defects Prevention Study. Birth Defects Res 2018; 110:1419-1432. [PMID: 30230717 PMCID: PMC6265081 DOI: 10.1002/bdr2.1388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cerebellar hypoplasia is a rare disorder of cerebellar formation in which the cerebellum is not completely developed, smaller than it should be, or completely absent. The prevalence of cerebellar hypoplasia at birth is unknown, and little is known about epidemiological risk factors. Using data from the National Birth Defects Prevention Study (NBDPS), a population-based, case-control study, we analyzed clinical features and potential risk factors for nonsyndromic cerebellar hypoplasia. METHODS The NBDPS included pregnancies with estimated delivery dates from 1997-2011. We described clinical features of cerebellar hypoplasia cases from the study area. We explored risk factors for cerebellar hypoplasia (case characteristics, demographics, pregnancy characteristics, maternal health conditions, maternal medication use, and maternal behavioral exposures) by comparing cases to non-malformed live born control infants. We calculated crude odds ratios (ORs) and 95% confidence intervals using logistic regression models. RESULTS We identified 87 eligible cerebellar hypoplasia cases and 55 mothers who participated in the NBDPS. There were no differences in clinical features between interviewed and non-interviewed cases. Cerebellar hypoplasia cases were more likely than controls to be from a multiple pregnancy, be born preterm, and have low birth weight. Cerebellar hypoplasia cases were more likely to be born in or after 2005, as opposed to earlier in NBDPS. We found elevated ORs that were not statistically significant for maternal use of vasoactive medications, non-Hispanic black mothers, and mothers with a history of hypertension. CONCLUSIONS Although unadjusted, our findings from a large, population-based study can contribute to new hypotheses regarding the etiology of cerebellar hypoplasia.
Collapse
Affiliation(s)
- Meredith M Howley
- Congenital Malformations Registry, NYS Department of Health, Albany, New York
| | - Kim M Keppler-Noreuil
- Medical Genomic & Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Marilyn L Browne
- Congenital Malformations Registry, NYS Department of Health, Albany, New York
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, New York
| |
Collapse
|
13
|
Cerebellar Ataxia in Children: A Clinical and MRI Approach to the Differential Diagnosis. Top Magn Reson Imaging 2018; 27:275-302. [PMID: 30086112 DOI: 10.1097/rmr.0000000000000175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: The cerebellum has long been recognized as a fundamental structure in motor coordination. Structural cerebellar abnormalities and diseases involving the cerebellum are relatively common in children. The not always specific clinical presentation of ataxia, incoordination, and balance impairment can often be a challenge to attain a precise diagnosis. Continuous advances in genetic research and moreover the constant development in neuroimaging modalities, particularly in the field of magnetic resonance imaging, have promoted a better understanding of cerebellar diseases and led to several modifications in their classification in recent years. Thorough clinical and neuroimaging investigation is recommended for proper diagnosis. This review outlines an update of causes of cerebellar disorders that present clinically with ataxia in the pediatric population. These conditions were classified in 2 major groups, namely genetic malformations and acquired or disruptive disorders recognizable by neuroimaging and subsequently according to their features during the prenatal and postnatal periods.
Collapse
|
14
|
Mankad K, Talenti G, Tan AP, Gonçalves FG, Robles C, Kan EYL, Siddiqui A. Neurometabolic Disorders of the Newborn. Top Magn Reson Imaging 2018; 27:179-196. [PMID: 30086107 DOI: 10.1097/rmr.0000000000000176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is an extensive and diverse set of medical conditions affecting the neonatal brain within the spectrum of neurometabolic disorders. As such, their clinical presentations can be rather nonspecific, and can often mimic acquired entities such as hypoxic-ischemic encephalopathy and sepsis. Similarly, the radiological findings in these entities can also be frequently nonspecific, but a more detailed analysis of imaging findings (especially magnetic resonance imaging) alongside the relevant clinical details can be a rewarding experience, thus enabling a timely and targeted diagnosis. Early diagnosis of an underlying neurometabolic disorder is vital, as some of these entities are potentially treatable, and laboratory and genetic testing can be precisely targeted. Further, their detection helps with counselling families for future pregnancies. We present a review of neurometabolic disorders specific to the newborns with a focus on how neuroimaging findings match their clinical presentation patterns.
Collapse
Affiliation(s)
- Kshitij Mankad
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Ai Peng Tan
- Department of Diagnostic Imaging, National University Health System, Singapore, Singapore
| | | | - Carlos Robles
- Department of Radiology, Hospital Clinico Universidad de Chile, Región Metropolitana, Chile
| | - Elaine Y L Kan
- Department of Radiology, Hong Kong Children's Hospital, Kai Tak, Hong Kong
| | - Ata Siddiqui
- Department of Neuroradiology, King's College Hospital, London, UK
| |
Collapse
|
15
|
Neuroimaging in mitochondrial disorders. Essays Biochem 2018; 62:409-421. [DOI: 10.1042/ebc20170109] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/02/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022]
Abstract
MRI and 1H magnetic resonance spectroscopy (1HMRS) are the main neuroimaging methods to study mitochondrial diseases. MRI can demonstrate seven ‘elementary’ central nervous system (CNS) abnormalities in these disorders, including diffuse cerebellar atrophy, cerebral atrophy, symmetric signal changes in subcortical structures (basal ganglia, brainstem, cerebellum), asymmetric signal changes in the cerebral cortex and subcortical white matter, leukoencephalopathy, and symmetric signal changes in the optic nerve and the spinal cord. These elementary MRI abnormalities can be variably combined in the single patient, often beyond what can be expected based on the classically known clinical-pathological patterns. However, a normal brain MRI is also possible. 1HMRS has a diagnostic role in patients with suspected mitochondrial encephalopathy, especially in the acute phase, as it can detect within the lesions, but also in normal appearing nervous tissue or in the ventricular cerebrospinal fluid (CSF), an abnormally prominent lactate peak, reflecting failure of the respiratory chain with a shift from the Krebs cycle to anaerobic glycolysis. So far, studies correlating MRI findings with genotype in mitochondrial disease have been possible only in small samples and would greatly benefit from data pooling. MRI and 1HMRS have provided important information on the pathophysiology of CNS damage in mitochondrial diseases by enabling in vivo non-invasive assessment of tissue abnormalities, the associated changes of blood perfusion and cellular metabolic derangement. MRI and 1HMRS are expected to serve as surrogate biomarkers in trials investigating therapeutic options in mitochondrial disease.
Collapse
|
16
|
Conventional MRI. HANDBOOK OF CLINICAL NEUROLOGY 2018. [PMID: 29903441 DOI: 10.1016/b978-0-444-63956-1.00013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Conventional magnetic resonance imaging (MRI) allows for a detailed noninvasive visualization/examination of posterior fossa structures and represents a fundamental step in the diagnostic workup of many cerebellar disorders. In the first part of this chapter methodologic issues, like the correct choice of hardware (magnets, coils), pro and cons of the different MRI sequences, and patient management during the examination are discussed. In the second part, the MRI anatomy of the cerebellum, as noted on the various conventional MRI sequences, as well as a detailed description of cerebellar maturational processes from birth to childhood and into adulthood, are reported. Volumetric studies on the cerebellar growth based on three-dimensional MRI sequences are also presented. Moreover, we briefly discuss two main topics regarding conventional MRI of the cerebellum that have generated some debate in recent years: the differentiation between cerebellar atrophy, hypoplasia, and pontocerebellar hypoplasia, and signal changes of dentate nuclei after repetitive gadolinium-based contrast injections. The advantages and benefits of advanced neuroimaging techniques, including 1H magnetic resonance spectroscopy, diffusion-weighted imaging, diffusion tensor imaging, and perfusion-weighted imaging are discussed in the last section of the chapter.
Collapse
|
17
|
Abstract
The nervous system is vulnerable to intrinsic and extrinsic metabolic perturbations. In particular, the cerebellum, with its large Purkinje cells and its high density of neurons and glial cells, has high metabolic demand and is highly vulnerable to metabolic derangements. As a result, many disorders of intermediary metabolism will preferentially and sometimes selectively target the cerebellum. However, many of these disorders present in a multisystem fashion with ataxia being a part of the neurologic symptom complex. The presentation of these disorders depends on the time of onset and type of metabolic derangement. Early infantile or intrauterine-onset diseases will present in a young child typically with global hypotonia and both nystagmus and ataxia become more apparent later in life, while later-onset diseases usually present primarily with ataxia. It is important to note that the majority of these disorders are progressive if they are untreated. This chapter provides a review of acquired and genetic metabolic disorders that target the cerebellum, and discusses their diagnostic evaluation and therapy.
Collapse
Affiliation(s)
- Fatima Y Ismail
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, United States; College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Ali Fatemi
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
18
|
Kim YO, Yun M, Jeong JH, Choi SM, Kim SK, Yoon W, Park C, Hong Y, Woo YJ. A Mild Form of COG5 Defect Showing Early-Childhood-Onset Friedreich's-Ataxia-Like Phenotypes with Isolated Cerebellar Atrophy. J Korean Med Sci 2017; 32:1885-1890. [PMID: 28960046 PMCID: PMC5639074 DOI: 10.3346/jkms.2017.32.11.1885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/28/2016] [Indexed: 11/21/2022] Open
Abstract
Progressive cerebellar ataxias are rare diseases during childhood, especially under 6 years of age. In a single family, three affected siblings exhibited Friedreich's-ataxia-like phenotypes before 2 years of age. They had progressive cerebellar atrophy, intellectual disability, and scoliosis. Although their phenotypes were similar to those observed in patients with autosomal recessive cerebellar ataxias, other phenotypes (e.g., seizure, movement disorders, ophthalmologic disturbance, cardiomyopathy, and cutaneous disorders) were not noted in this family. Whole-exome sequencing of the family members revealed one potential heterozygous mutation (c.1209delG, NM_181733.2; p.Met403IlefsX3, NP_859422.2) of the gene encoding conserved oligomeric Golgi complex subunit 5 (COG5). The heterozygous deletion at the fifth base in exon 12 of COG5 caused a frameshift and premature stop. Western blotting of COG5 proteins in the skin tissues from an affected proband showed a significantly decreased level of full length COG5 and smaller, aberrant COG5 proteins. We reported a milder form of COG5 defect showing Friedreich's-ataxia-like phenotypes without hypotonia, microcephaly, and short stature that were observed in most patients with COG5 defect.
Collapse
Affiliation(s)
- Young Ok Kim
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, Korea.
| | - Misun Yun
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Jae Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Seong Min Choi
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Seul Kee Kim
- Department of Radiology, Chonnam National University Medical School, Gwangju, Korea
| | - Woong Yoon
- Department of Radiology, Chonnam National University Medical School, Gwangju, Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| | - Yeongjin Hong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Young Jong Woo
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
19
|
Mormina E, Briguglio M, Morabito R, Arrigo A, Marino S, Di Rosa G, Micalizzi A, Valente EM, Salpietro V, Vinci SL, Longo M, Granata F. A rare case of cerebellar agenesis: a probabilistic Constrained Spherical Deconvolution tractographic study. Brain Imaging Behav 2016; 10:158-67. [PMID: 25832852 DOI: 10.1007/s11682-015-9377-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aim of this study is to show the potential of probabilistic tractographic techniques, based on the Constrained Spherical Deconvolution (CSD) algorithms, in recognizing white matter fiber bundle anomalies in patients with complex cerebral malformations, such as cerebellar agenesis. The morphological and tractographic study of a 17-year-old male patient affected by cerebellar agenesis was performed by using a 3Tesla MRI scanner. Genetic and neuropsychological tests were carried out. An MRI morphological study showed the absence of both cerebellar hemispheres and the flattening of the anterior side of the pons. Moreover, it showed a severe vermian hypoplasia with a minimal vermian residual. The study recognized two thin cerebellar remnants, medially in contact with the small vermian residual, at the pontine level. The third ventricle, morphologically normal, communicated with a permagna cerebello-medullary cistern. Probabilistic CSD tractography identified some abnormal and aberrant infratentorial tracts, symmetrical on both sides. In particular, the transverse pontine fibers were absent and the following tracts with aberrant trajectories have been identified: "cerebello-thalamic" tracts; "fronto-cerebellar" tracts; and ipsilateral and contralateral "spino-cerebellar" tracts. Abnormal tracts connecting the two thin cerebellar remnants have also been detected. There were no visible alterations in the main supratentorial tracts in either side. Neuropsychiatric evaluation showed moderate cognitive-motor impairment with discrete adaptive compensation. Probabilistic CSD tractography is a promising technique that overcome reconstruction biases of other diffusion tensor-based approaches and allowed us to recognize, in a patient with cerebellar agenesis, abnormal tracts and aberrant trajectories of normally existing tracts.
Collapse
Affiliation(s)
- Enricomaria Mormina
- Neuroradiology Unit - Department of Biomedical Sciences and Morpho-Functional Imaging, University of Messina, via Consolare Valeria, 1 A.O.U. Policlinico "G. Martino", 98125, Messina, Italy
| | - Marilena Briguglio
- Department of Pediatric, Gynecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Rosa Morabito
- Neuroradiology Unit - Department of Biomedical Sciences and Morpho-Functional Imaging, University of Messina, via Consolare Valeria, 1 A.O.U. Policlinico "G. Martino", 98125, Messina, Italy
| | - Alessandro Arrigo
- Neuroradiology Unit - Department of Biomedical Sciences and Morpho-Functional Imaging, University of Messina, via Consolare Valeria, 1 A.O.U. Policlinico "G. Martino", 98125, Messina, Italy.
| | - Silvia Marino
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - Gabriella Di Rosa
- Department of Pediatric, Gynecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Alessia Micalizzi
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Laboratory, San Giovanni Rotondo, Italy
- Department of Biological and Environmental Science, University of Messina, Messina, Italy
| | - Enza Maria Valente
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Laboratory, San Giovanni Rotondo, Italy
- Section of Neurosciences, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Vincenzo Salpietro
- Department of Pediatric, Gynecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Sergio Lucio Vinci
- Neuroradiology Unit - Department of Biomedical Sciences and Morpho-Functional Imaging, University of Messina, via Consolare Valeria, 1 A.O.U. Policlinico "G. Martino", 98125, Messina, Italy
| | - Marcello Longo
- Neuroradiology Unit - Department of Biomedical Sciences and Morpho-Functional Imaging, University of Messina, via Consolare Valeria, 1 A.O.U. Policlinico "G. Martino", 98125, Messina, Italy
| | - Francesca Granata
- Neuroradiology Unit - Department of Biomedical Sciences and Morpho-Functional Imaging, University of Messina, via Consolare Valeria, 1 A.O.U. Policlinico "G. Martino", 98125, Messina, Italy
| |
Collapse
|
20
|
Klassen S, Dufault B, Salman MS. Can Latent Class Analysis Be Used to Improve the Diagnostic Process in Pediatric Patients with Chronic Ataxia? THE CEREBELLUM 2016; 16:348-357. [PMID: 27352287 DOI: 10.1007/s12311-016-0810-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic ataxia is a relatively common symptom in children. There are numerous causes of chronic ataxia, making it difficult to derive a diagnosis in a timely manner. We hypothesized that the efficiency of the diagnostic process can be improved with systematic analysis of clinical features in pediatric patients with chronic ataxia. Our aim was to improve the efficiency of the diagnostic process in pediatric patients with chronic ataxia. A cohort of 184 patients, aged 0-16 years with chronic ataxia who received medical care at Winnipeg Children's Hospital during 1991-2008, was ascertained retrospectively from several hospital databases. Clinical details were extracted from hospital charts. The data were compared among the more common diseases using univariate analysis to identify pertinent clinical features that could potentially improve the efficiency of the diagnostic process. Latent class analysis was then conducted to detect unique patterns of clinical features and to determine whether these patterns could be associated with chronic ataxia diagnoses. Two models each with three classes were chosen based on statistical criteria and clinical knowledge for best fit. Each class represented a specific pattern of presenting symptoms or other clinical features. The three classes corresponded to a plausible and shorter list of possible diagnoses. For example, developmental delay and hypotonia correlated best with Angelman syndrome. Specific patterns of presenting symptoms or other clinical features can potentially aid in the initial assessment and diagnosis of pediatric patients with chronic ataxia. This will likely improve the efficiency of the diagnostic process.
Collapse
Affiliation(s)
- Samantha Klassen
- College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Brenden Dufault
- George and Fay Yee Center for Healthcare Innovation, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Michael S Salman
- Department of Pediatrics and Child Health, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Section of Pediatric Neurology, Children's Hospital, AE 308, 820 Sherbrook Street, Winnipeg, MB, R3A 1R9, Canada.
| |
Collapse
|
21
|
Megahed H, Nicouleau M, Barcia G, Medina-Cano D, Siquier-Pernet K, Bole-Feysot C, Parisot M, Masson C, Nitschké P, Rio M, Bahi-Buisson N, Desguerre I, Munnich A, Boddaert N, Colleaux L, Cantagrel V. Utility of whole exome sequencing for the early diagnosis of pediatric-onset cerebellar atrophy associated with developmental delay in an inbred population. Orphanet J Rare Dis 2016; 11:57. [PMID: 27146152 PMCID: PMC4855324 DOI: 10.1186/s13023-016-0436-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/21/2016] [Indexed: 11/26/2022] Open
Abstract
Background Cerebellar atrophy and developmental delay are commonly associated features in large numbers of genetic diseases that frequently also include epilepsy. These defects are highly heterogeneous on both the genetic and clinical levels. Patients with these signs also typically present with non-specific neuroimaging results that can help prioritize further investigation but don’t suggest a specific molecular diagnosis. Methods To genetically explore a cohort of 18 Egyptian families with undiagnosed cerebellar atrophy identified on MRI, we sequenced probands and some non-affected family members via high-coverage whole exome sequencing (WES; >97 % of the exome covered at least by 30x). Patients were mostly from consanguineous families, either sporadic or multiplex. We analyzed WES data and filtered variants according to dominant and recessive inheritance models. Results We successfully identified disease-causing mutations in half of the families screened (9/18). These mutations are located in seven different genes, PLA2G6 being the gene most frequently mutated (n = 3). We also identified a recurrent de novo mutation in the KIF1A gene and a molybdenum cofactor deficiency caused by the loss of the start codon in the MOCS2A open-reading frame in a mildly affected subject. Conclusions This study illustrates the necessity of screening for dominant mutations in WES data from consanguineous families. Our identification of a patient with a mild and improving phenotype carrying a previously characterized severe loss of function mutation also broadens the clinical spectrum associated with molybdenum cofactor deficiency. Electronic supplementary material The online version of this article (doi:10.1186/s13023-016-0436-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hisham Megahed
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Center, Cairo, 12311, Egypt
| | - Michaël Nicouleau
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Giulia Barcia
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Department of Genetics, Necker Enfants Malades University Hospital, APHP, 75015, Paris, France
| | - Daniel Medina-Cano
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Karine Siquier-Pernet
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Christine Bole-Feysot
- Genomic Platform, INSERM UMR 1163, Paris Descartes - Sorbonne Paris Citée University, Imagine Institute, 75015, Paris, France
| | - Mélanie Parisot
- Genomic Platform, INSERM UMR 1163, Paris Descartes - Sorbonne Paris Citée University, Imagine Institute, 75015, Paris, France
| | - Cécile Masson
- Bioinformatic Platform, INSERM UMR 1163, Paris Descartes - Sorbonne Paris Citée University, Imagine Institute, 75015, Paris, France
| | - Patrick Nitschké
- Bioinformatic Platform, INSERM UMR 1163, Paris Descartes - Sorbonne Paris Citée University, Imagine Institute, 75015, Paris, France
| | - Marlène Rio
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Imagine Institute, INSERM UMR 1163, Genetics of mitochondrial diseases, 75015, Paris, France.,Department of Genetics, Necker Enfants Malades University Hospital, APHP, 75015, Paris, France
| | - Nadia Bahi-Buisson
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Imagine Institute, INSERM UMR 1163, Embryology and genetics of human malformation, 75015, Paris, France
| | - Isabelle Desguerre
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Pediatric Neurology, Necker Enfants Malades University Hospital, APHP, 75015, Paris, France
| | - Arnold Munnich
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Department of Genetics, Necker Enfants Malades University Hospital, APHP, 75015, Paris, France
| | - Nathalie Boddaert
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Department of Pediatric Radiology, Necker Enfants Malades University Hospital, APHP, 75015, Paris, France
| | - Laurence Colleaux
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Vincent Cantagrel
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris, France. .,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
22
|
Fiori S, Poretti A, Pannek K, Del Punta R, Pasquariello R, Tosetti M, Guzzetta A, Rose S, Cioni G, Battini R. Diffusion Tractography Biomarkers of Pediatric Cerebellar Hypoplasia/Atrophy: Preliminary Results Using Constrained Spherical Deconvolution. AJNR Am J Neuroradiol 2016; 37:917-23. [PMID: 26659337 DOI: 10.3174/ajnr.a4607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/29/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE Advances in MR imaging modeling have improved the feasibility of reconstructing crossing fibers, with increasing benefits in delineating angulated tracts such as cerebellar tracts by using tractography. We hypothesized that constrained spherical deconvolution-based probabilistic tractography could successfully reconstruct cerebellar tracts in children with cerebellar hypoplasia/atrophy and that diffusion scalars of the reconstructed tracts could differentiate pontocerebellar hypoplasia, nonprogressive cerebellar hypoplasia, and progressive cerebellar atrophy. MATERIALS AND METHODS Fifteen children with cerebellar ataxia and pontocerebellar hypoplasia, nonprogressive cerebellar hypoplasia or progressive cerebellar atrophy and 7 controls were included in this study. Cerebellar and corticospinal tracts were reconstructed by using constrained spherical deconvolution. Scalar measures (fractional anisotropy and mean, axial and radial diffusivity) were calculated. A general linear model was used to determine differences among groups for diffusion MR imaging scalar measures, and post hoc pair-wise comparisons were performed. RESULTS Cerebellar and corticospinal tracts were successfully reconstructed in all subjects. Significant differences in diffusion MR imaging scalars were found among groups, with fractional anisotropy explaining the highest variability. All groups with cerebellar pathologies showed lower fractional anisotropy compared with controls, with the exception of cerebellar hypoplasia. CONCLUSIONS This study shows the feasibility of constrained spherical deconvolution to reconstruct cerebellar and corticospinal tracts in children with morphologic cerebellar pathologies. In addition, the preliminary results show the potential utility of quantitative analysis of scalars of the cerebellar white matter tracts in children with cerebellar pathologies such as cerebellar hypoplasia and atrophy. Further studies with larger cohorts of patients are needed to validate the clinical significance of our preliminary results.
Collapse
Affiliation(s)
- S Fiori
- From Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (S.F., R.D.P., R.P., M.T., A.G., G.C., R.B.), Pisa, Italy
| | - A Poretti
- Section of Pediatric Neuroradiology (A.P.), Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - K Pannek
- Commonwealth Scientific and Industrial Research Organization (K.P., S.R.), Centre for Computational Informatics, Brisbane, Australia Department of Computing (K.P.), Imperial College London, London, United Kingdom
| | - R Del Punta
- From Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (S.F., R.D.P., R.P., M.T., A.G., G.C., R.B.), Pisa, Italy
| | - R Pasquariello
- From Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (S.F., R.D.P., R.P., M.T., A.G., G.C., R.B.), Pisa, Italy
| | - M Tosetti
- From Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (S.F., R.D.P., R.P., M.T., A.G., G.C., R.B.), Pisa, Italy
| | - A Guzzetta
- From Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (S.F., R.D.P., R.P., M.T., A.G., G.C., R.B.), Pisa, Italy Department of Clinical and Experimental Medicine (A.G., G.C.), University of Pisa, Pisa, Italy
| | - S Rose
- Commonwealth Scientific and Industrial Research Organization (K.P., S.R.), Centre for Computational Informatics, Brisbane, Australia
| | - G Cioni
- From Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (S.F., R.D.P., R.P., M.T., A.G., G.C., R.B.), Pisa, Italy Department of Clinical and Experimental Medicine (A.G., G.C.), University of Pisa, Pisa, Italy
| | - R Battini
- From Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (S.F., R.D.P., R.P., M.T., A.G., G.C., R.B.), Pisa, Italy
| |
Collapse
|
23
|
Abstract
OBJECTIVES The cerebellum (CB) is known for its role in supporting processing speed (PS) and cognitive efficiencies. The CB often sustains damage from treatment and resection in pediatric patients with posterior fossa tumors. Limited research suggests that CB atrophy may be associated with the radiation treatment experienced during childhood. The purpose of the study was to measure cerebellar atrophy to determine its neurobehavioral correlates. METHODS Brain magnetic resonance images were collected from 25 adult survivors of CB tumors and age- and gender-matched controls (M age= 24 years (SD=5), 52% female). Average age at diagnosis was 9 years (SD=5) and average time since diagnosis was 15 years (SD=5). PS was measured by the Symbol Digit Modality Test. To quantify atrophy, an objective formula was developed based on prior literature, in which Atrophy=[(CB White+CB Gray Volume)/Intracranial Vault (ICV)]controls-[(CB White+CB Gray+Lesion Size Volume)/ICV]survivors. RESULTS Regression analyses found that the interaction term (age at diagnosis*radiation) predicts CB atrophy; regression equations included the Neurological Predictor Scale, lesion size, atrophy, and the interaction term and accounted for 33% of the variance in oral PS and 48% of the variance in written PS. Both interactions suggest that individuals with smaller CB lesion size but a greater degree of CB atrophy had slower PS, whereas individuals with a larger CB lesion size and less CB atrophy were less affected. CONCLUSION The results of the current study suggest that young age at diagnosis and radiation is associated with CB atrophy, which interacts with lesion size to impact both written and oral PS.
Collapse
|
24
|
Perucca G, Leboucq N, Roubertie A, Rivier F, Menjot N, Valentini C, Bonafe A. Role of neuroimaging in the diagnosis of hereditary cerebellar ataxias in childhood. J Neuroradiol 2016; 43:176-85. [PMID: 27126632 DOI: 10.1016/j.neurad.2016.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/31/2015] [Accepted: 03/05/2016] [Indexed: 11/25/2022]
Abstract
Hereditary ataxias are a heterogeneous group of neurodegenerative disorders, characterized by cerebellar ataxia as the main clinical feature, and a large spectrum of neurological-associated symptoms and possible multi-organ affection. Image-based approaches to hereditary ataxias in childhood have already been proposed. The aim of this review is to yield the main reports of neuroimaging patterns and diagnostic algorithms and compare them with the results from our study of 23 young patients addressed for ataxia, with subsequent genetic or metabolic diagnosis.
Collapse
Affiliation(s)
- Giulia Perucca
- Department of Radiology, Azienda Ospedaliera Città della Salute e della Scienza, Torino, Italy.
| | - Nicolas Leboucq
- University Hospital of Montpellier, Department of Neuroradiology, Montpellier, France.
| | - Agathe Roubertie
- University Hospital of Montpellier, Department of Pediatric Neurology, Montpellier, France.
| | - François Rivier
- University Hospital of Montpellier, Department of Pediatric Neurology, Montpellier, France.
| | - Nicolas Menjot
- University Hospital of Montpellier, Department of Neuroradiology, Montpellier, France.
| | - Consuelo Valentini
- Department of Neuroradiology, Azienda Ospedaliera Città della Salute e della Scienza, Torino, Italy.
| | - Alain Bonafe
- University Hospital of Montpellier, Department of Neuroradiology, Montpellier, France.
| |
Collapse
|
25
|
Abstract
BACKGROUND Chronic ataxia, greater than two months in duration, is encountered relatively commonly in clinical pediatric neurology practise and presents with diagnostic challenges. It is caused by multiple and diverse disorders. Our aims were to describe the neuroimaging features and the value of repeat neuroimaging in pediatric chronic ataxia to ascertain their contribution to the diagnosis and management. MATERIALS AND METHODS A retrospective charts and neuroimaging reports review was undertaken in 177 children with chronic ataxia. Neuroimaging in 130 of 177 patients was also reviewed. RESULTS Nineteen patients had head computed tomography only, 103 brain magnetic resonance imaging only, and 55 had both. Abnormalities in the cerebellum or other brain regions were associated with ataxia. Neuroimaging was helpful in 73 patients with 30 disorders: It was diagnostic in 9 disorders, narrowed down the diagnostic possibilities in 14 disorders, and revealed important but non-diagnostic abnormalities, e.g. cerebellar atrophy in 7 disorders. Having a normal magnetic resonance imaging scan was mostly seen in genetic diseases or in the early course of ataxia telangiectasia. Repeat neuroimaging, performed in 108 patients, was generally helpful in monitoring disease evolution and in making a diagnosis. Neuroimaging was not directly helpful in 36 patients with 10 disorders or by definition the 55 patients with unknown disease etiology. CONCLUSIONS Normal or abnormal neuroimaging findings and repeat neuroimaging are very valuable in the diagnosis and management of disorders associated with pediatric chronic ataxia.
Collapse
|
26
|
Iwama K, Sasaki M, Hirabayashi S, Ohba C, Iwabuchi E, Miyatake S, Nakashima M, Miyake N, Ito S, Saitsu H, Matsumoto N. Milder progressive cerebellar atrophy caused by biallelic SEPSECS mutations. J Hum Genet 2016; 61:527-31. [PMID: 26888482 DOI: 10.1038/jhg.2016.9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/20/2015] [Accepted: 01/22/2016] [Indexed: 12/18/2022]
Abstract
Cerebellar atrophy is recognized in various types of childhood neurological disorders with clinical and genetic heterogeneity. Genetic analyses such as whole exome sequencing are useful for elucidating the genetic basis of these conditions. Pathological recessive mutations in Sep (O-phosphoserine) tRNA:Sec (selenocysteine) tRNA synthase (SEPSECS) have been reported in a total of 11 patients with pontocerebellar hypoplasia type 2, progressive cerebellocerebral atrophy or progressive encephalopathy, yet detailed clinical features are limited to only four patients. We identified two new families with progressive cerebellar atrophy, and by whole exome sequencing detected biallelic SEPSECS mutations: c.356A>G (p.Asn119Ser) and c.77delG (p.Arg26Profs*42) in family 1, and c.356A>G (p.Asn119Ser) and c.467G>A (p.Arg156Gln) in family 2. Their development was slightly delayed regardless of normal brain magnetic resonance imaging (MRI) in infancy. The progression of clinical symptoms in these families is evidently slower than in previously reported cases, and the cerebellar atrophy milder by brain MRI, indicating that SEPSECS mutations are also involved in milder late-onset cerebellar atrophy.
Collapse
Affiliation(s)
- Kazuhiro Iwama
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Department of Pediatrics, Yokohama City University, Yokohama, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Chihiro Ohba
- Department of Clinical Neurology and Stroke Medicine, Yokohama City University, Yokohama, Japan
| | - Emi Iwabuchi
- Department of Child Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shuichi Ito
- Department of Pediatrics, Yokohama City University, Yokohama, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
27
|
Reiter E, Heim B, Scherfler C, Mueller C, Nocker M, Ndayisaba JP, Loescher W, Seppi K, Lees AJ, Warner T, Poewe W, Wenning GK, Djamshidian A. Clinical Heterogeneity in Cerebral Hemiatrophy Syndromes. Mov Disord Clin Pract 2016; 3:382-388. [PMID: 30713929 DOI: 10.1002/mdc3.12301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/16/2015] [Accepted: 10/11/2015] [Indexed: 12/13/2022] Open
Abstract
Background Cerebral hemiatrophy syndromes can present with variable neurological symptoms. In childhood epilepsy, mental retardation and neuropsychiatric disorders are common while in adults movement disorders, such as highly asymmetric parkinsonism or hemidystonia as well as neuropsychiatric problems have been reported. Methods Here, we present three adult patients with features that expand the clinical spectrum and give an overview of the most common clinical signs associated with this rare condition. Results All three patients had prominent neuropsychiatric symptoms such as mood swings and increased irritability. Furthermore, one patient developed hemichorea which can be a rare presentation of cerebral hemiatrophy. Conclusions Cerebral hemiatrophy syndromes are a heterogeneous group of disorders that may also present with neuropsychiatric symptoms or hemichorea.
Collapse
Affiliation(s)
- Eva Reiter
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Beatrice Heim
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | | | - Christoph Mueller
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Michael Nocker
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | | | - Wolfgang Loescher
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Klaus Seppi
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Andrew J Lees
- Department of Molecular Neuroscience and Reta Lila Weston Institute for Neurological Studies University of London London United Kingdom
| | - Thomas Warner
- Department of Molecular Neuroscience and Reta Lila Weston Institute for Neurological Studies University of London London United Kingdom
| | - Werner Poewe
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Gregor K Wenning
- Department of Neurology Innsbruck Medical University Innsbruck Austria
| | - Atbin Djamshidian
- Department of Neurology Innsbruck Medical University Innsbruck Austria.,Department of Molecular Neuroscience and Reta Lila Weston Institute for Neurological Studies University of London London United Kingdom
| |
Collapse
|
28
|
Murakami A, Tanaka M, Ijiri R, Kato K, Yamashita S, Kurosawa K, Arai N, Aoki I, Tanaka Y. A morphometric study to establish criteria for fetal and neonatal cerebellar hypoplasia: A special emphasis on trisomy 18. Pathol Int 2015; 66:15-22. [PMID: 26669480 DOI: 10.1111/pin.12371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/26/2015] [Indexed: 11/28/2022]
Abstract
Cerebellar hypoplasia (CH) is one of the congenital abnormalities of the central nervous system and is seen in several diseases and syndromes. This study was conducted in order to examine methods for evaluating CH in fetus and neonate because CH has been diagnosed without any morphometric criteria at autopsy. We sampled 140 autopsied cases including nineteen trisomy 18 (T18), four non-T18 with presumed CH, and 117 control cases without any brain malformation. Statistical significance was present in the cerebellar weight and weight ratio of cerebellum per total brain between T18 and the control. The exponential regression models (ERM) showed that cerebral weight, cerebellar weight, and weight ratio of cerebellum per total brain increased gradually relative to gestational age in both T18 and the control. However, cerebellar weight and weight ratio of cerebellum per total brain of T18 showed growth delay with clear distinction between the two groups. The non-T18 with presumed CH showed similar results. Body weight, total brain, and gestational age should be considered totally when evaluating fetal and neonatal cerebellar development. Furthermore, the ERM results may be useful to evaluate the cerebellar development of fetus and neonate at autopsy.
Collapse
Affiliation(s)
- Ayumi Murakami
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan.,Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mio Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Rieko Ijiri
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Keisuke Kato
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan.,Division of Pediatric Hematology and Oncology, Ibaraki Children's Hospital, Ibaraki, Japan
| | - Sumimasa Yamashita
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Department of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Nobutaka Arai
- Brain Pathology, Research Center, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ichiro Aoki
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukichi Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
29
|
Komara M, John A, Suleiman J, Ali BR, Al-Gazali L. Clinical and molecular delineation of dysequilibrium syndrome type 2 and profound sensorineural hearing loss in an inbred Arab family. Am J Med Genet A 2015; 170A:540-543. [PMID: 26437881 DOI: 10.1002/ajmg.a.37421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/23/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Makanko Komara
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University, United Arab Emirates
| | - Anne John
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University, United Arab Emirates
| | - Jehan Suleiman
- Department of Pediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, United Arab Emirates.,Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Pediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, United Arab Emirates
| |
Collapse
|
30
|
Pinto WBVDR, Pedroso JL, Souza PVSD, Albuquerque MVCD, Barsottini OGP. Non-progressive cerebellar ataxia and previous undetermined acute cerebellar injury: a mysterious clinical condition. ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 73:823-7. [PMID: 26291991 DOI: 10.1590/0004-282x20150119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/28/2015] [Indexed: 11/22/2022]
Abstract
Cerebellar ataxias represent a wide group of neurological diseases secondary to dysfunctions of cerebellum or its associated pathways, rarely coursing with acute-onset acquired etiologies and chronic non-progressive presentation. We evaluated patients with acquired non-progressive cerebellar ataxia that presented previous acute or subacute onset. Clinical and neuroimaging characterization of adult patients with acquired non-progressive ataxia were performed. Five patients were identified with the phenotype of acquired non-progressive ataxia. Most patients presented with a juvenile to adult-onset acute to subacute appendicular and truncal cerebellar ataxia with mild to moderate cerebellar or olivopontocerebellar atrophy. Establishing the etiology of the acute triggering events of such ataxias is complex. Non-progressive ataxia in adults must be distinguished from hereditary ataxias.
Collapse
Affiliation(s)
| | - José Luiz Pedroso
- Departamento de Neurologia e Neurocirurgia, Divisão de Neurologia Geral e Unidade de Ataxia, Universidade Federal de São Paulo, Sao Paulo, SP, BR
| | - Paulo Victor Sgobbi de Souza
- Departamento de Neurologia e Neurocirurgia, Divisão de Neurologia Geral e Unidade de Ataxia, Universidade Federal de São Paulo, Sao Paulo, SP, BR
| | | | - Orlando Graziani Povoas Barsottini
- Departamento de Neurologia e Neurocirurgia, Divisão de Neurologia Geral e Unidade de Ataxia, Universidade Federal de São Paulo, Sao Paulo, SP, BR
| |
Collapse
|
31
|
Poretti A, Boltshauser E. Terminology in morphological anomalies of the cerebellum does matter. CEREBELLUM & ATAXIAS 2015; 2:8. [PMID: 26331051 PMCID: PMC4552363 DOI: 10.1186/s40673-015-0027-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/27/2015] [Indexed: 12/21/2022]
Abstract
Neuroimaging plays a key role in the diagnostic work-up of morphological abnormalities of the cerebellum. Diagnostic criteria for numerous morphological anomalies of the cerebellum are based on neuroimaging findings. Various morphological patterns have been described on neuroimaging including cerebellar hypoplasia, cerebellar agenesis, pontocerebellar hypoplasia, cerebellar dysplasia, cerebellar dysmorphia, and cerebellar atrophy. These patterns have specific differential diagnoses. The familiarity with the diagnostic criteria is mandatory for a correct diagnosis and a targeted work-up to avoid unnecessary investigations. A correct diagnosis is essential for early therapy, prognosis, and counseling of the affected children and their family.
Collapse
Affiliation(s)
- Andrea Poretti
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287 USA ; Department of Pediatric Neurology, University Children's Hospital, Zurich, Switzerland
| | - Eugen Boltshauser
- Department of Pediatric Neurology, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
32
|
Abstract
Up to 14% of patients with congenital metabolic disease may show structural brain abnormalities from perturbation of cell proliferation, migration, and/or organization. Most inborn errors of metabolism have a postnatal onset. Abnormalities from genetic disease processes have a prenatal onset. Energy impairment, substrate insufficiency, cell membrane receptor and cell signaling abnormalities, and toxic byproduct accumulation are associations between genetic disorders and structural brain anomalies. Collective imaging patterns of brain abnormalities can provide clues to the underlying etiology. We review selected metabolic diseases associated with brain malformations and highlight characteristic clinical and imaging manifestations that help narrow the differential diagnosis.
Collapse
Affiliation(s)
- Matthew T Whitehead
- Department of Radiology, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA.
| | - Stanley T Fricke
- Department of Radiology, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| | - Andrea L Gropman
- Department of Neurology, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| |
Collapse
|
33
|
Parolin Schnekenberg R, Perkins EM, Miller JW, Davies WIL, D'Adamo MC, Pessia M, Fawcett KA, Sims D, Gillard E, Hudspith K, Skehel P, Williams J, O'Regan M, Jayawant S, Jefferson R, Hughes S, Lustenberger A, Ragoussis J, Jackson M, Tucker SJ, Németh AH. De novo point mutations in patients diagnosed with ataxic cerebral palsy. Brain 2015; 138:1817-32. [PMID: 25981959 PMCID: PMC4572487 DOI: 10.1093/brain/awv117] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/25/2015] [Indexed: 01/06/2023] Open
Abstract
Cerebral palsy is commonly attributed to perinatal asphyxia. However, Schnekenberg et al. describe here four individuals with ataxic cerebral palsy likely due to de novo dominant mutations associated with increased paternal age. Therefore, patients with cerebral palsy should be investigated for genetic causes before the disorder is ascribed to asphyxia. Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies.
Collapse
Affiliation(s)
- Ricardo Parolin Schnekenberg
- 1 Wellcome Trust Centre for Human Genetics, University of Oxford, OX3 7BN, UK 2 Universidade Positivo, School of Medicine, Rua Parigot de Souza 5300, 81280-330, Curitiba, Brazil
| | - Emma M Perkins
- 3 Centre for Integrative Physiology, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Jack W Miller
- 4 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Wayne I L Davies
- 4 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK 5 School of Animal Biology, University of Western Australia, Perth, Australia 6 Section of Physiology & Biochemistry, Department of Experimental Medicine, School of Medicine & Surgery, University of Perugia, P.le Gambuli 1, Edificio D, Piano 106132 San Sisto, Perugia, Italy
| | - Maria Cristina D'Adamo
- 6 Section of Physiology & Biochemistry, Department of Experimental Medicine, School of Medicine & Surgery, University of Perugia, P.le Gambuli 1, Edificio D, Piano 106132 San Sisto, Perugia, Italy
| | - Mauro Pessia
- 6 Section of Physiology & Biochemistry, Department of Experimental Medicine, School of Medicine & Surgery, University of Perugia, P.le Gambuli 1, Edificio D, Piano 106132 San Sisto, Perugia, Italy 7 Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, USA
| | - Katherine A Fawcett
- 8 CGAT Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - David Sims
- 8 CGAT Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Elodie Gillard
- 4 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Karl Hudspith
- 4 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Paul Skehel
- 3 Centre for Integrative Physiology, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Jonathan Williams
- 9 Oxford Medical Genetics Laboratories, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Mary O'Regan
- 10 Fraser of Allander Neurosciences Unit, Royal Hospital for Sick Children, Glasgow G3 8SJ, UK
| | - Sandeep Jayawant
- 11 Department of Paediatrics, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Rosalind Jefferson
- 12 Department of Paediatrics, Royal Berkshire Foundation Trust Hospital, Reading, UK
| | - Sarah Hughes
- 12 Department of Paediatrics, Royal Berkshire Foundation Trust Hospital, Reading, UK
| | - Andrea Lustenberger
- 13 Department of Neuropaediatrics, Development and Rehabilitation, University Children's Hospital, Inselspital, Bern, Switzerland
| | - Jiannis Ragoussis
- 1 Wellcome Trust Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Mandy Jackson
- 3 Centre for Integrative Physiology, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Stephen J Tucker
- 14 Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU, UK 15 OXION Initiative in Ion Channels and Disease, University of Oxford, OX1 3PT, UK
| | - Andrea H Németh
- 4 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK 16 Department of Clinical Genetics, Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 7LJ, UK
| |
Collapse
|
34
|
Sousa SB, Ramos F, Garcia P, Pais RP, Paiva C, Beales PL, Moore GE, Saraiva JM, Hennekam RCM. Intellectual disability, coarse face, relative macrocephaly, and cerebellar hypotrophy in two sisters. Am J Med Genet A 2015; 164A:10-4. [PMID: 24501761 DOI: 10.1002/ajmg.a.36235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report on two Portuguese sisters with a very similar phenotype characterized by severe intellectual disability, absent speech, relative macrocephaly, coarse face, cerebellar hypotrophy, and severe ataxia. Additional common features include increased thickness of the cranial vault, delayed dental eruption, talipes equino-varus, clinodactyly, and camptodactyly of the fifth finger. The older sister has retinal dystrophy and the younger sister has short stature. Their parents are consanguineous. We suggest this condition constitutes a previously unreported autosomal recessive entity.
Collapse
|
35
|
Arora R. Imaging spectrum of cerebellar pathologies: a pictorial essay. Pol J Radiol 2015; 80:142-50. [PMID: 25806100 PMCID: PMC4364256 DOI: 10.12659/pjr.892878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/16/2014] [Indexed: 12/25/2022] Open
Abstract
The cerebellum is a crucial structure of hindbrain which helps in maintaining motor tone, posture, gait and also coordinates skilled voluntary movements including eye movements. Cerebellar abnormalities have different spectrum, presenting symptoms and prognosis as compared to supratentorial structures and brainstem. This article intends to review the various pathological processes involving the cerebellum along with their imaging features on MR, which are must to know for all radiologists, neurologists and neurosurgeons for their prompt diagnosis and management.
Collapse
Affiliation(s)
- Richa Arora
- Department of Radiology, Nizams Institute of Medical Sciences, Hyderabad, India
| |
Collapse
|
36
|
Toelle SP, Poretti A, Weber P, Seute T, Bromberg JEC, Scheer I, Boltshauser E. Cerebellar Hypoplasia and Dysmorphia in Neurofibromatosis Type 1. THE CEREBELLUM 2015; 14:642-9. [DOI: 10.1007/s12311-015-0658-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Bosemani T, Orman G, Boltshauser E, Tekes A, Huisman TAGM, Poretti A. Congenital Abnormalities of the Posterior Fossa. Radiographics 2015; 35:200-20. [DOI: 10.1148/rg.351140038] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Thomas AC, Williams H, Setó-Salvia N, Bacchelli C, Jenkins D, O'Sullivan M, Mengrelis K, Ishida M, Ocaka L, Chanudet E, James C, Lescai F, Anderson G, Morrogh D, Ryten M, Duncan AJ, Pai YJ, Saraiva JM, Ramos F, Farren B, Saunders D, Vernay B, Gissen P, Straatmaan-Iwanowska A, Baas F, Wood NW, Hersheson J, Houlden H, Hurst J, Scott R, Bitner-Glindzicz M, Moore GE, Sousa SB, Stanier P. Mutations in SNX14 cause a distinctive autosomal-recessive cerebellar ataxia and intellectual disability syndrome. Am J Hum Genet 2014; 95:611-21. [PMID: 25439728 DOI: 10.1016/j.ajhg.2014.10.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/13/2014] [Indexed: 12/30/2022] Open
Abstract
Intellectual disability and cerebellar atrophy occur together in a large number of genetic conditions and are frequently associated with microcephaly and/or epilepsy. Here we report the identification of causal mutations in Sorting Nexin 14 (SNX14) found in seven affected individuals from three unrelated consanguineous families who presented with recessively inherited moderate-severe intellectual disability, cerebellar ataxia, early-onset cerebellar atrophy, sensorineural hearing loss, and the distinctive association of progressively coarsening facial features, relative macrocephaly, and the absence of seizures. We used homozygosity mapping and whole-exome sequencing to identify a homozygous nonsense mutation and an in-frame multiexon deletion in two families. A homozygous splice site mutation was identified by Sanger sequencing of SNX14 in a third family, selected purely by phenotypic similarity. This discovery confirms that these characteristic features represent a distinct and recognizable syndrome. SNX14 encodes a cellular protein containing Phox (PX) and regulator of G protein signaling (RGS) domains. Weighted gene coexpression network analysis predicts that SNX14 is highly coexpressed with genes involved in cellular protein metabolism and vesicle-mediated transport. All three mutations either directly affected the PX domain or diminished SNX14 levels, implicating a loss of normal cellular function. This manifested as increased cytoplasmic vacuolation as observed in cultured fibroblasts. Our findings indicate an essential role for SNX14 in neural development and function, particularly in development and maturation of the cerebellum.
Collapse
Affiliation(s)
- Anna C Thomas
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Hywel Williams
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Centre for Translational Omics-GOSgene, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Núria Setó-Salvia
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Chiara Bacchelli
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Centre for Translational Omics-GOSgene, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Dagan Jenkins
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Mary O'Sullivan
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | | | - Miho Ishida
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Louise Ocaka
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Centre for Translational Omics-GOSgene, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Estelle Chanudet
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Centre for Translational Omics-GOSgene, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Chela James
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Centre for Translational Omics-GOSgene, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Francesco Lescai
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Centre for Translational Omics-GOSgene, UCL Institute of Child Health, London WC1N 1EH, UK; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Glenn Anderson
- Histopathology Department, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Deborah Morrogh
- NE Thames Regional Genetics Laboratory Service, London WC1N 3BH, UK
| | - Mina Ryten
- UCL Institute of Neurology, London WC1N 3BG, UK; Department of Clinical Genetics, Guy's Hospital, London SE1 9RT, UK
| | - Andrew J Duncan
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Yun Jin Pai
- Developmental Biology and Cancer, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Jorge M Saraiva
- Serviço de Genética Médica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal; University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
| | - Fabiana Ramos
- Serviço de Genética Médica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal
| | - Bernadette Farren
- Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Dawn Saunders
- Radiology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Bertrand Vernay
- Developmental Biology and Cancer, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Paul Gissen
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | | | - Frank Baas
- Department of Genome Analysis, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, the Netherlands
| | | | | | | | - Jane Hurst
- Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Richard Scott
- Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Maria Bitner-Glindzicz
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Gudrun E Moore
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Sérgio B Sousa
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Serviço de Genética Médica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal.
| | - Philip Stanier
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK.
| |
Collapse
|
39
|
Poretti A, Boltshauser E, Doherty D. Cerebellar hypoplasia: Differential diagnosis and diagnostic approach. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:211-26. [DOI: 10.1002/ajmg.c.31398] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Bosemani T, Anghelescu C, Boltshauser E, Hoon AH, Pearl PL, Craiu D, Johnston MV, Huisman TAGM, Poretti A. Subthalamic nucleus involvement in children: a neuroimaging pattern-recognition approach. Eur J Paediatr Neurol 2014; 18:249-56. [PMID: 24149100 DOI: 10.1016/j.ejpn.2013.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/17/2013] [Accepted: 09/30/2013] [Indexed: 12/28/2022]
Abstract
A neuroimaging-based pattern-recognition approach has been shown to be very helpful in the diagnosis of a wide range of pediatric central nervous system diseases. Few disorders may selectively affect the subthalamic nucleus in children including Leigh syndrome, succinic semialdehyde dehydrogenase deficiency, kernicterus, chronic end-stage liver failure and near total hypoxic-ischemic injury in the full-term neonates. The consideration of the constellation of clinical history and findings as well as additional neuroimaging findings should allow planning the appropriate diagnostic tests to make the correct diagnosis in children with involvement of the subthalamic nucleus.
Collapse
Affiliation(s)
- Thangamadhan Bosemani
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Eugen Boltshauser
- Department of Pediatric Neurology, University Children's Hospital, Zurich, Switzerland
| | - Alexander H Hoon
- Kennedy Krieger Institute, Baltimore, MD, USA; Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip L Pearl
- Division of Neurology, Children's National Medical Center, Washington, DC, USA
| | - Dana Craiu
- Pediatric Neurology Clinic, Alexandru Obregia Hospital, Bucharest, Romania; Department of Neurology, Pediatric Neurology, Neurosurgery, Psychiatry, "Carol Davila" University of Medicine, Bucharest, Romania
| | - Michael V Johnston
- Kennedy Krieger Institute, Baltimore, MD, USA; Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thierry A G M Huisman
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea Poretti
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatric Neurology, University Children's Hospital, Zurich, Switzerland.
| |
Collapse
|
41
|
Al-Maawali A, Blaser S, Zhao XY, Yoon G. Prospective study of activities of daily living outcomes in children with cerebellar atrophy. Dev Med Child Neurol 2014; 56:460-7. [PMID: 24116951 DOI: 10.1111/dmcn.12289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2013] [Indexed: 11/30/2022]
Abstract
AIM The aim of this study was to identify clinical and radiological predictors of activities of daily living (ADL) outcomes in children with cerebellar atrophy. METHOD Over a period of 5 years, we evaluated 44 participants (25 males, 19 females) children with confirmed cerebellar atrophy using magnetic resonance imaging (MRI). The median age at the time of assessment 9 years; range 16 mo-18y. Participants were grouped according to whether the cerebellar atrophy was isolated or associated with other radiological abnormalities. Severity of cerebellar atrophy was graded using qualitative and quantitative scoring systems. A standardized ADL assessment was used to characterize functional outcomes. The characteristics of the participants were analysed using descriptive statistics. RESULTS The mean age at symptom onset was 20 months (range birth-10y). The group with isolated cerebellar atrophy had better outcomes than the group with cerebellar atrophy associated with other radiological abnormalities, with a mean total ADL score difference of 8.0 points (95% confidence interval 1.8-14.2 points, p=0.01). Age at onset of cerebellar atrophy before 2 years of age, progression of cerebellar atrophy on magnetic resonance imaging, presence of seizures, and decreased size of transverse cerebellar hemisphere diameter were all associated with worse outcomes. INTERPRETATION We present a prospective study of clinical and radiological predictors of ADL outcome in children with cerebellar atrophy. This information may be useful in the diagnosis and future management of this complex group of disorders.
Collapse
Affiliation(s)
- Almundher Al-Maawali
- Division of Clinical and Metabolic Genetics, the Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
42
|
Nagappa M, Bindu PS, Adwani S, Seshagiri SK, Saini J, Sinha S, Taly AB. Clinical, hematological, and imaging observations in a 25-year-old woman with abetalipoproteinemia. Ann Indian Acad Neurol 2014; 17:113-6. [PMID: 24753676 PMCID: PMC3992748 DOI: 10.4103/0972-2327.128574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/21/2013] [Accepted: 07/07/2013] [Indexed: 11/22/2022] Open
Abstract
Abetalipoproteinemia is an uncommon cause of ataxia and retinitis pigmentosa (RP). Most of the neurological and ocular manifestations occur secondary to deficiency syndromes that is consequent to fat malabsorption from the small intestine. In this report, we have described the phenotype of a young adult female who manifested with recurrent diarrheal illness in her first decade, followed by anemia, RP, and neurological involvement with progressive deafness, cerebellar and sensory ataxia, and subclinical neuropathy in her second decade of life. While RP and sensory ataxia due to vitamin E deficiency are well-recognized features of abetalipoproteinemia, deafness is rarely described. In addition, we have highlighted the abnormal posterior column signal changes in the cervical cord in this patient. Early recognition avoids unnecessary investigations and has a potential to retard the disease progression by replacing some of the deficient vitamins.
Collapse
Affiliation(s)
- Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Parayil S Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sikandar Adwani
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sangeeta K Seshagiri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
43
|
Solomons J, Ridgway O, Hardy C, Kurian MA, Jayawant S, Hughes S, Pretorius P, Németh AH, Németh AH. Infantile neuroaxonal dystrophy caused by uniparental disomy. Dev Med Child Neurol 2014; 56:386-9. [PMID: 24628589 DOI: 10.1111/dmcn.12327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2013] [Indexed: 11/29/2022]
Abstract
Infantile neuroaxonal dystrophy (INAD) is a rare autosomal recessive neurodegenerative disorder caused by mutations in the phospholipase A2 group 6 (Pla2G6) gene. Affected individuals usually present between the ages of 6 months and 2 years with rapid cognitive and motor regression and axial hypotonia. Gait disturbance, limb spasticity, cerebellar signs, and optic atrophy are other common features associated with INAD. Although magnetic resonance imaging (MRI) can sometimes contribute towards the diagnosis, the confirmation of INAD is by Pla2G6 gene analysis. In this case report, we describe the first individual (female) with INAD due to a combination of uniparental heterodisomy and isodisomy; we discuss the possible underlying mechanism and highlight the importance of parental carrier testing in accurately predicting the recurrence risk in these families. We also confirm the recent report of hypertrophy of the clava (also known as the 'gracile tubercle') as a useful MRI sign in INAD.
Collapse
Affiliation(s)
- Joyce Solomons
- Department of Clinical Genetics, Leicester Royal Infirmary, University Hospitals Leicester, UK; Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester, UK; Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mucopolysaccharidoses type I and II: new neuroimaging findings in the cerebellum. Eur J Paediatr Neurol 2014; 18:211-7. [PMID: 24423630 DOI: 10.1016/j.ejpn.2013.11.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 11/19/2013] [Accepted: 11/24/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND The neuroimaging literature on mucopolysaccharidoses (MPS) is focusing mostly on supratentorial findings. Our study aims to extend the spectrum of neuroimaging findings in patients with MPS focusing on the cerebellum. METHODS Twelve patients were included (7 MPS type I and 5 MPS type II). The median age at last MRI was 9.9 years (mean age 10.1 years, range 1.8-28.8 years). All available brain MR images were retrospectively evaluated for infratentorial and supratentorial abnormalities with semiquantitative analysis and qualitative evaluation. RESULTS Infratentorial findings included enlarged perivascular spaces (PVS) in the cerebellum in 7/12, mega cisterna magna in 3/12 and macrocerebellum in 2/12 patients. Enlarged cerebellar PVS developed later than those in the supratentorial brain and showed mild changes in size over time. The macrocerebellum developed progressively and seems to be caused by a thickening of the cortical cerebellar gray matter. Enlarged PVS in the brain stem were found in 10/12 patients. Supratentorial findings included enlarged PVS in all patients. Ventriculomegaly and white matter signal abnormalities were noted in 8/12, cerebral atrophy in 7/12 patients. CONCLUSION Involvement of the posterior fossa structures in MPS I and II is not uncommon. Our study revealed two neuroimaging findings that have not been previously described in MPS: enlarged PVS in the cerebellum and a macrocerebellum. The pathogenesis and clinical significance of these new findings remain unclear and should be assessed in a larger cohort of patients.
Collapse
|
45
|
Bayrakli F, Canpolat M, Per H, Gumus H, Kumandas S, Kartal U, Balaban H. A Family with Mental Retardation, Epilepsy and Cerebellar Hypoplasia Showing Linkage to Chromosome 20p11.21-q11.23. Case Rep Neurol 2014; 6:18-22. [PMID: 24575028 PMCID: PMC3934806 DOI: 10.1159/000357172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cerebellar hypoplasia (CH) is a rare malformation caused by various etiologies, usually manifesting clinically as nonprogressive cerebellar ataxia with or without mental retardation. The molecular pathogenesis of the autosomal recessive cerebellar ataxias has a wide range of mechanisms. Differential diagnosis and categorization of the recessive cerebellar ataxias, however, need more specific, biochemical and genetic investigation. METHODS This study applied whole-genome linkage analysis to study a family with nonprogressive cerebellar ataxia and additional mental retardation, epilepsy, and facial dysmorphic features. Genotyping and linkage analysis was done using the GeneChip Mapping 250K NspI Array (Affymetrix Inc., Santa Clara, Calif., USA) for genome-wide linkage analysis of the genotyping data from the affected children and their parents. RESULTS Allegro software version 1.2 was used for multipoint linkage analysis. We assumed an autosomal recessive inheritance pattern and assigned a penetrance of 0.999. Single-nucleotide polymorphism allele frequencies were estimated from the Affymetrix data of the Caucasian family studied. Using these parameters, a theoretical maximum logarithm of the odds score of 2.69 was identified at chromosome 20p11.21-q11.23. CONCLUSIONS This chromosomal locus is unprecedented in autosomal recessive and nonprogressive ataxia disorder. Further investigation might reveal a new causative gene generating the CH phenotype.
Collapse
Affiliation(s)
- Fatih Bayrakli
- Department of Neurosurgery, Cumhuriyet University School of Medicine, Sivas, Kayseri, Turkey
| | - Mehmet Canpolat
- Department of Child Neurology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Huseyin Per
- Department of Child Neurology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Hakan Gumus
- Department of Child Neurology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Sefer Kumandas
- Department of Child Neurology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Ugur Kartal
- Neurogenetic Research Laboratory at, Cumhuriyet University School of Medicine, Sivas, Kayseri, Turkey
| | - Hatice Balaban
- Department of Neurology, Cumhuriyet University School of Medicine, Sivas, Kayseri, Turkey
| |
Collapse
|
46
|
La Piana R, Tonduti D, Gordish Dressman H, Schmidt JL, Murnick J, Brais B, Bernard G, Vanderver A. Brain magnetic resonance imaging (MRI) pattern recognition in Pol III-related leukodystrophies. J Child Neurol 2014; 29:214-20. [PMID: 24105487 DOI: 10.1177/0883073813503902] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pol III-related leukodystrophies are caused by mutations in POLR3A and POLR3B genes and all share peculiar imaging and clinical features. The objectives of this study are (1) to define the neuroradiologic pattern in a cohort of POLR3A and POLR3B subjects and (2) to compare the neuroradiologic pattern of Pol III-related leukodystrophies with other hypomyelinating disorders. The magnetic resonance imaging (MRI) examinations of 13 patients with POLR3A and POLR3B mutations and of 14 patients with other hypomyelinating disorders were analyzed. All the subjects with Pol III-related leukodystrophies presented hypomyelination associated with T2 hypointensity of the thalami and/or the pallida. Twelve subjects (92%) presented T2 hypointensity of the optic radiations. Cerebellar atrophy was observed in most patients (92%). The combination of the analyzed criteria identified patients with Pol III-related leukodystrophies with a sensitivity of 84.6% and a specificity of 92.9%.
Collapse
Affiliation(s)
- Roberta La Piana
- 1Department of Neuroradiology, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Diagnostic utility of whole exome sequencing in patients showing cerebellar and/or vermis atrophy in childhood. Neurogenetics 2013; 14:225-32. [PMID: 24091540 DOI: 10.1007/s10048-013-0375-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Cerebellar and/or vermis atrophy is recognized in various types of childhood disorders with clinical and genetic heterogeneity. Although careful evaluation of clinical features and neuroimaging can lead to correct diagnosis of disorders, their diagnosis is sometimes difficult because clinical features can overlap with each other. In this study, we performed family-based whole exome sequencing of 23 families including 25 patients with cerebellar and/or vermis atrophy in childhood, who were unable to be diagnosed solely by clinical examination. Pathological mutations of seven genes were found in ten patients from nine families (9/23, 39.1 %): compound heterozygous mutations in FOLR1, C5orf42, POLG, TPP1, PEX16, and de novo mutations in CACNA1A, and ITPR1. Patient 1A with FOLR1 mutations showed extremely low concentration of 5-methyltetrahydrofolate in the cerebrospinal fluid and serum, and Patient 6 with TPP1 mutations demonstrated markedly lowered tripeptidyl peptidase 1 activity in leukocytes. Furthermore, Patient 8 with PEX16 mutations presented a mild increase of very long chain fatty acids in the serum as supportive data for genetic diagnosis. The main clinical features of these ten patients were nonspecific and mixed, and included developmental delay, intellectual disability, ataxia, hypotonia, and epilepsy. Brain MRI revealed both cerebellar and vermis atrophy in eight patients (8/10, 80 %), vermis atrophy/hypoplasia in two patients (2/10, 20 %), and brainstem atrophy in one patient (1/10, 10 %). Our data clearly demonstrate the utility of whole exome sequencing for genetic diagnosis of childhood cerebellar and/or vermis atrophy.
Collapse
|
48
|
Vedolin L, Gonzalez G, Souza CF, Lourenço C, Barkovich AJ. Inherited cerebellar ataxia in childhood: a pattern-recognition approach using brain MRI. AJNR Am J Neuroradiol 2013; 34:925-34, S1-2. [PMID: 22595899 PMCID: PMC7964648 DOI: 10.3174/ajnr.a3055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ataxia is the principal symptom of many common neurologic diseases in childhood. Ataxias caused by dysfunction of the cerebellum occur in acute, intermittent, and progressive disorders. Most of the chronic progressive processes are secondary to degenerative and metabolic diseases. In addition, congenital malformation of the midbrain and hindbrain can also be present, with posterior fossa symptoms related to ataxia. Brain MR imaging is the most accurate imaging technique to investigate these patients, and imaging abnormalities include size, shape, and/or signal of the brain stem and/or cerebellum. Supratentorial and cord lesions are also common. This review will discuss a pattern-recognition approach to inherited cerebellar ataxia in childhood. The purpose is to provide a comprehensive discussion that ultimately could help neuroradiologists better manage this important topic in pediatric neurology.
Collapse
Affiliation(s)
- L Vedolin
- Neuroradiology Section, Hospital Moinhos de Vento, Porto Alegre, Brazil.
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Abstract
Primary mitochondrial disorders are clinically and genetically heterogeneous, caused by an alteration(s) in either mitochondrial DNA or nuclear DNA, and affect the respiratory chain's ability to undergo oxidative phosphorylation, leading to decreased production of adenosine triphosphophate and subsequent energy failure. These disorders may present at any age, but children tend to have an acute onset of disease compared with subacute or slowly progressive presentation in adults. Varying organ involvement also contributes to the phenotypic spectrum seen in these disorders. The childhood presentation of primary mitochondrial disease is mainly due to nuclear DNA mutations, with mitochondrial DNA mutations being less frequent in childhood and more prominent in adulthood disease. The clinician should be aware of the pediatric presentation of mitochondrial disease and have an understanding of the myriad of nuclear genes responsible for these disorders. The nuclear genes can be best understood by utilizing a classification system of location and function within the mitochondria.
Collapse
Affiliation(s)
- Amy C Goldstein
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| | | | | |
Collapse
|