1
|
Ben Said M, Jallouli O, Ben Aissa A, Souissi A, Kamoun F, Fakhfakh F, Masmoudi S, Ben Ayed I, Charfi Triki C. Customized targeted massively parallel sequencing enables the identification of novel pathogenic variants in Tunisian patients with developmental and epileptic encephalopathy. Epilepsia Open 2024; 9:1697-1709. [PMID: 37867425 PMCID: PMC11450609 DOI: 10.1002/epi4.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023] Open
Abstract
OBJECTIVE To develop a high-throughput sequencing panel for the diagnosis of developmental and epileptic encephalopathy in Tunisia and to clarify the frequency of disease-causing genes in this region. METHODS We developed a custom panel for next-generation sequencing of the coding sequences of 116 genes in individuals with developmental and epileptic encephalopathy from the Tunisian population. Segregation analyses and in silico studies have been conducted to assess the identified variants' pathogenicity. RESULTS We report 12 pathogenic variants in SCN1A, CHD2, CDKL5, SZT2, KCNT1, GNAO1, PCDH19, MECP2, GRIN2A, and SYNGAP1 in patients with developmental and epileptic encephalopathy. Five of these variants are novel: "c.149delA, p.(Asn50MetfsTer26)" in CDKL5; "c.3616C > T, p.(Arg1206Ter)" in SZT2; "c.111_113del, p.(Leu39del)" in GNAO1; "c.1435G>C, p.(Asp479His)" in PCDH19; and "c.2143delC, p.(Arg716GlyfsTer10)" in SYNGAP1. Additionally, for four of our patients, the genetic result facilitated the choice of the appropriate treatment. SIGNIFICANCE This is the first report of a custom gene panel to identify genetic variants implicated in developmental and epileptic encephalopathy in the Tunisian population as well as the North African region (Tunisia, Egypt, Libya, Algeria, Morocco) with a diagnostic rate of 30%. This high-throughput sequencing panel has considerably improved the rate of positive diagnosis of developmental and epileptic encephalopathy in the Tunisian population, which was less than 15% using Sanger sequencing. The benefit of genetic testing in these patients was approved by both physicians and parents.
Collapse
Affiliation(s)
- Mariem Ben Said
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Olfa Jallouli
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15University of SfaxSfaxTunisia
| | - Abir Ben Aissa
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15University of SfaxSfaxTunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Fatma Kamoun
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15University of SfaxSfaxTunisia
| | - Faiza Fakhfakh
- Molecular Genetics and Functional Laboratory, Faculty of Science of SfaxUniversity of SfaxSfaxTunisia
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Ikhlas Ben Ayed
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Chahnez Charfi Triki
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15University of SfaxSfaxTunisia
| |
Collapse
|
2
|
Kovacs M, Fogarasi A, Hegyi M, Siegler Z, Kelemen A, Mellar M, Orbok A, Simon G, Farkas K, Bessenyei M, Hollody K. Multicenter retrospective study of patients with PCDH19-related epilepsy: The first Hungarian cohort. Epileptic Disord 2024; 26:685-693. [PMID: 39017914 DOI: 10.1002/epd2.20264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVE PCDH19-related epilepsy occurs predominantly in girls and is caused by pathogenic variant of the protocadherin-19 gene. The initial seizures usually develop in association with fever, begin on average at 15 months of age, and often occur in clusters. Autistic symptoms, intellectual disability, and sleep disturbance are often associated. METHODS In our retrospective, multicenter study, we reviewed clinical data of nine children with epilepsy genetically confirmed to be associated with PCDH19. RESULTS In the Hungarian patient population aged 0-18 years, the prevalence of PCDH19-related epilepsy was found to be lower (1/100000 live births in females) than the reported international data (4-5/100000 live births in females). Four of our nine patients had positive family history of epilepsy (cousins, sister, and mother). We assessed brain anomalies in three patients (in one patient focal cortical dysplasia and left anterior cingulate dysgenesis, and in two children right or left hippocampal sclerosis) and in another three cases incidentally identified benign alterations on brain MRI were found. The first seizure presented as a cluster in seven out of nine children. In seven out of nine cases occurred status epilepticus. Six out of nine children had autistic symptoms and only one child had normal intellectual development. Seven of our patients were seizure free with combined antiseizure medication (ASM). The most effective ASMs were levetiracetam, valproate, and clobazam. SIGNIFICANCE The prevalence of PCDH19-related epilepsy is presumably underestimated because of the lack of widely performed molecular genetic evaluations. Molecular genetic testing including PCDH19 pathogenic variants is recommended for female patients with an onset of seizures before the age of 3 years.
Collapse
Affiliation(s)
- Monika Kovacs
- Department of Paediatrics, University of Pecs, Pécs, Hungary
| | - Andras Fogarasi
- Bethesda Children Hospital, Budapest, Hungary
- Andras Peto Faculty, Semmelweis University, Budapest, Hungary
| | - Marta Hegyi
- Bethesda Children Hospital, Budapest, Hungary
| | | | - Anna Kelemen
- Neurology and Neurosurgery, National Institute of Mental Health, Budapest, Hungary
| | - Monika Mellar
- Pal Heim National Paediatric Institute, Budapest, Hungary
| | - Anna Orbok
- Pal Heim National Paediatric Institute, Budapest, Hungary
| | | | - Kristof Farkas
- Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Monika Bessenyei
- Department of Paediatrics, University of Debrecen, Debrecen, Hungary
| | - Katalin Hollody
- Department of Paediatrics, University of Pecs, Pécs, Hungary
| |
Collapse
|
3
|
Liu YH, Liang JS, Chang MY, Hung PL, Tsai MH, Chou IJ, Hou JY, Lee WT, Lin KL. Dravet-like syndrome with PCDH19 mutations in Taiwan - A multicenter study. Pediatr Neonatol 2024:S1875-9572(24)00135-9. [PMID: 39187419 DOI: 10.1016/j.pedneo.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 08/28/2024] Open
Abstract
OBJECTIVE Protocadherin-19 (PCDH19) epilepsy is a rare female restricted epilepsy syndrome with early onset seizures and developmental delay caused by a change or mutation of the PCDH19 gene on the X chromosome. SCN1A-negative patients with a Dravet-like phenotype may have a gene mutation in PCDH19. The aim of this case series was to characterize the phenotype of epileptic patients according to PCDH19 mutations, antiseizure medications, brain images and mutation types in Taiwan. METHODS We retrospectively reviewed the medical records of patients with PCDH19 epilepsy from July 2017 to December 2021 from multiple centers in Taiwan. We analyzed the patients' clinical data and genetic reports. RESULTS Fifteen female patients (age 3-23 years) were enrolled. Seizure onset was at 4 months to 2 years 7 months of age with generalized tonic-clonic or focal seizures. Seizure frequency tended to be in clusters rather than single longer seizures. The patients had varying degrees of intellectual disability, however 3 had no impairment. Two patients had abnormal brain images including mesial temporal sclerosis, subcortical and periventricular white matter lesions. On average, the patients received 4 antiseizure medications (range 3-6), including 9 patients who were seizure free, and 3 who received sodium channel blockers without aggravation. Missense and truncating variants (frameshift and nonsense variants) accounted for 40% and 46.7% of all mutations. The mutations of 13 patients were located on EC1 to EC4, and EC5 to cytoplasmic domain in 2 patients. SIGNIFICANCE PCDH19 epilepsy has distinct phenotypes and an unusual X-linked pattern of expression in which females manifest core symptoms. Psychiatric and behavioral problems are frequently part of the clinical picture. Patients are usually treated with a wide array of standard antiseizure medications, with no preferred antiseizure medication class. No strong correlations between phenotype and location of variant mutations were found in our patients.
Collapse
Affiliation(s)
- Yi-Hsuan Liu
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jao-Shwann Liang
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ming-Yuh Chang
- Department of Pediatric Neurology, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Pi-Lien Hung
- Department of Pediatric Neurology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - I-Jun Chou
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ju-Yin Hou
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wang-Tso Lee
- Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Kuang-Lin Lin
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Bernardo P, Cuccurullo C, Rubino M, De Vita G, Terrone G, Bilo L, Coppola A. X-Linked Epilepsies: A Narrative Review. Int J Mol Sci 2024; 25:4110. [PMID: 38612920 PMCID: PMC11012983 DOI: 10.3390/ijms25074110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
X-linked epilepsies are a heterogeneous group of epileptic conditions, which often overlap with X-linked intellectual disability. To date, various X-linked genes responsible for epilepsy syndromes and/or developmental and epileptic encephalopathies have been recognized. The electro-clinical phenotype is well described for some genes in which epilepsy represents the core symptom, while less phenotypic details have been reported for other recently identified genes. In this review, we comprehensively describe the main features of both X-linked epileptic syndromes thoroughly characterized to date (PCDH19-related DEE, CDKL5-related DEE, MECP2-related disorders), forms of epilepsy related to X-linked neuronal migration disorders (e.g., ARX, DCX, FLNA) and DEEs associated with recently recognized genes (e.g., SLC9A6, SLC35A2, SYN1, ARHGEF9, ATP6AP2, IQSEC2, NEXMIF, PIGA, ALG13, FGF13, GRIA3, SMC1A). It is often difficult to suspect an X-linked mode of transmission in an epilepsy syndrome. Indeed, different models of X-linked inheritance and modifying factors, including epigenetic regulation and X-chromosome inactivation in females, may further complicate genotype-phenotype correlations. The purpose of this work is to provide an extensive and updated narrative review of X-linked epilepsies. This review could support clinicians in the genetic diagnosis and treatment of patients with epilepsy featuring X-linked inheritance.
Collapse
Affiliation(s)
- Pia Bernardo
- Pediatric Psychiatry and Neurology Unit, Department of Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy
| | - Claudia Cuccurullo
- Neurology and Stroke Unit, Ospedale del Mare Hospital, ASL Napoli 1 Centro, 80147 Naples, Italy;
| | - Marica Rubino
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy (L.B.)
| | - Gabriella De Vita
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Gaetano Terrone
- Child Neuropsychiatry Units, Department of Translational Medical Sciences, University Federico II of Naples, 80131 Naples, Italy;
| | - Leonilda Bilo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy (L.B.)
| | - Antonietta Coppola
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy (L.B.)
| |
Collapse
|
5
|
Sokolov PL, Chebanenko NV, Mednaya DM, Fedotova YA. [Epilepsy with PCDH19 mutation: polypharmacy as a consequence of the complexity and diversity of pathogenesis mechanisms]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:51-55. [PMID: 39113443 DOI: 10.17116/jnevro202412407151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mutations in the human PCDH19 gene lead to epileptic encephalopathy of early childhood. It is characterized by the early onset of serial seizures, cognitive impairment and behavioral disorders (including autistic personality traits). In most cases, difficulties arise in selecting therapy due to pharmacoresistance. The pathogenesis of the disease is complex. The data available to us at the moment from numerous studies present the pathogenesis of «PCDH19 syndrome» as multi-level, affecting both the epigenetic support of cell life, and development of stem cells and progenitor cells in the process of neuroontogenesis, and the influence on the neurotransmitter mechanisms of the brain, and disruption of the formation of neural networks with an inevitable increase in the excitability of the cerebral cortex as a whole, and local changes in the highly labile regulatory structures of the hippocampal region. And it is not surprising that all these changes entail not only (and perhaps not so much) epileptization, but a profound disruption of the regulation of brain activity, accompanied by autism spectrum disorders, more profound disorders in the form of schizophrenia or cyclothymia, and the formation of delayed psychomotor development. A «side branch» of these pathogenetic processes can also be considered the participation of PCDH19 dysfunctions in certain variants of oncogenesis. The need for polypharmacy (in most cases) confirms the diversity of mechanisms involved in the pathogenesis of the disease and makes the prospects for the development of effective and rational treatment regimens very vague. Cautious optimism is caused only by attempts at relatively specific treatment with ganaxolone.
Collapse
Affiliation(s)
- P L Sokolov
- Voyno-Yasenetsky Scientific and Practical Center for Specialized Assistance for Children, Moscow, Russia
| | - N V Chebanenko
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - D M Mednaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Yu A Fedotova
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
6
|
Tian Y, Shi Z, Cai J, Hou C, Wang X, Zhu H, Peng B, Shi K, Li X, Gong S, Chen WX. Levetiracetam may be an unsuitable choice for patients with PRRT2-associated self-limited infantile epilepsy. BMC Pediatr 2023; 23:529. [PMID: 37880614 PMCID: PMC10601096 DOI: 10.1186/s12887-023-04212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/26/2023] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Self-limited infantile epilepsy (SeLIE) is a benign epilepsy. Previous studies have shown that monotherapy with most antiseizure medications can effectively relieve seizures in patients with SeLIE, but the efficacy of levetiracetam has not been investigated. OBJECTIVE This study aimed to investigate the efficacy of levetiracetam in the treatment of SeLIE patients with PRRT2 mutations. METHODS The clinical data of 39 SeLIE patients (21 males and 18 females, aged 4.79 ± 1.60 months) with pathogenic variants in PRRT2 or 16p11.2 microdeletion were retrospectively analyzed. Based on the use of initial antiseizure medication (ASM), the patients were classified into two groups: Levetiracetam group (LEG) and Other ASMs group (OAG). The difference of efficacy between the two groups was compared. RESULTS Among the 39 SeLIE patients, 16 were LEG (10 males and 6 females, aged 5.25 ± 2.07 months), with whom two obtained a seizure-free status (12.50%) and 14 ineffective or even deteriorated (87.50%). Among the 14 ineffective or deteriorated cases, 13 were seizure-controlled after replacing levetiracetam with other ASMs including topiramate, oxcarbazepine, lamotrigine, and valproate, and the remaining one finally achieved remission at age 3. Of the 39 patients, 23 were OAG (11 males and 12 females; aged 4.48 ± 1.12 months), of whom 22 achieved seizure remission, except for one patient who was ineffective with topiramate initially and relieved by oxcarbazepine instead. Although there were no significant differences in gender and age of onset between the two groups, the effective rate was significantly different (12.50% in LEG vs. 95.65% in OAG) (P < 0.01). CONCLUSION The findings showed that patients with SeLIE caused by the PRRT2 mutations did not benefit from the use of levetiracetam, but could benefit from other ASMs.
Collapse
Affiliation(s)
- Yang Tian
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Zhen Shi
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Jiahao Cai
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Chi Hou
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xiuying Wang
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Haixia Zhu
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Binwei Peng
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Kaili Shi
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xiaojing Li
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Sitang Gong
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
- Department of Pediartic, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, Guangzhou, 510623, China.
| | - Wen-Xiong Chen
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, Guangzhou, 510623, China.
| |
Collapse
|
7
|
Alaverdian D, Corradi AM, Sterlini B, Benfenati F, Murru L, Passafaro M, Brunetti J, Meloni I, Mari F, Renieri A, Frullanti E. Modelling PCDH19 clustering epilepsy by Neurogenin 2 induction of patient-derived induced pluripotent stem cells. Epileptic Disord 2023. [PMID: 37186408 DOI: 10.1002/epd2.20065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Loss of function mutations in PCDH19 gene cause an X-linked, infant-onset clustering epilepsy, associated with intellectual disability and autistic features. The unique pattern of inheritance includes random X-chromosome inactivation, which leads to pathological tissue mosaicism. Females carrying PCDH19 mutations are affected, while males have normal phenotype. No cure is presently available for this disease. METHODS Fibroblasts from a female patient carrying frameshift mutation were reprogrammed into human induced pluripotent stem cells (hiPSC). To create a cell model of PCDH19-clustering epilepsy (PCDH19-CE) where both cell populations co-exist, we created mosaic neurons by mixing wild-type (WT) and mutated (mut) human iPSC clones, and differentiated them into mature neurons with overexpression of the transcriptional factor Neurogenin 2. RESULTS We generated functional neurons from patient-derived iPSC using a rapid and efficient method of differentiation through overexpression of Neurogenin 2. Was revealed an accelerated maturation and higher arborisation in the mutated neurons, while the mosaic neurons showed the highest frequency of action potential firing and hyperexcitability features, compared to mutated and WT neurons. CONCLUSIONS Our findings provide evidence that PCDH19 c.2133delG mutation affects proper metaphases with increased numbers of centrosomes in stem cells and accelerates neuronal maturation in premature cells. PCDH19 mosaic neurons showed an elevated excitability, representing the situation in PCDH19-CE brain. We suggest an Ngn-2 hiPSC-derived PCDH19 neurons as an informative experimental tool for understanding the pathogenesis of PCDH19-CE and a suitable approach for use in targeted drug screening strategies.
Collapse
Affiliation(s)
- Diana Alaverdian
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anna Margherita Corradi
- Department of Experimental Medicine, Section of Physiology, University of Genoa, Viale Benedetto XV, 3, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Bruno Sterlini
- Department of Experimental Medicine, Section of Physiology, University of Genoa, Viale Benedetto XV, 3, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Fabio Benfenati
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Luca Murru
- Institute of Neuroscience, IN-CNR, 20129, Milan, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Maria Passafaro
- Institute of Neuroscience, IN-CNR, 20129, Milan, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Jlenia Brunetti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ilaria Meloni
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100, Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
8
|
Celdran de Castro A, Nascimento FA, Beltran-Corbellini Á, Toledano R, Garcia-Morales I, Gil-Nagel A, Aledo-Serrano Á. Levetiracetam, from broad-spectrum use to precision prescription: A narrative review and expert opinion. Seizure 2023; 107:121-131. [PMID: 37023625 DOI: 10.1016/j.seizure.2023.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Levetiracetam (LEV) is an antiseizure medication (ASM) whose mechanism of action involves the modulation of neurotransmitters release through binding to the synaptic vesicle glycoprotein 2A. It is a broad-spectrum ASM displaying favorable pharmacokinetic and tolerability profiles. Since its introduction in 1999, it has been widely prescribed, becoming the first-line treatment for numerous epilepsy syndromes and clinical scenarios. However, this might have resulted in overuse. Increasing evidence, including the recently published SANAD II trials, suggests that other ASMs are reasonable therapeutic options for generalized and focal epilepsies. Not infrequently, these ASMs show better safety and effectiveness profiles compared to LEV (partially due to the latter's well-known cognitive and behavioral adverse effects, present in up to 20% of patients). Moreover, it has been shown that the underlying etiology of epilepsy is significantly linked to ASMs response in particular scenarios, highlighting the importance of an etiology-based ASM choice. In the case of LEV, it has demonstrated an optimal effectiveness in Alzheimer's disease, Down syndrome, and PCDH19-related epilepsies whereas, in other etiologies such as malformations of cortical development, it may show negligible effects. This narrative review analyzes the current evidence related to the use of LEV for the treatment of seizures. Illustrative clinical scenarios and practical decision-making approaches are also addressed, therefore aiming to define a rational use of this ASM.
Collapse
|
9
|
Sullivan J, Gunning B, Zafar M, Guerrini R, Gecz J, Kolc KL, Zhao Y, Gasior M, Aimetti AA, Samanta D. Phase 2, placebo-controlled clinical study of oral ganaxolone in PCDH19-clustering epilepsy. Epilepsy Res 2023; 191:107112. [PMID: 36870093 DOI: 10.1016/j.eplepsyres.2023.107112] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
INTRODUCTION Protocadherin-19 (PCDH19)-clustering epilepsy is a distinct developmental and epileptic encephalopathy characterized by early-onset seizures that are often treatment refractory. Caused by a mutation of the PCDH19 gene on the X chromosome, this rare epilepsy syndrome primarily affects females with seizure onset commonly in the first year of life. A global, randomized, double-blind, placebo-controlled, phase 2 trial was conducted to evaluate the efficacy, safety, and tolerability of ganaxolone compared with placebo as adjunctive therapy to a standard antiseizure medication regimen in patients with PCDH19-clustering epilepsy (VIOLET; NCT03865732). METHODS Females aged 1-17 years with a molecularly confirmed pathogenic or likely pathogenic PCDH19 variant who were experiencing ≥12 seizures during a 12-week screening period were stratified by baseline allopregnanolone sulfate (Allo-S) levels (low: ≤2.5 ng/mL; high: >2.5 ng/mL) at screening and randomized 1:1 within each strata to receive ganaxolone (maximum daily dose of 63 mg/kg/day if ≤28 kg or 1800 mg/day if >28 kg) or matching placebo in addition to their standard antiseizure treatment for the 17-week double-blind phase. The primary efficacy endpoint was the median percentage change in 28-day seizure frequency from baseline to the 17-week double-blind phase. Treatment-emergent adverse events (TEAEs) were tabulated by overall, system organ class, and preferred term. RESULTS Of the 29 patients screened, 21 (median age, 7.0 years; IQR, 5.0-10.0 years) were randomized to receive either ganaxolone (n = 10) or placebo (n = 11). After the 17-week double-blind phase, the median (IQR) percentage change in 28-day seizure frequency from baseline was - 61.5% (-95.9% to -33.4%) among patients in the ganaxolone group and - 24.0% (-88.2% to -4.9%) among patients in the placebo group (Wilcoxon rank-sum test, p = 0.17). TEAEs were reported by 7 of 10 (70.0%) patients in the ganaxolone group and 11 of 11 (100%) patients in the placebo group. Somnolence was the most common TEAE (40.0% ganaxolone vs 27.3% placebo); serious TEAEs were more common in the placebo group (10.0% ganaxolone vs 45.5% placebo); and 1 (10.0%) patient in the ganaxolone group discontinued the study versus none in the placebo group. CONCLUSIONS Ganaxolone was generally well tolerated and led to a greater reduction in the frequency of PCDH19-clustering seizures compared to placebo; however, the trend did not reach statistical significance. Novel trial designs are likely needed to evaluate the effectiveness of antiseizure treatments for PCDH19-clustering epilepsy.
Collapse
Affiliation(s)
- Joseph Sullivan
- University of California San Francisco Weill Institute for Neurosciences, Benioff Children's Hospital, San Francisco, CA, USA
| | | | | | | | - Jozef Gecz
- Adelaide Medical School & Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Kristy L Kolc
- University of New South Wales, Sydney, NSW, Australia
| | - Yufan Zhao
- Marinus Pharmaceuticals, Inc., Radnor, PA, USA
| | | | | | - Debopam Samanta
- University of Arkansas for Medical Sciences, Little Rock, AK, USA
| |
Collapse
|
10
|
Owen MJ, Wright MS, Batalov S, Kwon Y, Ding Y, Chau KK, Chowdhury S, Sweeney NM, Kiernan E, Richardson A, Batton E, Baer RJ, Bandoli G, Gleeson JG, Bainbridge M, Chambers CD, Kingsmore SF. Reclassification of the Etiology of Infant Mortality With Whole-Genome Sequencing. JAMA Netw Open 2023; 6:e2254069. [PMID: 36757698 PMCID: PMC9912130 DOI: 10.1001/jamanetworkopen.2022.54069] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/27/2022] [Indexed: 02/10/2023] Open
Abstract
Importance Understanding the causes of infant mortality shapes public health, surveillance, and research investments. However, the association of single-locus (mendelian) genetic diseases with infant mortality is poorly understood. Objective To determine the association of genetic diseases with infant mortality. Design, Setting, and Participants This cohort study was conducted at a large pediatric hospital system in San Diego County (California) and included 546 infants (112 infant deaths [20.5%] and 434 infants [79.5%] with acute illness who survived; age, 0 to 1 year) who underwent diagnostic whole-genome sequencing (WGS) between January 2015 and December 2020. Data analysis was conducted between 2015 and 2022. Exposure Infants underwent WGS either premortem or postmortem with semiautomated phenotyping and diagnostic interpretation. Main Outcomes and Measures Proportion of infant deaths associated with single-locus genetic diseases. Results Among 112 infant deaths (54 girls [48.2%]; 8 [7.1%] African American or Black, 1 [0.9%] American Indian or Alaska Native, 8 [7.1%] Asian, 48 [42.9%] Hispanic, 1 [0.9%] Native Hawaiian or Pacific Islander, and 34 [30.4%] White infants) in San Diego County between 2015 and 2020, single-locus genetic diseases were the most common identifiable cause of infant mortality, with 47 genetic diseases identified in 46 infants (41%). Thirty-nine (83%) of these diseases had been previously reported to be associated with childhood mortality. Twenty-eight death certificates (62%) for 45 of the 46 infants did not mention a genetic etiology. Treatments that can improve outcomes were available for 14 (30%) of the genetic diseases. In 5 of 7 infants in whom genetic diseases were identified postmortem, death might have been avoided had rapid, diagnostic WGS been performed at time of symptom onset or regional intensive care unit admission. Conclusions and Relevance In this cohort study of 112 infant deaths, the association of genetic diseases with infant mortality was higher than previously recognized. Strategies to increase neonatal diagnosis of genetic diseases and immediately implement treatment may decrease infant mortality. Additional study is required to explore the generalizability of these findings and measure reduction in infant mortality.
Collapse
Affiliation(s)
- Mallory J. Owen
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
- Department of Pediatrics, University of California, San Diego, La Jolla
| | - Meredith S. Wright
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | - Sergey Batalov
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | - Yonghyun Kwon
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | - Yan Ding
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | - Kevin K. Chau
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | - Shimul Chowdhury
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | - Nathaly M. Sweeney
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
- Department of Pediatrics, University of California, San Diego, La Jolla
| | - Elizabeth Kiernan
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | - Andrew Richardson
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | - Emily Batton
- Department of Pediatrics, University of California, San Diego, La Jolla
| | - Rebecca J. Baer
- Department of Pediatrics, University of California, San Diego, La Jolla
- California Preterm Birth Initiative, University of California, San Francisco
| | - Gretchen Bandoli
- Department of Pediatrics, University of California, San Diego, La Jolla
| | - Joseph G. Gleeson
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
- Department of Pediatrics, University of California, San Diego, La Jolla
| | - Matthew Bainbridge
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| | | | - Stephen F. Kingsmore
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, California
| |
Collapse
|
11
|
Chen G, Zhou H, Lu Y, Wang Y, Li Y, Xue J, Cheng K, Huang R, Han J. Case report: A novel mosaic nonsense mutation of PCDH19 in a Chinese male with febrile epilepsy. Front Neurol 2022; 13:992781. [PMID: 36247776 PMCID: PMC9556843 DOI: 10.3389/fneur.2022.992781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical features of the PCDH19 gene mutation include febrile epilepsy ranging from mild to severe, with or without intellectual disability, cognitive impairment, and psych-behavioral disorders, but there has been little research on males with the mosaic mutation of PCDH19. This study reported a novel, de novo, and mosaic PCDH19 nonsense mutation (NM_001184880: c.840C > A, p. Tyr280*) from a Chinese male in early middle childhood by trio whole-exome sequence (Trio-WES) and confirmed by Sanger sequence. The proportion of the mosaic mutation (c.840C > A, p. Tyr280*) in PCDH19 was 27.9% in, buccal mucosal cells, 48.3% in exfoliated cells in the urine, and 50.6% in peripheral blood of proband. He had the first onset of seizures in toddlerhood with febrile epilepsy, mild impaired cognitive psychological, and behavioral abnormalities. The electroencephalography (EEG) exhibited sharp waves and sharp slow complex waves in the bilateral parietal, occipital, and posterior temporal regions during the interictal period. Pinpoint white matter lesions in the periventricular white matter and slightly bulging bilateral ventricles appeared on cranial magnetic resonance imaging (MRI). With Depakine and Keppra he gained good control over his epilepsy. This study might expand the genotypes and broaden the spectrums.
Collapse
Affiliation(s)
- Guilan Chen
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hang Zhou
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yan Lu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - You Wang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yingsi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiaxin Xue
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ken Cheng
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Ruibin Huang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jin Han
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jin Han
| |
Collapse
|
12
|
Moncayo JA, Vargas MN, Castillo I, Granda PV, Duque AM, Argudo JM, Matcheswalla S, Lopez Dominguez GE, Monteros G, Andrade AF, Ojeda D, Yepez M. Adjuvant Treatment for Protocadherin 19 (PCDH19) Syndrome. Cureus 2022; 14:e27154. [PMID: 36004035 PMCID: PMC9392850 DOI: 10.7759/cureus.27154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
Protocadherin 19 (PCDH19) syndrome is inherited as an X-linked pattern and affects mainly females. This syndrome is caused by a mutation in the PCDH19 gene encoding for the protocadherin protein. It is characterized by refractory seizures during febrile episodes with neuropsychiatric manifestations. There is no consensus on the treatment of PCDH19. We conducted a literature review to investigate the main drugs used for this syndrome, and to evaluate the best possible course of adjuvant treatment for these patients. We used an advanced PubMed search strategy with the following inclusion criteria: a) full-text papers, b) English Language, and c) studies conducted in humans. Exclusion criteria: a) literature reviews, b) systematic reviews, and c) metanalysis. We gathered 26 observational papers to conduct this literature review on clobazam and bromide which have been shown to reduce seizures by 50%. Corticosteroids improved neurological symptoms during the episodes in a few patients. Nevertheless, they recurred after a few months. Preliminary results of ganaxolone, which is still under study, demonstrated a reduction of 60% in seizure episodes. A ketogenic diet has been studied to treat several refractory epilepsies, including PCDH19; it has promising results as effective adjuvant therapy in the resolution of status epilepticus, suggesting it could be used as part of the treatment in early childhood. Stiripentol was given as adjuvant therapy in a patient with PCDH19 epilepsy resulting in the most extended period of seizure-free episodes, but more studies must be performed to assess its efficacy.
Collapse
|
13
|
Dell'Isola GB, Vinti V, Fattorusso A, Tascini G, Mencaroni E, Di Cara G, Striano P, Verrotti A. The Broad Clinical Spectrum of Epilepsies Associated With Protocadherin 19 Gene Mutation. Front Neurol 2022; 12:780053. [PMID: 35111125 PMCID: PMC8801579 DOI: 10.3389/fneur.2021.780053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Protocadherin 19 (PCDH19) gene is one of the most common genes involved in epilepsy syndromes. According to literature data PCDH19 is among the 6 genes most involved in genetic epilepsies. PCDH19 is located on chromosome Xq22.1 and is involved in neuronal connections and signal transduction. The most frequent clinical expression of PCDH19 mutation is epilepsy and mental retardation limited to female (EFMR) characterized by epileptic and non-epileptic symptoms affecting mainly females. However, the phenotypic spectrum of these mutations is considerably variable from genetic epilepsy with febrile seizure plus to epileptic encephalopathies. The peculiar exclusive involvement of females seems to be caused by a cellular interference in heterozygosity, however, affected mosaic-males have been reported. Seizure types range from focal seizure to generalized tonic-clonic, tonic, atonic, absences, and myoclonic jerks. Treatment of PCDH19-related epilepsy is limited by drug resistance and by the absence of specific treatment indications. However, seizures become less severe with adolescence and some patients may even become seizure-free. Non-epileptic symptoms represent the main disabilities of adult patients with PCDH19 mutation. This review aims to analyze the highly variable phenotypic expression of PCDH19 gene mutation associated with epilepsy.
Collapse
Affiliation(s)
| | - Valerio Vinti
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | | | - Giorgia Tascini
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | | | | | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “G. Gaslini” Institute, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | |
Collapse
|
14
|
Li L, Chen GD, Salvi R. Effect of antiepileptic drug levetiracetam on cochlear function. Hear Res 2021; 415:108396. [PMID: 34903423 DOI: 10.1016/j.heares.2021.108396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Levetiracetam (LEV, 5-100 mg/kg) has been shown to prevent audiogenic seizures in a dose-dependent manner. This chemical is known to bind to synaptic vesicle protein 2A and inhibit l-type calcium channels, affecting neurotransmitter release. We hypothesize that the drug prevents audiogenic seizures partially by affecting cochlear neural response. METHODS To test this hypothesis, rats were given 1000, 500, 50, or 0 mg/kg (saline control) LEV-injection. Distortion product otoacoustic emissions (DPOAE), reflecting outer hair cell (OHC) function, and cochlear compound action potentials (CAP), reflecting cochlear neural output, were recorded and compared pre- and post-LEV. RESULTS 1000 mg/kg LEV-injection did not significantly affect DPOAE. The high dose LEV-injection, however, significantly reduced CAP amplitude resulting threshold shift (TS), prolonged CAP latency, and enhanced CAP forward masking. CAP latency and forward masking were significantly affected at the 500 mg/kg dose, but CAP-TS remained unchanged after LEV-injection. Interestingly, CAP latency wassignificantly prolonged, at least at the low stimulation levels, although the amplitude of CAP remained constant after a clinical dose of LEV-injection (50 mg/kg). DISCUSSION Since the clinical dose of LEV-injection does not reduce CAP amplitude, the reduction of cochlear neural output is unlikely to be the underlying mechanism of LEV in the treatment of audiogenic seizure. The delayed cochlear neural response may be partially related to the prevention of audiogenic seizure. However, neuropharmacological changes in the central nervous system must play a major role in the treatment of audiogenic seizure, as it does in the treatment of focal epilepsy.
Collapse
Affiliation(s)
- Li Li
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA.
| | - Richard Salvi
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
15
|
Guerrini R, Balestrini S, Wirrell EC, Walker MC. Monogenic Epilepsies: Disease Mechanisms, Clinical Phenotypes, and Targeted Therapies. Neurology 2021; 97:817-831. [PMID: 34493617 PMCID: PMC10336826 DOI: 10.1212/wnl.0000000000012744] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
A monogenic etiology can be identified in up to 40% of people with severe epilepsy. To address earlier and more appropriate treatment strategies, clinicians are required to know the implications that specific genetic causes might have on pathophysiology, natural history, comorbidities, and treatment choices. In this narrative review, we summarize concepts on the genetic epilepsies based on the underlying pathophysiologic mechanisms and present the current knowledge on treatment options based on evidence provided by controlled trials or studies with lower classification of evidence. Overall, evidence robust enough to guide antiseizure medication (ASM) choices in genetic epilepsies remains limited to the more frequent conditions for which controlled trials and observational studies have been possible. Most monogenic disorders are very rare and ASM choices for them are still based on inferences drawn from observational studies and early, often anecdotal, experiences with precision therapies. Precision medicine remains applicable to only a narrow number of patients with monogenic epilepsies and may target only part of the actual functional defects. Phenotypic heterogeneity is remarkable, and some genetic mutations activate epileptogenesis through their developmental effects, which may not be reversed postnatally. Other genes seem to have pure functional consequences on excitability, acting through either loss- or gain-of-function effects, and these may have opposite treatment implications. In addition, the functional consequences of missense mutations may be difficult to predict, making precision treatment approaches considerably more complex than estimated by deterministic interpretations. Knowledge of genetic etiologies can influence the approach to surgical treatment of focal epilepsies. Identification of germline mutations in specific genes contraindicates surgery while mutations in other genes do not. Identification, quantification, and functional characterization of specific somatic mutations before surgery using CSF liquid biopsy or after surgery in brain specimens will likely be integrated in planning surgical strategies and reintervention after a first unsuccessful surgery as initial evidence suggests that mutational load may correlate with the epileptogenic zone. Promising future directions include gene manipulation by DNA or mRNA targeting; although most are still far from clinical use, some are in early phase clinical development.
Collapse
Affiliation(s)
- Renzo Guerrini
- From the Neuroscience Department (R.G., S.B.), Meyer Children's Hospital-University of Florence, Italy; Department of Clinical and Experimental Epilepsy (S.B., M.C.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (S.B.), Buckinghamshire, UK; and Divisions of Child and Adolescent Neurology and Epilepsy (E.C.W.), Department of Neurology, Mayo Clinic, Rochester, MN.
| | - Simona Balestrini
- From the Neuroscience Department (R.G., S.B.), Meyer Children's Hospital-University of Florence, Italy; Department of Clinical and Experimental Epilepsy (S.B., M.C.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (S.B.), Buckinghamshire, UK; and Divisions of Child and Adolescent Neurology and Epilepsy (E.C.W.), Department of Neurology, Mayo Clinic, Rochester, MN
| | - Elaine C Wirrell
- From the Neuroscience Department (R.G., S.B.), Meyer Children's Hospital-University of Florence, Italy; Department of Clinical and Experimental Epilepsy (S.B., M.C.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (S.B.), Buckinghamshire, UK; and Divisions of Child and Adolescent Neurology and Epilepsy (E.C.W.), Department of Neurology, Mayo Clinic, Rochester, MN
| | - Matthew C Walker
- From the Neuroscience Department (R.G., S.B.), Meyer Children's Hospital-University of Florence, Italy; Department of Clinical and Experimental Epilepsy (S.B., M.C.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (S.B.), Buckinghamshire, UK; and Divisions of Child and Adolescent Neurology and Epilepsy (E.C.W.), Department of Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
16
|
de Nys R, Kumar R, Gecz J. Protocadherin 19 Clustering Epilepsy and Neurosteroids: Opportunities for Intervention. Int J Mol Sci 2021; 22:9769. [PMID: 34575929 PMCID: PMC8469663 DOI: 10.3390/ijms22189769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/23/2023] Open
Abstract
Steroids yield great influence on neurological development through nuclear hormone receptor (NHR)-mediated gene regulation. We recently reported that cell adhesion molecule protocadherin 19 (encoded by the PCDH19 gene) is involved in the coregulation of steroid receptor activity on gene expression. PCDH19 variants cause early-onset developmental epileptic encephalopathy clustering epilepsy (CE), with altered steroidogenesis and NHR-related gene expression being identified in these individuals. The implication of hormonal pathways in CE pathogenesis has led to the investigation of various steroid-based antiepileptic drugs in the treatment of this disorder, with mixed results so far. Therefore, there are many unmet challenges in assessing the antiseizure targets and efficiency of steroid-based therapeutics for CE. We review and assess the evidence for and against the implication of neurosteroids in the pathogenesis of CE and in view of their possible clinical benefit.
Collapse
Affiliation(s)
- Rebekah de Nys
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia; (R.d.N.); (R.K.)
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Raman Kumar
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia; (R.d.N.); (R.K.)
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia; (R.d.N.); (R.K.)
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5006, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
17
|
Pham DH, Pitman MR, Kumar R, Jolly LA, Schulz R, Gardner AE, de Nys R, Heron SE, Corbett MA, Kothur K, Gill D, Rajagopalan S, Kolc KL, Halliday BJ, Robertson SP, Regan BM, Kirsch HE, Berkovic SF, Scheffer IE, Pitson SM, Petrovski S, Gecz J. Integrated in silico and experimental assessment of disease relevance of PCDH19 missense variants. Hum Mutat 2021; 42:1030-1041. [PMID: 34082468 DOI: 10.1002/humu.24237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/27/2021] [Accepted: 05/31/2021] [Indexed: 11/09/2022]
Abstract
PCDH19 is a nonclustered protocadherin molecule involved in axon bundling, synapse function, and transcriptional coregulation. Pathogenic variants in PCDH19 cause infantile-onset epilepsy known as PCDH19-clustering epilepsy or PCDH19-CE. Recent advances in DNA-sequencing technologies have led to a significant increase in the number of reported PCDH19-CE variants, many of uncertain significance. We aimed to determine the best approaches for assessing the disease relevance of missense variants in PCDH19. The application of the American College of Medical Genetics and Association for Molecular Pathology (ACMG-AMP) guidelines was only 50% accurate. Using a training set of 322 known benign or pathogenic missense variants, we identified MutPred2, MutationAssessor, and GPP as the best performing in silico tools. We generated a protein structural model of the extracellular domain and assessed 24 missense variants. We also assessed 24 variants using an in vitro reporter assay. A combination of these tools was 93% accurate in assessing known pathogenic and benign PCDH19 variants. We increased the accuracy of the ACMG-AMP classification of 45 PCDH19 variants from 50% to 94%, using these tools. In summary, we have developed a robust toolbox for the assessment of PCDH19 variant pathogenicity to improve the accuracy of PCDH19-CE variant classification.
Collapse
Affiliation(s)
- Duyen H Pham
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Melissa R Pitman
- Molecular Therapeutics, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Raman Kumar
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lachlan A Jolly
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Renee Schulz
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alison E Gardner
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Rebekah de Nys
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah E Heron
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mark A Corbett
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kavitha Kothur
- Department of Paediatrics and Child Health, Kids Neuroscience Centre, The University of Sydney, Sydney, New South Wales, Australia.,TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Deepak Gill
- Department of Paediatrics and Child Health, Kids Neuroscience Centre, The University of Sydney, Sydney, New South Wales, Australia.,TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Sulekha Rajagopalan
- Department of Clinical Genetics, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Kristy L Kolc
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Benjamin J Halliday
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Brigid M Regan
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Heidi E Kirsch
- Department of Neurology, University of California, San Francisco, California, USA
| | - Samuel F Berkovic
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Ingrid E Scheffer
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Flemington, Victoria, Australia.,Epilepsy Research Centre, Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | - Stuart M Pitson
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Molecular Therapeutics, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Slave Petrovski
- Centre for Genomics Research, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Cambridge, UK.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Jozef Gecz
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.,School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Jeffrey JS, Leathem J, King C, Mefford HC, Ross K, Sadleir LG. Developmental and epileptic encephalopathy: Personal utility of a genetic diagnosis for families. Epilepsia Open 2021; 6:149-159. [PMID: 33681658 PMCID: PMC7918330 DOI: 10.1002/epi4.12458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 11/11/2022] Open
Abstract
Objectives Identifying genetic pathogenic variants improves clinical outcomes for children with developmental and epileptic encephalopathy (DEE) by directing therapy and enabling accurate reproductive and prognostic information for families. We aimed to explore the additional personal utility of receiving a genetic diagnosis for families. Methods Semi-structured interviews were conducted with fifteen families of children with a DEE who had received a genetic diagnosis. The interviews stimulated discussion focusing on the impact of receiving a genetic diagnosis for the family. Interview transcripts were analyzed using the six-step systematic process of interpretative phenomenological analysis (IPA). Results Three key themes were identified: "Importance of the label," "Relief to end the diagnostic journey," and "Factors that influence personal utility." Families reported that receiving a genetic label improved their knowledge about the likely trajectory of the DEE, increased their hope for the future, and helped them communicate with others. The relief of finally having an answer for the cause of their child's DEE alleviated parental guilt and self-blame as well as helped families to process their grief and move forward. Delay in receipt of a genetic diagnosis diluted its psychological impact. Significance To date, the factors associated with the personal utility of a genetic diagnosis for DEEs have been under appreciated. This study demonstrates that identifying a genetic diagnosis for a child's DEE can be a psychological turning point for families. A genetic result has the potential to set these families on an adaptive path toward better quality of life through increased understanding, social connection, and support. Early access to genetic testing is important as it not only increases clinical utility, but also increases personal utility with early mitigation of family stress, trauma, and negative experiences.
Collapse
Affiliation(s)
| | - Janet Leathem
- School of PsychologyMassey UniversityWellingtonNew Zealand
| | - Chontelle King
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| | - Heather C. Mefford
- Department of PediatricsDivision of Genetic MedicineUniversity of WashingtonSeattleWAUSA
| | - Kirsty Ross
- School of PsychologyMassey UniversityWellingtonNew Zealand
| | - Lynette G. Sadleir
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| |
Collapse
|
19
|
Aledo-Serrano Á, Del Ser T, Gil-Nagel A. Antiseizure medication withdrawal in seizure-free patients with PCDH19-related epilepsy: A multinational cohort survey. Seizure 2020; 80:259-261. [PMID: 32682289 DOI: 10.1016/j.seizure.2020.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022] Open
Abstract
PURPOSE PCDH19-related epilepsy is usually refractory to current antiseizure medications (ASM), but seizures are easier to control especially after the second decade of life. Nonetheless, there is no evidence regarding the withdrawal of ASM in this clinical scenario. We aimed to evaluate the outcomes of attempts to discontinue ASM in seizure-free patients with PCDH19-related epilepsy. METHODS This survey was a cross-sectional study of patients with PCDH19-related epilepsy open between June 2019 and February 2020 and implemented in collaboration with international patient advocacy groups. Caregivers or patients were asked to fill out an anonymous questionnaire of clinical data about the attempts of ASM reduction. RESULTS The survey received 42 unique responses with collected data of 77 attempts of ASM withdrawal. Median age at the ASM reduction was 10 years and mean duration of the previous seizure-free period was 35.8 months. Overall, 88.3 % had seizure recurrence (p < 0.001). After seizure recurrence, the medication had to be increased above the previous ASM dose in 36.5 % and come back to the previous one in 25.4 % cases. 5.2 % did not become seizure-free again. Only 2.6 % cases had their ASM totally withdrawn. Patients without seizure recurrence were significantly older and showed longer seizure-free period (p < 0.001). CONCLUSION This pilot study in PCDH19-related epilepsy shows that the withdrawal of ASM seems to be associated with a high risk of seizure recurrence. Despite this novel methodology is useful for rare diseases, it has some limitations and biases. Additional studies are warranted in more extensive samples.
Collapse
Affiliation(s)
- Ángel Aledo-Serrano
- Epilepsy Unit, Department of Neurology, Hospital Ruber Internacional. Madrid, Spain.
| | - Teodoro Del Ser
- Neuroscience Research Unit, CIEN Foundation, Carlos III Institute of Health. Madrid, Spain
| | - Antonio Gil-Nagel
- Epilepsy Unit, Department of Neurology, Hospital Ruber Internacional. Madrid, Spain
| |
Collapse
|