1
|
Hsu WH, Ku CL, Lai YR, Wang SSS, Chou SH, Lin TH. Developing targeted drug delivery carriers for breast cancer using glutathione-sensitive doxorubicin-coupled glycated bovine serum albumin nanoparticles. Int J Biol Macromol 2023; 249:126114. [PMID: 37541475 DOI: 10.1016/j.ijbiomac.2023.126114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Incorporation of the nano-based carriers into drug delivery provides a promising alternative to overcome the limitations of the conventional chemotherapy. Doxorubicin (DOXO) is an effective chemotherapeutic drug widely used in chemotherapy for breast cancer treatment. A globular protein bovine serum albumin (BSA) holds great potential as carriers in pharmaceutical applications. This work is aimed at developing the DOXO-coupled glycated BSA nanoparticles via desolvation method for improving the capability of targeting the GLUT5 transporters over-expressed on breast cancer cells. Fructosamine assay and Fourier transform infrared spectroscopy were employed to determine the content of fructosamine structure and structural changes on the surfaces of nanoparticles, respectively. Additionally, the synthesized BSA nanoparticles were further characterized by electron microscopy and dynamic light scattering. Results revealed that the DOXO-coupled glycated BSA nanoparticles were spherically shaped with a hydrodynamic diameter of ~60.74 nm and a ζ-potential of ~ - 42.20 mV. Moreover, the DOXO release behavior of as-synthesized DOXO-coupled glycated BSA nanoparticles was examined under different conditions. Finally, the DOXO-coupled glycated BSA nanoparticles were found to exhibit cytotoxicity toward both MCF-7 and MDA-MB-231 cells. Our findings evidently suggested that the drug-coupled glycated BSA nanoparticles serve as the potential candidates for targeted drug delivery platform used in breast cancer therapy.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Liang Ku
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City 24205, Taiwan
| | - You-Ren Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Shiu-Huey Chou
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City 24205, Taiwan.
| | - Ta-Hsien Lin
- Laboratory of Nuclear Magnetic Resonance, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
2
|
Rady T, Turelli L, Nothisen M, Tobaldi E, Erb S, Thoreau F, Hernandez-Alba O, Cianferani S, Daubeuf F, Wagner A, Chaubet G. A Novel Family of Acid-Cleavable Linker Based on Cyclic Acetal Motifs for the Production of Antibody-Drug Conjugates with High Potency and Selectivity. Bioconjug Chem 2022; 33:1860-1866. [DOI: 10.1021/acs.bioconjchem.2c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tony Rady
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400Illkirch-Graffenstaden, France
| | - Lorenzo Turelli
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400Illkirch-Graffenstaden, France
| | - Marc Nothisen
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400Illkirch-Graffenstaden, France
| | - Elisabetta Tobaldi
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400Illkirch-Graffenstaden, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, Université de Strasbourg, CNRS, 67087Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI − FR2048, 67087Strasbourg, France
| | - Fabien Thoreau
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400Illkirch-Graffenstaden, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, Université de Strasbourg, CNRS, 67087Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI − FR2048, 67087Strasbourg, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, Université de Strasbourg, CNRS, 67087Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI − FR2048, 67087Strasbourg, France
| | - François Daubeuf
- PCBIS − TechMedILL (CNRS - UMS 3286), ESBS - Pôle API, 300 boulevard Sébastien Brant, CS 10413, 67412Illkirch-Graffenstaden Cedex, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400Illkirch-Graffenstaden, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400Illkirch-Graffenstaden, France
| |
Collapse
|
3
|
Shen X, Liu X, Li T, Chen Y, Chen Y, Wang P, Zheng L, Yang H, Wu C, Deng S, Liu Y. Recent Advancements in Serum Albumin-Based Nanovehicles Toward Potential Cancer Diagnosis and Therapy. Front Chem 2021; 9:746646. [PMID: 34869202 PMCID: PMC8636905 DOI: 10.3389/fchem.2021.746646] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
Recently, drug delivery vehicles based on nanotechnology have significantly attracted the attention of researchers in the field of nanomedicine since they can achieve ideal drug release and biodistribution. Among the various organic or inorganic materials that used to prepare drug delivery vehicles for effective cancer treatment, serum albumin-based nanovehicles have been widely developed and investigated due to their prominent superiorities, including good biocompatibility, high stability, nontoxicity, non-immunogenicity, easy preparation, and functionalization, allowing them to be promising candidates for cancer diagnosis and therapy. This article reviews the recent advances on the applications of serum albumin-based nanovehicles in cancer diagnosis and therapy. We first introduce the essential information of bovine serum albumin (BSA) and human serum albumin (HSA), and discuss their drug loading strategies. We then discuss the different types of serum albumin-based nanovehicles including albumin nanoparticles, surface-functionalized albumin nanoparticles, and albumin nanocomplexes. Moreover, after briefly discussing the application of serum albumin-based nanovehicles used as the nanoprobes in cancer diagnosis, we also describe the serum albumin-based nanovehicle-assisted cancer theranostics, involving gas therapy, chemodynamic therapy (CDT), phototherapy (PTT/PDT), sonodynamic therapy (SDT), and other therapies as well as cancer imaging. Numerous studies cited in our review show that serum albumin-based nanovehicles possess a great potential in cancer diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Xue Shen
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Xiyang Liu
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Tingting Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yang Chen
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Lin Zheng
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Hong Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunhui Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shengqi Deng
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Saghaeidehkordi A, Chen S, Yang S, Kaur K. Evaluation of a Keratin 1 Targeting Peptide-Doxorubicin Conjugate in a Mouse Model of Triple-Negative Breast Cancer. Pharmaceutics 2021; 13:661. [PMID: 34063098 PMCID: PMC8148172 DOI: 10.3390/pharmaceutics13050661] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy is the main treatment for triple-negative breast cancer (TNBC), a subtype of breast cancer that is aggressive with a poor prognosis. While chemotherapeutics are potent, these agents lack specificity and are equally toxic to cancer and nonmalignant cells and tissues. Targeted therapies for TNBC treatment could lead to more safe and efficacious drugs. We previously engineered a breast cancer cell targeting peptide 18-4 that specifically binds cell surface receptor keratin 1 (K1) on breast cancer cells. A conjugate of peptide 18-4 and doxorubicin (Dox) containing an acid-sensitive hydrazone linker showed specific toxicity toward TNBC cells. Here, we report the in vivo evaluation of the K1 targeting peptide-Dox conjugate (PDC) in a TNBC cell-derived xenograft mouse model. Mice treated with the conjugate show significantly improved antitumor efficacy and reduced off-target toxicity compared to mice treated with Dox or saline. After six weekly treatments, on day 35, the mice treated with PDC (2.5 mg Dox equivalent/kg) showed significant reduction (1.5 times) in tumor volume compared to mice treated with Dox (2.5 mg/kg). The mice treated with the conjugate showed significantly higher (1.4 times) levels of Dox in tumors and lower (1.3-2.2 times) levels of Dox in other organs compared to mice treated with Dox. Blood collected at 15 min showed 3.6 times higher concentration of the drug (PDC and Dox) in mice injected with PDC compared to the drug (Dox) in mice injected with Dox. The study shows that the K1 targeting PDC is a promising novel modality for treatment of TNBC, with a favorable safety profile, and warrants further investigation of K1 targeting conjugates as TNBC therapeutics.
Collapse
Affiliation(s)
- Azam Saghaeidehkordi
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618-1908, USA; (A.S.); (S.Y.)
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA;
| | - Sun Yang
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618-1908, USA; (A.S.); (S.Y.)
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618-1908, USA; (A.S.); (S.Y.)
| |
Collapse
|
5
|
Alas M, Saghaeidehkordi A, Kaur K. Peptide-Drug Conjugates with Different Linkers for Cancer Therapy. J Med Chem 2020; 64:216-232. [PMID: 33382619 DOI: 10.1021/acs.jmedchem.0c01530] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug conjugates are chemotherapeutic or cytotoxic agents covalently linked to targeting ligands such as an antibody or a peptide via a linker. While antibody-drug conjugates (ADCs) are now clinically established for cancer therapy, peptide-drug conjugates (PDCs) are gaining recognition as a new modality for targeted drug delivery with improved efficacy and reduced side effects for cancer treatment. The linker in a drug conjugate plays a key role in the circulation time of the conjugate and release of the drug for full activity at the target site. Herein, we highlight the main linker chemistries utilized in the design of PDCs and discuss representative examples of PDCs with different linker chemistries with the related outcome in cell and animal studies.
Collapse
Affiliation(s)
- Mona Alas
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618-1908, United States
| | - Azam Saghaeidehkordi
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618-1908, United States
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618-1908, United States
| |
Collapse
|
6
|
Le TN, Neralla VR. Evaluation of the best pH-sensitive linker using norbornene-derived polymers. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1858717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Trong-Nghia Le
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | | |
Collapse
|
7
|
Vong K, Yamamoto T, Tanaka K. Artificial Glycoproteins as a Scaffold for Targeted Drug Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906890. [PMID: 32068952 DOI: 10.1002/smll.201906890] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Akin to a cellular "fingerprint," the glycocalyx is a glycan-enriched cellular coating that plays a crucial role in mediating cell-to-cell interactions. To gain a better understanding of the factors that govern in vivo recognition, artificial glycoproteins were initially created to probe changes made to the accumulation and biodistribution of specific glycan assemblies through biomimicry. As a result, the organ-specific accumulation for a variety of glycoproteins decorated with simple and/or complex glycans was identified. Additionally, binding trends with regard to cancer cell selectivity were also investigated. To exploit the knowledge gained from these studies, numerous groups thus became engaged in developing targeted drug methodologies based on the use of artificial glycoproteins. This has either been done through adopting the glycoprotein scaffold as a drug carrier, or to directly glycosylate therapeutic proteins/enzymes to localize their biological activity. The principle aim of this Review is to present the foundational research that has driven artificial glycoprotein-based targeting and subsequent adaptations with potential therapeutic applications.
Collapse
Affiliation(s)
- Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Tomoya Yamamoto
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russian Federation
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
8
|
Qian K, Chen H, Qu C, Qi J, Du B, Ko T, Xiang Z, Kandawa-Schulz M, Wang Y, Cheng Z. Mitochondria-targeted delocalized lipophilic cation complexed with human serum albumin for tumor cell imaging and treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 23:102087. [DOI: 10.1016/j.nano.2019.102087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 11/26/2022]
|
9
|
Evaluation of Elastin-Like Polypeptides for Tumor Targeted Delivery of Doxorubicin to Glioblastoma. Molecules 2019; 24:molecules24183242. [PMID: 31489879 PMCID: PMC6767252 DOI: 10.3390/molecules24183242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
To increase treatment efficiency for glioblastoma, we have developed a system to selectively deliver chemotherapeutic doxorubicin (Dox) to Glioblastoma (GBM) tumors. This carrier is based on elastin-like polypeptide (ELP), which is soluble at physiological temperatures but undergoes a phase transition and accumulates at tumor sites with externally applied, mild (40–41 °C) hyperthermia. The CPP-ELP-Dox conjugate consists of a cell penetrating peptide (CPP), which facilitates transcytosis through the blood brain barrier and cell entry, and a 6-maleimidocaproyl hydrazone derivative of doxorubicin at the C-terminus of ELP. The acid-sensitive hydrazone linker ensures release of Dox in the lysosomes/endosomes after cellular uptake of the drug conjugate. We have shown that CPP-ELP-Dox effectively inhibits cell proliferation in three GBM cell lines. Both the free drug and CPP-ELP-Dox conjugate exhibited similar in vitro cytotoxicity, although their subcellular localization was considerably different. The Dox conjugate was mainly dispersed in the cytoplasm, while free drug had partial nuclear accumulation in addition to cytoplasmic distribution. The intracellular Dox concentration was increased in the CPP-ELP-Dox cells compared to that in the cells treated with free Dox, which positively correlates with cytotoxic activity. In summary, our findings demonstrate that CPP-ELP-Dox effectively kills GBM cells. Development of such a drug carrier has the potential to greatly improve current therapeutic approaches for GBM by increasing the specificity and efficacy of treatment and reducing cytotoxicity in normal tissues.
Collapse
|
10
|
Coyne CP, Narayanan L. Carnosic Acid, Tangeretin, and Ginkgolide-B Anti-neoplastic Cytotoxicity in Dual Combination with Dexamethasone-[anti-EGFR] in Pulmonary Adenocarcinoma (A549). Anticancer Agents Med Chem 2019; 19:802-819. [DOI: 10.2174/1871520619666181204100226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/06/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022]
Abstract
Background:Traditional chemotherapeutics of low-molecular weight diffuse passively across intact membrane structures of normal healthy cells found in tissues and organ systems in a non-specific unrestricted manner which largely accounts for the induction of most sequelae which restrict dosage, administration frequency, and duration of therapeutic intervention. Molecular strategies that offer enhanced levels of potency, greater efficacy and broader margins-of-safety include the discovery of alternative candidate therapeutics and development of methodologies capable of mediating properties of selective “targeted” delivery.Materials and Methods:The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramidate)-[anti- EGFR] was synthesized utilizing organic chemistry reactions that comprised a multi-stage synthesis regimen. Multiple forms of analysis were implemented to vadliate the successful synthesis (UV spectrophotometric absorbance), purity and molar-incorporation-index (UV spectrophotometric absorbance, chemical-based protein determination), absence of fragmentation/polymerization (SDS-PAGE/chemiluminescent autoradiography), retained selective binding-avidity of IgG-immunoglobulin (cell-ELISA); and selectively “targeted” antineoplastic cytotoxicity (biochemistry-based cell vitality/viability assay).Results:The botanicals carnosic acid, ginkgolide-B and tangeretin, each individually exerted maximum antineoplastic cytotoxicity levels of 58.1%, 5.3%, and 41.1% respectively against pulmonary adenocarcinoma (A549) populations. Dexamethasone-(C21-phosphoramidate)-[anti-EGFR] formulated at corticosteroid/ glucocorticoid equivalent concentrations produced anti-neoplastic cytotoxicity at levels of 7.7% (10-9 M), 26.9% (10-8 M), 64.9% (10-7 M), 69.9% (10-6 M) and 73.0% (10-5 M). Ccarnosic acid, ginkgolide-B and tangeretin in simultaneous dual-combination with dexamethasone-(C21-phosphoramidate)-[anti-EGFR] exerted maximum anti-neoplastic cytotoxicity levels of 70.5%, 58.6%, and 69.7% respectively.Discussion:Carnosic acid, ginkgolide-B and tangeretin botanicals exerted anti-neoplastic cytotoxicity against pulmonary adenocarcinoma (A549) which additively contributed to the anti-neoplastic cytotoxic potency of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramidate)-[anti-EGFR]. Carnosic acid and tangeretin were most potent in this regard both individually and in dual-combination with dexamethasone-(C21- phosphoramidate)-[anti-EGFR]. Advantages and attributes of carnosic acid and tangeretin as potential monotherapeutics are a wider margin-of-safety of conventional chemotherapeutics which would readily complement the selective “targeted” delivery properties of dexamethasone-(C21-phosphoramidate)-[anti-EGFR] and possibly other covalent immunopharmaceuticals in addition to providing opportunities for the discovery of combination therapies that provide heightened levels of anti-neoplastic efficacy.
Collapse
Affiliation(s)
- Cody P. Coyne
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi 39762, United States
| | - Lakshmi Narayanan
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi 39762, United States
| |
Collapse
|
11
|
Zhu J, Wang G, Alves CS, Tomás H, Xiong Z, Shen M, Rodrigues J, Shi X. Multifunctional Dendrimer-Entrapped Gold Nanoparticles Conjugated with Doxorubicin for pH-Responsive Drug Delivery and Targeted Computed Tomography Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12428-12435. [PMID: 30251859 DOI: 10.1021/acs.langmuir.8b02901] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Novel theranostic nanocarriers exhibit a desirable potential to treat diseases based on their ability to achieve targeted therapy while allowing for real-time imaging of the disease site. Development of such theranostic platforms is still quite challenging. Herein, we present the construction of multifunctional dendrimer-based theranostic nanosystem to achieve cancer cell chemotherapy and computed tomography (CT) imaging with targeting specificity. Doxorubicin (DOX), a model anticancer drug, was first covalently linked onto the partially acetylated poly(amidoamine) dendrimers of generation 5 (G5) prefunctionalized with folic acid (FA) through acid-sensitive cis-aconityl linkage to form G5·NHAc-FA-DOX conjugates, which were then entrapped with gold (Au) nanoparticles (NPs) to create dendrimer-entrapped Au NPs (Au DENPs). We demonstrate that the prepared DOX-Au DENPs possess an Au core size of 2.8 nm, have 9.0 DOX moieties conjugated onto each dendrimer, and are colloid stable under different conditions. The formed DOX-Au DENPs exhibit a pH-responsive release profile of DOX because of the cis-aconityl linkage, having a faster DOX release rate under a slightly acidic pH condition than under a physiological pH. Importantly, because of the coexistence of targeting ligand FA and Au core NPs as a CT imaging agent, the multifunctional DOX-loaded Au DENPs afford specific chemotherapy and CT imaging of FA receptor-overexpressing cancer cells. The constructed DOX-conjugated Au DENPs hold a promising potential to be utilized for simultaneous chemotherapy and CT imaging of various types of cancer cells.
Collapse
Affiliation(s)
- Jingyi Zhu
- Cancer Center , Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai 200072 , People's Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Guoying Wang
- CQM-Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus Universitário da Penteada , 9020-105 Funchal , Portugal
| | - Carla S Alves
- CQM-Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus Universitário da Penteada , 9020-105 Funchal , Portugal
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus Universitário da Penteada , 9020-105 Funchal , Portugal
| | - Zhijuan Xiong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus Universitário da Penteada , 9020-105 Funchal , Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials , Northwestern Polytechnical University , Xi'an 710072 , People's Republic of China
| | - Xiangyang Shi
- Cancer Center , Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai 200072 , People's Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
- CQM-Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus Universitário da Penteada , 9020-105 Funchal , Portugal
| |
Collapse
|
12
|
Liu X, Wang C, Liu Z. Protein-Engineered Biomaterials for Cancer Theranostics. Adv Healthc Mater 2018; 7:e1800913. [PMID: 30260583 DOI: 10.1002/adhm.201800913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Indexed: 12/18/2022]
Abstract
Proteins are an important class of biomaterials promising a variety of applications such as drug delivery, and imaging or therapy, owing to their biodegradability, biocompatibility, as well as inherent biological activities acting as enzymes, recognizing molecules, or therapeutics by themselves. Over the few past decades, different types of proteins with desired properties have been widely explored for biomedical applications. Many therapeutic proteins have now entered clinical use. This review therefore summarizes various strategies in the engineering of biomaterials for delivery of therapeutic proteins, as well as the recent development of protein-based biomaterials for cancer theranostics.
Collapse
Affiliation(s)
- Xiaowen Liu
- Pharmacology; Department of Basic Medical Sciences; Faculty of Medical Science; Jinan University; Guangzhou Guangdong 510632 China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices; Soochow University; Suzhou Jiangsu 215123 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices; Soochow University; Suzhou Jiangsu 215123 China
| |
Collapse
|
13
|
Dhoke DM, Basaiyye SS, Khedekar PB. Development and characterization of L-HSA conjugated PLGA nanoparticle for hepatocyte targeted delivery of antiviral drug. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Zhu J, Wang G, Alves CS, Tomás H, Xiong Z, Shen M, Rodrigues J, Shi X. Multifunctional Dendrimer-Entrapped Gold Nanoparticles Conjugated with Doxorubicin for pH-Responsive Drug Delivery and Targeted Computed Tomography Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018. [DOI: https://doi.org/10.1021/acs.langmuir.8b02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingyi Zhu
- Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, People’s Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Guoying Wang
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Carla S. Alves
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Helena Tomás
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Zhijuan Xiong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - João Rodrigues
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Xiangyang Shi
- Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, People’s Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
15
|
Coyne CP, Narayanan L. Anti-neoplastic cytotoxicity by complementary simultaneous selective “targeted” delivery for pulmonary adenocarcinoma: fludarabine-(5′-phosphoramidate)-[anti-IGF-1R] in dual-combination with dexamethasone-(C21-phosphoramidate)-[anti-EGFR]. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0401-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
He Y, Li F, Huang Y. Smart Cell-Penetrating Peptide-Based Techniques for Intracellular Delivery of Therapeutic Macromolecules. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 112:183-220. [PMID: 29680237 DOI: 10.1016/bs.apcsb.2018.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many therapeutic macromolecules must enter cells to take their action. However, their treatment outcomes are often hampered by their poor transportation into target cells. Therefore, efficient intracellular delivery of these macromolecules is critical for improving their therapeutic efficacy. Cell-penetrating peptide (CPP)-based approaches are one of the most efficient methods for intracellular delivery of macromolecular therapeutics. Nevertheless, poor specificity is a significant concern for systemic administrated CPP-based delivery systems. This chapter will review recent advances in CPP-mediated macromolecule delivery with a focus on various smart strategies which not only enhance the intracellular delivery but also improve the targeting specificity.
Collapse
Affiliation(s)
- Yang He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Feng Li
- Harrison School of Pharmacy, Auburn University, Auburn, AL, United states.
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Re-programming pullulan for targeting and controlled release of doxorubicin to the hepatocellular carcinoma cells. Eur J Pharm Sci 2017; 103:104-115. [DOI: 10.1016/j.ejps.2017.02.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 02/07/2023]
|
18
|
Controlled release of silyl ether camptothecin from thiol-ene click chemistry-functionalized mesoporous silica nanoparticles. Acta Biomater 2017; 51:471-478. [PMID: 28131940 DOI: 10.1016/j.actbio.2017.01.062] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/12/2016] [Accepted: 01/23/2017] [Indexed: 01/31/2023]
Abstract
As efficient drug carriers, stimuli-responsive mesoporous silica nanoparticles are at the forefront of research on drug delivery systems. An acid-responsive system based on silyl ether has been applied to deliver a hybrid prodrug. Thiol-ene click chemistry has been successfully utilized for tethering this prodrug to mesoporous silica nanoparticles. Here, by altering the steric bulk of the substituent on the silicon atom, the release rate of a model drug, camptothecin, was controlled. The synthesized drug delivery system was investigated by analytical methods to confirm the functionalization and conjugation of the mesoporous silica nanoparticles. Herein, trimethyl silyl ether and triethyl silyl ether were selected to regulate the release rate. Under normal plasma conditions (pH 7.4), both types of camptothecin-loaded mesoporous silica nanoparticles (i.e., MSN-Me-CPT and MSN-Et-CPT) did not release the model drug. However, under in vitro acidic conditions (pH 4.0), based on a comparison of the release rates, camptothecin was released from MSN-Me-CPT more rapidly than from MSN-Et-CPT. To determine the biocompatibility of the modified mesoporous silica nanoparticles and the in vivo camptothecin uptake behavior, MTT assays with cancer cells and confocal microscopy observations were conducted, with positive results. These functionalized nanoparticles could be useful in clinical treatments requiring controlled drug release. STATEMENT OF SIGNIFICANCE As the release rate of drug from drug-carrier plays important role in therapy effects, trimethyl silyl ether (TMS) and triethyl silyl ether (TES) were selected as acid-sensitive silanes to control the release rates of model drugs conjugated from MSNs by thiol-ene click chemistry. The kinetic profiles of TMS and TES materials have been studied. At pH 4.0, the release of camptothecin from MSN-Et-CPT occurred after 2h, whereas MSN-Me-CPT showed immediate drug release. The results showed that silyl ether could be used to control release rates of drugs from MSNs under acid environment, which could be useful in clinical treatments requiring controlled drug release.
Collapse
|
19
|
Coyne CP, Narayanan L. Gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency in populations of pulmonary adenocarcinoma (A549). Chem Biol Drug Des 2017; 89:379-399. [PMID: 27561602 PMCID: PMC5396302 DOI: 10.1111/cbdd.12845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
One molecular-based approach that increases potency and reduces dose-limited sequela is the implementation of selective 'targeted' delivery strategies for conventional small molecular weight chemotherapeutic agents. Descriptions of the molecular design and organic chemistry reactions that are applicable for synthesis of covalent gemcitabine-monophosphate immunochemotherapeutics have to date not been reported. The covalent immunopharmaceutical, gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R] was synthesized by reacting gemcitabine with a carbodiimide reagent to form a gemcitabine carbodiimide phosphate ester intermediate which was subsequently reacted with imidazole to create amine-reactive gemcitabine-(5'-phosphorylimidazolide) intermediate. Monoclonal anti-IGF-1R immunoglobulin was combined with gemcitabine-(5'-phosphorylimidazolide) resulting in the synthetic formation of gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R]. The gemcitabine molar incorporation index for gemcitabine-(5'-phosphoramidate)-[anti-IGF-R1] was 2.67:1. Cytotoxicity Analysis - dramatic increases in antineoplastic cytotoxicity were observed at and between the gemcitabine-equivalent concentrations of 10-9 M and 10-7 M where lethal cancer cell death increased from 0.0% to a 93.1% maximum (100.% to 6.93% residual survival), respectively. Advantages of the organic chemistry reactions in the multistage synthesis scheme for gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R] include their capacity to achieve high chemotherapeutic molar incorporation ratios; option of producing an amine-reactive chemotherapeutic intermediate that can be preserved for future synthesis applications; and non-dedicated organic chemistry reaction scheme that allows substitutions of either or both therapeutic moieties, and molecular delivery platforms.
Collapse
Affiliation(s)
- Cody P. Coyne
- Department of Basic SciencesCollege of Veterinary MedicineWise CenterMississippi State UniversityMississippi StateMSUSA
- College of Veterinary MedicineWise CenterMississippi State UniversityMississippi StateMSUSA
| | - Lakshmi Narayanan
- Department of Basic SciencesCollege of Veterinary MedicineWise CenterMississippi State UniversityMississippi StateMSUSA
- College of Veterinary MedicineWise CenterMississippi State UniversityMississippi StateMSUSA
- Present address: Fishery and Wildlife Research CenterMississippi State UniversityLocksley Way 201Mississippi StateMSUSA
| |
Collapse
|
20
|
The antitumor activity of a lactosaminated albumin conjugate of doxorubicin in a chemically induced hepatocellular carcinoma rat model compared to sorafenib. Dig Liver Dis 2017; 49:213-222. [PMID: 27825923 DOI: 10.1016/j.dld.2016.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 09/22/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Worldwide, consistent survival benefit for chemotherapy in hepatocellular carcinoma (HCC) is a golden goal for concerned researchers. Nexavar® (sorafenib) is the only approved agent that achieved touchable successes in this regard. Thus, there is a pressing medical need for new promising drugs to improve HCC therapy. AIMS our designed lactosaminated albumin conjugate of doxorubicin (L-HSA-DOXO) that rapidly and preferentially accumulates in the liver is compared, for the first time at its MTD, with doxorubicin and sorafenib, not only for antitumor efficacy but also for overall survival. METHODS HCC was induced in male Wistar rats with N-nitrosodiethylamine added to drinking water (100mg/L) for 8 weeks. Endpoints were antitumor efficacy, tolerability and overall survival. RESULTS L-HSA-DOXO proved to be superior at least over doxorubicin in the majority of assessed endpoints. Circulating AFP-L3% was diminished in L-HSA-DOXO (14.5%) and sorafenib (18.4%) groups compared to DENA (31.1%) and doxorubicin (29.5%) groups. This superiority was further confirmed by Western blot analyses of some novel HCC biomarkers. Survival study reinforced consistent benefits of both L-HSA-DOXO and sorafenib. CONCLUSIONS L-HSA-DOXO shows at least comparable activity to sorafenib which clinically achieves only ∼3 months overall survival benefit. Combination of these two agents could act beneficially or synergistically via two different modes of action to fight HCC.
Collapse
|
21
|
Chen Q, Liu Z. Albumin Carriers for Cancer Theranostics: A Conventional Platform with New Promise. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10557-10566. [PMID: 27111654 DOI: 10.1002/adma.201600038] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/05/2016] [Indexed: 05/21/2023]
Abstract
Theranostic nanoplatforms with integrated diagnostic and therapeutic functions, aiming at imaging-guided therapy to improve treatment planning, as well as combination therapy to enhance treatment efficacy, have received tremendous attention in recent years. Among numerous types of functional nanomaterials explored in this field, protein-based nanocarriers with inherent biocompatibility have also been selected as building blocks to construct multifunctional theranostic platforms. In particular, albumin, which has been extensively used as drug-delivery carriers for decades, has shown great new promise in the construction of novel imaging and therapeutic nanoagents, as demonstrated by a number of recent studies. IHere, the motivations of using albumins to build up nanoscale theranostics are discussed, and the latest progress/future perspectives in this direction are summarized.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou, Jiangsu, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou, Jiangsu, 215123, China
| |
Collapse
|
22
|
Coyne CP, Narayanan L. Dexamethasone-(C21-phosphoramide)-[anti-EGFR]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency against pulmonary adenocarcinoma (A549). Drug Des Devel Ther 2016; 10:2575-97. [PMID: 27574398 PMCID: PMC4990379 DOI: 10.2147/dddt.s102075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Corticosteroids are effective in the management of a variety of disease states, such as several forms of neoplasia (leukemia and lymphoma), autoimmune conditions, and severe inflammatory responses. Molecular strategies that selectively "target" delivery of corticosteroids minimize or prevents large amounts of the pharmaceutical moiety from passively diffusing into normal healthy cell populations residing within tissues and organ systems. MATERIALS AND METHODS The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR] was synthesized by reacting dexamethasone-21-monophosphate with a carbodiimide reagent to form a dexamethasone phosphate carbodiimide ester that was subsequently reacted with imidazole to create an amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate. Monoclonal anti-EGFR immunoglobulin was combined with the amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate, resulting in the synthesis of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Following spectrophotometric analysis and validation of retained epidermal growth factor receptor type 1 (EGFR)-binding avidity by cell-ELISA, the selective anti-neoplasic cytotoxic potency of dexamethasone-(C21-phosphoramide)-[anti-EGFR] was established by MTT-based vitality stain methodology using adherent monolayer populations of human pulmonary adenocarcinoma (A549) known to overexpress the tropic membrane receptors EGFR and insulin-like growth factor receptor type 1. RESULTS The dexamethasone:IgG molar-incorporation-index for dexamethasone-(C21-phosphoramide)-[anti-EGFR] was 6.95:1 following exhaustive serial microfiltration. Cytotoxicity analysis: covalent bonding of dexamethasone to monoclonal anti-EGFR immunoglobulin did not significantly modify the ex vivo antineoplastic cytotoxicity of dexamethasone against pulmonary adenocarcinoma at and between the standardized dexamethasone equivalent concentrations of 10(-9) M and 10(-5) M. Rapid increases in antineoplastic cytotoxicity were observed at and between the dexamethasone equivalent concentrations of 10(-9) M and 10(-7) M where cancer cell death increased from 7.7% to a maximum of 64.9% (92.3%-35.1% residual survival), respectively, which closely paralleled values for "free" noncovalently bound dexamethasone. DISCUSSION Organic chemistry reaction regimens were optimized to develop a multiphase synthesis regimen for dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Attributes of dexamethasone-(C21-phosphoramide)-[anti-EGFR] include a high dexamethasone molar incorporation-index, lack of extraneous chemical group introduction, retained EGFR-binding avidity ("targeted" delivery properties), and potential to enhance long-term pharmaceutical moiety effectiveness.
Collapse
Affiliation(s)
| | - Lakshmi Narayanan
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
23
|
Zhang X, Li J, Yan M. Targeted hepatocellular carcinoma therapy: transferrin modified, self-assembled polymeric nanomedicine for co-delivery of cisplatin and doxorubicin. Drug Dev Ind Pharm 2016; 42:1590-9. [PMID: 26942448 DOI: 10.3109/03639045.2016.1160103] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Targeted hepatocellular carcinoma (HCC) therapy was carried out to improve the efficacy of liver cancers. The aim of this study was to develop transferrin (Tf) modified, self-assembled polymeric nanoparticles for co-delivery doxorubicin (DOX) and cisplatin (DDP), to achieve combination tumor therapy. METHODS Tf modified polyethylene glycol (PEG) containing DOX prodrug (Tf-PEG-DOX) was synthesized. DDP containing poly(lactic-co-glycolic) acid (PLGA) materials (PLGA-DDP) were prepared. Tf modified DOX and DDP loaded PLGA nanoparticles (Tf-DOX/DDP NPs) were prepared by using nanoprecipitation method. The particles sizes, zeta potentials, drug loading effects were characterized. The cytotoxicity of the NPs was evaluated in human hepatoma carcinoma cell lines (HepG2 cells), and in vivo anti-tumor was observed in mice bearing human HepG2 cells model. RESULTS Tf-DOX/DDP NPs displayed higher cytotoxicity and enhanced antitumor activity both in vitro and in vivo over their non-modified and single drug loaded counterparts. CONCLUSION Tf-DOX/DDP NPs can achieve outstanding anti-tumor activity due to the combination effect of two drugs and the active targeting ability of Tf ligands. The self-assembled polymeric nanomedicine could act as an efficient therapy method for HCC treatment.
Collapse
Affiliation(s)
- Xiaoran Zhang
- a Ji'nan Central Hospital Affiliated to Shandong University , Ji'nan , People's Republic of China
| | - Jinxiu Li
- b Department of Pharmacy , Binzhou People ' s Hospital , Binzhou , People's Republic of China
| | - Meixing Yan
- c Department of Pharmacy , Qingdao Municipal Hospital , Qingdao , People's Republic of China
| |
Collapse
|
24
|
Jacques SA, Leriche G, Mosser M, Nothisen M, Muller CD, Remy JS, Wagner A. From solution to in-cell study of the chemical reactivity of acid sensitive functional groups: a rational approach towards improved cleavable linkers for biospecific endosomal release. Org Biomol Chem 2016; 14:4794-803. [DOI: 10.1039/c6ob00846a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
pH-Sensitive linkers designed to undergo selective hydrolysis at acidic pH compared to physiological pH can be used for the selective release of therapeutics at their site of action.
Collapse
Affiliation(s)
- Sylvain A. Jacques
- LFCS Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| | - Geoffray Leriche
- LFCS Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| | - Michel Mosser
- LFCS Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| | - Marc Nothisen
- V-SAT Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| | - Christian D. Muller
- Laboraroire d'Innovation Thérapeutique
- UMR 7200
- CNRS University of Strasbourg
- Faculty of Pharmacy
- 67400 Illkirch
| | - Jean-Serge Remy
- V-SAT Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| | - Alain Wagner
- LFCS Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| |
Collapse
|
25
|
Coyne CP, Narayanan L. Fludarabine- (C 2- methylhydroxyphosphoramide)- [anti-IGF-1R]: Synthesis and Selectively "Targeted"Anti-Neoplastic Cytotoxicity against Pulmonary Adenocarcinoma (A549). ACTA ACUST UNITED AC 2015; 4. [PMID: 26613088 DOI: 10.4172/2325-9604.1000129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Many if not most conventional small molecular weight chemotherapeutics are highly potent against many forms of neoplastic disease. Unfortunately, majority of an administered dose unintentionally diffuses passively into normal tissues and healthy organ systems following intravenous administration. One strategy for both increasing potency and reducing dose-limited sequela is the selective "targeted" delivery of conventional chemotherapeutic agents. MATERIALS AND METHODS The fludarabine-(C2- methylhydroxyphosphoramide)-[anti-IGF-1R] was synthesized by initially reacting fludarabine with a carbodiimide to form a fludarabine carbodiimide phosphate ester intermediate that was subsequently reacted with imidazole to create an amine-reactive fludarabine- (C2-phosphorylimidazolide) intermediate. Monoclonal anti-IGF-1R immunoglobulin was combined with the amine-reactive fludarabine- (C2-phosphorylimidazolide) intermediate resulting in the synthesis of covalent fludarabine-(C2-methylhydroxyphosphoramide)- [anti-IGF-1R] immunochemotherapeutic. Residual fludarabine and un-reacted reagents were removed by serial microfiltration (MWCO 10,000) and monitored by analytical-scale HP-TLC. Retained IGF-1R binding-avidity of fludarabine-(C2- methylhydroxyphosphoramide)-[anti-IGF-1R] was established by cell-ELISA using pulmonary adenocarcinoma cell (A549) which over-expresses IGF-1R and EGFR. Anti-neoplastic cytotoxic potency of fludarabine-(C2-methylhydroxyphosphoramide)-[anti- IGF-1R] was determined against pulmonary adenocarcinoma (A549) using an MTT-based vitality stain methodology. RESULTS The fludarabine molar-incorporation-index for fludarabine- (C2-methylhydroxyphosphoramide)-[anti-IGF-R1] was 3.67:1 while non-covalently bound fludarabine was not detected by analytical scale HP-TLC following serial micro-filtration. Size-separation fludarabine-(C2-methylhydroxyphosphoramide)-[anti- IGF-1R] by SDS-PAGE with chemo luminescent autoradiography detected only a single 150-kDa band. Cell-ELISA of fludarabine- (C2-methylhydroxyphosphoramide)-[anti-IGF-1R] measuring total immunoglobulin bound to exterior surface membranes of pulmonary adenocarcinoma (A549) increased with elevations in immunoglobulin-equivalent concentrations of the covalent fludarabine immunochemotherapeutic. Between the fludarabine-equivalent concentrations of 10-10 M and 10-5 M both fludarabine-(C2- methylhydroxyphosphoramide)-[anti-IGF-1R] and fludarabine had ex-vivo anti-neoplastic cytotoxic potency levels that increased rapidly between the fludarabine-equivalent concentrations of 10-6 M and 10-5 M where cancer cell death percentages increased from 24.4% to a maximum of 94.7% respectively. CONCLUSION The molecular design and organic chemistry reaction schemes were developed for synthesizing fludarabine-(C2- methylhydroxyphosphoramide)-[anti-IGF-1R] which possessed both properties of selective "targeted" delivery and anti-neoplastic cytotoxic potency equivalent to fludarabine chemotherapeutic.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Wise Center, Mississippi State University, Mississippi State, Mississippi, USA ; College of Veterinary Medicine, Mississippi State University, Mississippi, USA
| | - Lakshmi Narayanan
- Department of Basic Sciences, College of Veterinary Medicine, Wise Center, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
26
|
Efficacy of doxorubicin-transferrin conjugate in apoptosis induction in human leukemia cells through reactive oxygen species generation. Cell Oncol (Dordr) 2015; 39:107-18. [PMID: 26611752 PMCID: PMC4820500 DOI: 10.1007/s13402-015-0256-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2015] [Indexed: 12/18/2022] Open
Abstract
Background Doxorubicin (DOX) is a small molecular cytotoxic agent that can be transferred efficiently to cancer cells by nanocarriers. This anthracycline antibiotic serves as an effective anti-neoplastic drug against both hematological and solid malignancies. Here, we set out to assess the capacity of a novel doxorubicin - transferrin conjugate (DOX-TRF) to provoke apoptosis in human normal and leukemia cells through free radicals produced via a redox cycle of doxorubicin (DOX) when released from its conjugate. Methods After DOX-TRF exposure, we determined the time-course of apoptotic and necrotic events, the generation of reactive oxygen species (ROS), changes in mitochondrial membrane potential, as well as alterations in cytochrome c levels and intracellular calcium concentrations in human leukemia-derived cell lines (CCRF-CEM, K562 and its doxorubicin-resistant derivative K562/DOX) and normal peripheral blood-derived mononuclear cells (PBMC). Results We found that DOX-TRF can induce apoptosis in all leukemia-derived cell lines tested, which was associated with morphological changes and decreases in mitochondrial membrane potential. In comparison to free DOX treated cells, we observed a time-dependency between a higher level of ROS generation and a higher drop in mitochondrial membrane potential, particularly in the doxorubicin-resistant cell line. In addition, we found that the apoptotic cell death induced by DOX-TRF was directly associated with a release of cytochrome c from the mitochondria and an increase in intracellular calcium level in all human leukemia-derived cell lines tested. Conclusions Our data indicate that DOX-TRF is considerably more cytotoxic to human leukemia cells than free DOX. In addition, we show that DOX-TRF can effectively produce free radicals, which are directly involved in apoptosis induction.
Collapse
|
27
|
Coyne CP, Jones T, Bear R. Simultaneous Dual Selective Targeted Delivery of Two Covalent Gemcitabine Immunochemotherapeutics and Complementary Anti-Neoplastic Potency of [Se]-Methylselenocysteine. JOURNAL OF CANCER THERAPY 2015; 6:62-89. [PMID: 25821636 PMCID: PMC4376018 DOI: 10.4236/jct.2015.61009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The anti-metabolite chemotherapeutic, gemcitabine is relatively effective for a spectrum of neoplastic conditions that include various forms of leukemia and adenocarcinoma/carcinoma. Rapid systemic deamination of gemcitabine accounts for a brief plasma half-life but its sustained administration is often curtailed by sequelae and chemotherapeutic-resistance. A molecular strategy that diminishes these limitations is the molecular design and synthetic production of covalent gemcitabine immunochemotherapeutics that possess properties of selective "targeted" delivery. The simultaneous dual selective "targeted" delivery of gemcitabine at two separate sites on the external surface membrane of a single cancer cell types represents a therapeutic approach that can increase cytosol chemotherapeutic deposition; prolong chemotherapeutic plasma half-life (reduces administration frequency); minimize innocent exposure of normal tissues and healthy organ systems; and ultimately enhance more rapid and thorough resolution of neoplastic cell populations. MATERIALS AND METHODS A light-reactive gemcitabine intermediate synthesized utilizing succinimidyl 4,4-azipentanoate was covalently bound to anti-EGFR or anti-HER2/neu IgG by exposure to UV light (354-nm) resulting in the synthesis of covalent immunochemotherapeutics, gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu]. Cytotoxic anti-neoplastic potency of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] between gemcitabine-equivalent concentrations of 10-12 M and 10-6 M was determined utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKRr-3). The organoselenium compound, [Se]-methylselenocysteine was evaluated to determine if it complemented the anti-neoplastic potency of the covalent gemcitabine immunochemotherapeutics. RESULTS Gemcitabine-(C4-amide)-[anti-EGFR], gemcitabine-(C4-amide)-[anti-HER2/neu] and the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] all had anti-neoplastic cytotoxic potency against mammary adenocarcinoma. Gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] produced progressive increases in anti-neoplastic cytotoxicity that were greatest between gemcitabine-equivalent concentrations of 10-9 M and 10-6 M. Dual simultaneous combinations of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] produced levels of anti-neoplastic cytotoxicity intermediate between each of the individual covalent gemcitabine immunochemotherapeutics. Total anti-neoplastic cytotoxicity of the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) was substantially higher when formulated with [Se]-methylsele-nocysteine.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Ryan Bear
- Wise Center, Mississippi State University, Mississippi State, USA
| |
Collapse
|
28
|
Fiume L, Manerba M, Di Stefano G. Albumin-drug conjugates in the treatment of hepatic disorders. Expert Opin Drug Deliv 2014; 11:1203-17. [PMID: 24773257 DOI: 10.1517/17425247.2014.913567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION This review deals with the use of serum albumin (SA) as a carrier for the selective delivery of drugs to liver cells. AREAS COVERED The synthesis and properties of the SA conjugates prepared to enhance the performance of the drugs used in the treatment of viral hepatitis, hepatocellular carcinoma (HCC), liver micrometastases and hepatic fibrosis are reported. EXPERT OPINION Studies in humans and laboratory animals demonstrated the capacity of SA conjugates to accomplish a liver targeting of the drugs, but at the same time underscored their limits and drawbacks, which can explain why to date these complexes did not reach a practical application. The major drawback is the need of administration by intravenous route, which prevents long-term daily treatments as required by some liver pathologies, such as chronic virus hepatitis and fibrosis. At present, only a conjugate carrying doxorubicin and addressed to the treatment of HCC showed in laboratory animals a solid potentiality to improve the value of the coupled drug. In the future, conjugation to SA could remain a successful strategy to permit the administration of drugs with rapid resolutive effects inside liver cells without causing severe extrahepatic adverse reactions.
Collapse
Affiliation(s)
- Luigi Fiume
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine , via San Giacomo 14 - 20126 Bologna , Italy +39 0512094700 ; +39 0512094746 ;
| | | | | |
Collapse
|
29
|
Coyne CP, Jones T, Bear R. Anti-Neoplastic Cytotoxicity of Gemcitabine-(C 4- amide)-[anti-EGFR] in Dual-combination with Epirubicin-(C 3- amide)-[anti-HER2/ neu] against Chemotherapeutic-Resistant Mammary Adenocarcinoma (SKBr-3) and the Complementary Effect of Mebendazole. JOURNAL OF CANCER RESEARCH AND THERAPEUTIC ONCOLOGY 2014; 2:203. [PMID: 25844392 PMCID: PMC4381351 DOI: 10.17303/jcrto.2014.203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS Delineate the feasibility of simultaneous, dual selective "targeted" chemotherapeutic delivery and determine if this molecular strategy can promote higher levels anti-neoplastic cytotoxicity than if only one covalent immunochemotherapeutic is selectively "targeted" for delivery at a single membrane associated receptor over-expressed by chemotherapeutic-resistant mammary adenocarcinoma. METHODOLOGY Gemcitabine and epirubicin were covalently bond to anti-EGFR and anti-HER2/neu utilizing a rapid multi-phase synthetic organic chemistry reaction scheme. Determination that 96% or greater gemcitabine or epirubicin content was covalently bond to immunoglobulin fractions following size separation by micro-scale column chromatography was established by methanol precipitation analysis. Residual binding-avidity of gemcitabine-(C4-amide)-[anti-EG-FR] applied in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu] was determined by cell-ELIZA utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) populations. Lack of fragmentation or polymerization was validated by SDS-PAGE/immunodetection/chemiluminescent autoradiography. Anti-neoplastic cytotoxic potency was determined by vitality stain analysis of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) monolayers known to uniquely over-express EGFR (2 × 105/cell) and HER2/neu (1 × 106/cell) receptor complexes. The covalent immunochemotherapeutics gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/neu] were applied simultaneously in dual-combination to determine their capacity to collectively evoke elevated levels of anti-neoplastic cytotoxicity. Lastly, the tubulin/microtubule inhibitor mebendazole evaluated to determine if it's potential to complemented the anti-neoplastic cytotoxic properties of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu]. RESULTS Dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] produced greater levels of anti-neoplastic cytotoxicity than either of the covalent immunochemotherapeutics alone. The benzimidazole microtubule/tubulin inhibitor, mebendazole complemented the anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu]. CONCLUSIONS The dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] produced higher levels of selectively "targeted" anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) than either covalent immunochemotherapeutic alone. The benzimidazole tubulin/microtubule inhibitor, mebendazole also possessed anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) and complemented the potency and efficacy of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu].
Collapse
Affiliation(s)
- CP Coyne
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Ryan Bear
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
30
|
Soudy R, Chen C, Kaur K. Novel peptide-doxorubucin conjugates for targeting breast cancer cells including the multidrug resistant cells. J Med Chem 2013; 56:7564-73. [PMID: 24028446 DOI: 10.1021/jm400647r] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The efficacy of chemotherapeutic doxorubucin (Dox) in cancer treatment is limited by two main factors, nonspecific toxicity and the emergence of tumor resistance. To overcome these hurdles, in this study peptide-Dox conjugates were prepared. A decapeptide 18-4a (NH₂-WxEAAYQkFL-CONH₂) [corrected] with high specificity for breast cancer cells and improved proteolytic stability was conjugated to Dox to give peptide-Dox ester (1) and amide (2) conjugates. Cell uptake studies showed that the conjugates were 6-10 times selective for breast cancerous cells (MCF-7 and MDA-MB-435) over noncancerous cells (HUVECs and MCF-10A). Conjugate 1 displayed similar toxicity as free Dox toward the breast cancerous cells and was about 40 times less toxic toward the noncancerous cells and 4-fold more toxic toward the Dox resistant MDA-MB-435-MDR cells than the free Dox. These data suggest that conjugate 1 can be used as a potential prodrug for improving the therapeutic index of Dox and potentially many other cytotoxic drugs.
Collapse
Affiliation(s)
- Rania Soudy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, T6G 2E1, Canada
| | | | | |
Collapse
|
31
|
Wu Y, Ihme S, Feuring‐Buske M, Kuan SL, Eisele K, Lamla M, Wang Y, Buske C, Weil T. A core-shell albumin copolymer nanotransporter for high capacity loading and two-step release of doxorubicin with enhanced anti-leukemia activity. Adv Healthc Mater 2013; 2:884-94. [PMID: 23225538 DOI: 10.1002/adhm.201200296] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Indexed: 11/11/2022]
Abstract
The native transportation protein serum albumin represents an attractive nano-sized transporter for drug delivery applications due to its beneficial safety profile. Existing albumin-based drug delivery systems are often limited by their low drug loading capacity as well as noticeable drug leakage into the blood circulation. Therefore, a unique albumin-derived core-shell doxorubicin (DOX) delivery system based on the protein denaturing-backfolding strategy was developed. 28 DOX molecules were covalently conjugated to the albumin polypeptide backbone via an acid sensitive hydrazone linker. Polycationic and pegylated human serum albumin formed two non-toxic and enzymatically degradable protection shells around the encapsulated DOX molecules. This core-shell delivery system possesses notable advantages, including a high drug loading capacity critical for low administration doses, a two-step drug release mechanism based on pH and the presence of proteases, an attractive biocompatibility and narrow size distribution inherited from the albumin backbone, as well as fast cellular uptake and masking of epitopes due to a high degree of pegylation. The IC50 of these nanoscopic onion-type micelles was found in the low nanomolar range for Hela cells as well as leukemia cell lines. In vivo data indicate its attractive potential as anti-leukemia treatment suggesting its promising profile as nanomedicine drug delivery system.
Collapse
Affiliation(s)
- Yuzhou Wu
- Institute of Organic Chemistry III, Macromolecular Chemistry, Albert‐Einstein‐Allee 11, 89081 Ulm, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Susann Ihme
- Institute of Experimental Cancer Research, CCCU, Albert‐Einstein‐Allee 11, 89081 Ulm, Germany
| | - Michaela Feuring‐Buske
- Institute of Experimental Cancer Research, CCCU, Albert‐Einstein‐Allee 11, 89081 Ulm, Germany
- Department of Internal Medicine III, University Hospital Ulm, Albert‐Einstein‐Allee 23, 89081 Ulm, Germany
| | - Seah Ling Kuan
- Institute of Organic Chemistry III, Macromolecular Chemistry, Albert‐Einstein‐Allee 11, 89081 Ulm, Germany
| | - Klaus Eisele
- Institute of Organic Chemistry III, Macromolecular Chemistry, Albert‐Einstein‐Allee 11, 89081 Ulm, Germany
| | - Markus Lamla
- Institute of Organic Chemistry III, Macromolecular Chemistry, Albert‐Einstein‐Allee 11, 89081 Ulm, Germany
| | - Yanran Wang
- Institute of Organic Chemistry III, Macromolecular Chemistry, Albert‐Einstein‐Allee 11, 89081 Ulm, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, CCCU, Albert‐Einstein‐Allee 11, 89081 Ulm, Germany
| | - Tanja Weil
- Institute of Organic Chemistry III, Macromolecular Chemistry, Albert‐Einstein‐Allee 11, 89081 Ulm, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
32
|
Coyne CP, Jones T, Bear R. Anti-Neoplastic Cytotoxicity of Gemcitabine-(C 4- amide)-[anti-HER2/ neu] in Combination with Griseofulvin against Chemotherapeutic-Resistant Mammary Adenocarcinoma (SKBr-3). Med Chem 2013. [PMID: 26225219 PMCID: PMC4516389 DOI: 10.4172/2161-0444.1000141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction Gemcitabine is a pyrimidine nucleoside analog that becomes triphosphorylated and in this form it competitively inhibits cytidine incorporation into DNA strands. Diphosphorylated gemcitabine irreversibly inhibits ribonucleotide reductase thereby preventing deoxyribonucleotide synthesis. Functioning as a potent chemotherapeutic, gemcitabine decreases neoplastic cell proliferation and induces apoptosis which accounts for its effectiveness in the clinical treatment of several leukemia and carcinoma cell types. A brief plasma half-life due to rapid deamination, chemotherapeuticresistance and sequelae restricts gemcitabine utility in clinical oncology. Selective “targeted” gemcitabine delivery represents a molecular strategy for prolonging its plasma half-life and minimizing innocent tissue/organ exposure. Methods A previously described organic chemistry scheme was applied to synthesize a UV-photoactivated gemcitabine intermediate for production of gemcitabine-(C4-amide)-[anti-HER2/neu]. Immunodetection analysis (Western-blot) was applied to detect the presence of any degradative fragmentation or polymerization. Detection of retained binding-avidity for gemcitabine-(C4-amide)-[anti-HER2/neu] was determined by cell-ELISA using populations of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) that highly over-express the HER2/neu trophic membrane receptor. Anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-[anti-HER2/neu] and the tubulin/microtubule inhibitor, griseofulvin was established against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3). Related investigations evaluated the potential for gemcitabine-(C4-amide)-[anti-HER2/neu] in dual combination with griseofulvin to evoke increased levels of anti-neoplastic cytotoxicity compared to gemcitabine-(C4-amide)-[anti-HER2/neu]. Results Covalent gemcitabine-(C4-amide)-[anti-HER2/neu] immunochemotherapeutic and griseofulvin exerted anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3). Covalent gemcitabine-(C4-amide)-[anti-HER2/neu] immunochemotherapeutic or gemcitabine in dual combination with griseofulvin created increased levels of anti-neoplastic cytotoxicity that were greater than was attainable with gemcitabine-(C4-amide)-[anti-HER2/neu] or gemcitabine alone. Conclusion Gemcitabine-(C4-amide)-[anti-HER2/neu] in dual combination with griseofulvin can produce enhanced levels of anti-neoplastic cytotoxicity and potentially provide a basis for treatment regimens with a wider margin-of-safety. Such benefits would be possible through the collective properties of; [i] selective “targeted” gemcitabine delivery; [ii] relatively lower toxicity of griseofulvin compared to many if not most conventional chemotherapeutics; [iii] reduced total dosage requirements faciliated by additive or synergistic anti-cancer properties; and [iv] differences in sequelae for gemcitabine-(C4-amide)-[anti-HER2/neu] compared to griseofulvin functioning as a tubulin/microtubule inhibitor.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Ryan Bear
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
33
|
Ye WL, Teng ZH, Liu DZ, Cui H, Liu M, Cheng Y, Yang TH, Mei QB, Zhou SY. Synthesis of a new pH-sensitive folate-doxorubicin conjugate and its antitumor activity in vitro. J Pharm Sci 2012; 102:530-40. [PMID: 23169439 DOI: 10.1002/jps.23381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/11/2012] [Accepted: 11/01/2012] [Indexed: 11/08/2022]
Abstract
Folate-aminocaproic acid-doxorubicin (FA-AMA-DOX) was synthesized and characterized by H NMR spectroscopy and mass spectrometry. Cytotoxicity and cellular uptake experiments were performed in KB and HepG2 cells, which express folic acid receptor, and the cell line A549, which does not express folic acid receptor. Cytotoxicity was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and cellular uptake was monitored using fluorescence microscopy. The amount of DOX released from FA-AMA-DOX was much greater at pH 5.0 than that at pH 6.5 or 7.4. The cytotoxicity of FA-AMA-DOX toward KB and HepG2 cells was greater than that of DOX or AMA-DOX at the same concentrations, and cytotoxicity could be attenuated by FA in a dose-dependent manner. On the contrary, the cytotoxicity of FA-AMA-DOX and AMA-DOX toward A549 cells was lower than that of DOX at the same concentration, and cytotoxicity could not be reduced by FA. Compared with FA-AMA, FA-AMA-DOX increased the intracellular accumulation of DOX in KB cells. These results suggested that FA-AMA-DOX have suitable attributes for the active targeting of folate-receptor-positive tumor cells and for releasing the chemotherapeutic agent, DOX, in situ; it therefore has potential as a novel cancer therapeutic.
Collapse
Affiliation(s)
- Wei-Liang Ye
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Coyne CP, Jones T, Bear R. Influence of Alternative Tubulin Inhibitors on the Potency of a Epirubicin-Immunochemotherapeutic Synthesized with an Ultra Violet Light-Activated Intermediate: Influence of incorporating an internal/integral disulfide bond structure and Alternative Tubulin/Microtubule Inhibitors on the Cytotoxic Anti-Neoplastic Potency of Epirubicin-(C 3-amide)-Anti-HER2/neu Synthesized Utilizing a UV-Photoactivated Anthracycline Intermediate. CANCER AND CLINICAL ONCOLOGY 2012. [PMID: 26225190 DOI: 10.5539/cco.v1n2p49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Immunochemotherapeutics, epirubicin-(C3-amide)-SS-[anti-HER2/neu] with an internal disulfide bond, and epirubicin-(C3-amide)-[anti-HER2/neu] were synthesized utilizing succinimidyl 2-[(4,4'-azipentanamido) ethyl]-1,3'-dithioproprionate or succinimidyl 4,4-azipentanoate respectively. Western blot analysis was used to determine the presence of any immunoglobulin fragmentation or IgG-IgG polymerization. Retained HER2/neu binding characteristics of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] were validated by cell-ELISA using a mammary adenocarcinoma (SKBr-3) population that highly over-expresses trophic HER2/neu receptor complexes. Cytotoxic anti-neoplastic potency of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] between epirubicin-equivalent concentrations of 10-10 M and 10-6 M was determined by measuring the vitality/proliferation of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3 cell type). Cytotoxic anti-neoplastic potency of benzimidazoles (albendazole, flubendazole, membendazole) and griseofulvin were assessed between 0-to-2 μg/ml and 0-to-100 μg/ml respectively while mebendazole and griseofulvin were analyzed at fixed concentrations of 0.35 μg/ml and 35 g/ml respectively in dual combination with gradient concentrations of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu]. Cytotoxic anti-neoplastic potency for epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) was nearly identical at epirubicin-equivalent concentrations of 10-10 M and 10-6 M. The benzimadazoles also possessed cytotoxic anti-neoplastic activity with flubendazole and albendazole being the most and least potent respectively. Similarly, griseofulvin had cytotoxic anti-neoplastic activity and was more potent than methylselenocysteine. Both mebendazole and griseofulvin when applied in dual combination with either epirubicin-(C3-amide)-[anti-HER2/neu] or epirubicin-(C3-amide)-SS-[anti-HER2/neu] produced enhanced levels of cytotoxic anti-neoplatic potency.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, USA
| | - Ryan Bear
- College of Veterinary Medicine, Mississippi State University, USA
| |
Collapse
|
35
|
Coyne CP, Jones T, Bear R. Synthesis of Gemcitabine-(C 4- amide)-[anti-HER2/ neu] Utilizing a UV-Photoactivated Gemcitabine Intermediate: Cytotoxic Anti-Neoplastic Activity against Chemotherapeutic-Resistant Mammary Adenocarcinoma SKBr-3. ACTA ACUST UNITED AC 2012. [PMID: 26225216 DOI: 10.4236/jct.2012.325089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gemcitabine is a pyrimidine nucleoside analog that becomes triphosphorylated intracellularly where it competitively inhibits cytidine incorporation into DNA strands. Another mechanism-of-action of gemcitabine (diphosphorylated form) involves irreversible inhibition of the enzyme ribonucleotide reductase thereby preventing deoxyribonucleotide synthesis. Functioning as a potent chemotherapeutic gemcitabine promote decreases in neoplastic cell proliferation and apoptosis which is frequently found to be effective for the treatment of several leukemias and a wide spectrum of carcinomas. A brief plasma half-life in part due to rapid deamination and chemotherapeutic-resistance restricts the utility of gemcit-abine in clinical oncology. Selective "targeted" delivery of gemcitabine represents a potential molecular strategy for simultaneously prolonging its plasma half-life and minimizing innocient tissues and organ systems exposure to chemotherapy. The molecular design and an organic chemistry based synthesis reaction is described that initially generates a UV-photoactivated gemcitabine intermediate. In a subsequent phase of the synthesis method the UV-photoactivated gemcitabine intermediate is covalently bonded to a monoclonal immunoglobulin yielding an end-product in the form of gemcitabine-(C4-amide)-[anti-HER2/neu]. Analysis by SDS-PAGE/chemiluminescent auto-radiography did not detect evidence of gemcitabine-(C4-amide)-[anti-HER2/neu] polymerization or degradative fragmentation while cell-ELISA demonstrated retained binding-avidity for HER2/neu trophic membrane receptor complexes highly over-expressed by chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3). Compared to chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3), the covalent immunochemotherapeutic, gemcitabine-(C4-amide)-[anti-HER2/neu] is anticipated to exert greater levels of cytotoxic anti-neoplastic potency against other neoplastic cell types like pancreatic carcinoma, small-cell lung carcinoma, neuroblastoma, glioblastoma, oral squamous cell carcinoma, cervical epitheliod carcinoma, or leukemia/lymphoid neoplastic cell types based on their reported sensitivity to gemcitabine and gemcitabine covalent conjugates.
Collapse
Affiliation(s)
- Cody P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Oktibbeha County, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Oktibbeha County, USA
| | - Ryan Bear
- Wise Center, Mississippi State University, Oktibbeha County, USA
| |
Collapse
|
36
|
Wang Y, Byrne JD, Napier ME, DeSimone JM. Engineering nanomedicines using stimuli-responsive biomaterials. Adv Drug Deliv Rev 2012; 64:1021-30. [PMID: 22266128 PMCID: PMC3422739 DOI: 10.1016/j.addr.2012.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 12/24/2011] [Accepted: 01/09/2012] [Indexed: 12/22/2022]
Abstract
The ability to engineer particles has the potential to shift the paradigm in the creation of new medicines and diagnostics. Complete control over particle characteristics, such as size, shape, mechanical property, and surface chemistry, can enable rapid translation and facilitate the US Food and Drug Administration (FDA) approval of particle technologies for the treatment of cancer, infectious diseases, diabetes, and a host of other major illnesses. The incorporation of natural and artificial external stimuli to trigger the release of drugs enables exquisite control over the release profiles of drugs in a given environment. In this article, we examine several readily scalable top-down methods for the fabrication of shape-specific particles that utilize stimuli-responsive biomaterials for controlled drug delivery. Special attention is given to Particle Replication In Nonwetting Templates (PRINT®) technology and the application of novel triggered-release synthetic and natural polymers.
Collapse
Affiliation(s)
- Yapei Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - James D. Byrne
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Mary E. Napier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joseph M. DeSimone
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Eschelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Institute for Advanced Materials, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
- Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
37
|
Parrott MC, Finniss M, Luft JC, Pandya A, Gullapalli A, Napier ME, DeSimone JM. Incorporation and controlled release of silyl ether prodrugs from PRINT nanoparticles. J Am Chem Soc 2012; 134:7978-82. [PMID: 22545784 PMCID: PMC3362319 DOI: 10.1021/ja301710z] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Asymmetric bifunctional silyl ether (ABS) prodrugs of chemotherapeutics were synthesized and incorporated within 200 nm × 200 nm particles. ABS prodrugs of gemcitabine were selected as model compounds because of the difficulty to encapsulate a water-soluble drug within a hydrogel. The resulting drug delivery systems were degraded under acidic conditions and were found to release only the parent or active drug. Furthermore, changing the steric bulk of the alkyl substituents on the silicon atom could regulate the rate of drug release and, therefore, the intracellular toxicity of the gemcitabine-loaded particles. This yielded a family of novel nanoparticles that could be tuned to release drug over the course of hours, days, or months.
Collapse
Affiliation(s)
- Matthew C Parrott
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Moktan S, Perkins E, Kratz F, Raucher D. Thermal targeting of an acid-sensitive doxorubicin conjugate of elastin-like polypeptide enhances the therapeutic efficacy compared with the parent compound in vivo. Mol Cancer Ther 2012; 11:1547-56. [PMID: 22532601 DOI: 10.1158/1535-7163.mct-11-0998] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elastin-like polypeptides (ELP) aggregate in response to mild hyperthermia, but remain soluble under normal physiologic conditions. ELP macromolecules can accumulate in solid tumors because of the enhanced permeability and retention effect. Tumor retention of ELPs can be further enhanced through hyperthermia-induced aggregation of ELPs by local heating of the tumor. We evaluated the therapeutic potential of ELPs in delivering doxorubicin in the E0771 syngeneic mouse breast cancer model. The ELP-Dox conjugate consisted of a cell-penetrating peptide at the N-terminus and the 6-maleimidocaproyl hydrazone derivative of doxorubicin at the C-terminus of ELP. The acid-sensitive hydrazone linker ensured release of doxorubicin in the lysosomes/endosomes after cellular uptake of the drug conjugate. ELP-Dox dosed at 5 mg doxorubicin equivalent/kg, extended the plasma half-life of doxorubicin to 5.5 hours. In addition, tumor uptake of ELP-Dox increased 2-fold when hyperthermia was applied, and was also enhanced compared to free doxorubicin. Although high levels of doxorubicin were found in the heart of animals treated with free doxorubicin, no detectable levels of doxorubicin were found in ELP-Dox-treated animals, indicating a correlation between tumor targeting and reduction of potential cardiac toxicity by ELP-Dox. At an optimal dose of 12 mg doxorubicin equivalent/kg, ELP-Dox in combination with hyperthermia induced a complete tumor growth inhibition, which was distinctly superior to free drug that only moderately inhibited tumor growth. In summary, our findings show that thermal targeting of ELP increases the potency of doxorubicin underlying the potential of exploiting ELPs to enhance the therapeutic efficacy of conventional anticancer drugs.
Collapse
Affiliation(s)
- Shama Moktan
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | |
Collapse
|
39
|
Coyne CP, Jones T, Bear R. Synthesis of a covalent epirubicin-(C(3)-amide)-anti-HER2/neu immunochemotherapeutic utilizing a UV-photoactivated anthracycline intermediate. Cancer Biother Radiopharm 2012; 27:41-55. [PMID: 22191802 PMCID: PMC4361169 DOI: 10.1089/cbr.2011.1097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The C(3)-monoamine on the carbohydrate moiety (daunosamine -NH(2)-3') of epirubicin was reacted under anhydrous conditions with succinimidyl 4,4-azipentanoate to create a covalent UV-photoactivated epirubicin-(C(3)-amide) intermediate with primary amine-reactive properties. A synthetic covalent bond between the UV-photoactivated epirubicin-(C(3)-amide) intermediate and the ɛ-amine of lysine residues within the amino acid sequence of anti-HER2/neu monoclonal immunoglobulin was subsequently created by exposure to UV light (354 nm) for 15 minutes. Size-separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis combined with immunodetection analysis and chemiluminescent autoradiographic imaging revealed a lack of IgG-IgG polymerization or degradative protein fragmentation of the covalent epirubicin-(C(3)-amide)-[anti-HER2/neu] immunochemotherapeutic. Retained binding-avidity of epirubicin-(C(3)-amide)-[anti-HER2/neu] was validated by cell-ELISA utilizing monolayer populations of chemotherapeutic-resistant mammary adenocarcinoma SKBr-3 which highly overexpress membrane-associated HER2/neu complexes. Between epirubicin-equivalent concentrations of 10(-10) to 10(-6) M the covalent epirubicin-(C(3)-amide)-[anti-HER2/neu] immunochemotherapeutic consistently evoked levels of cytotoxic anti-neoplastic potency that were highly analogous to chemotherapeutic-equivalent concentrations of epirubicin. Cytotoxic anti-neoplastic potency of epirubicin-(C(3)-amide)-[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma SKBr-3 challenged with epirubicin-(C(3)-amide)-[anti-HER2/neu] at an epirubicin-equivalent concentration of 10(-6) M was 88.5% (e.g., 11.5% residual survival). Between final epirubicin-equivalent concentrations of 10(-8) and 10(-7) M there was a marked threshold increase in the mean cytotoxic anti-neoplastic activity for epirubicin-(C(3)-amide)-[anti-HER2/neu] from 9.9% to 66.9% (90.2% to 33.1% residual survival).
Collapse
Affiliation(s)
- Cody P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA.
| | | | | |
Collapse
|
40
|
Cleavable linkers in chemical biology. Bioorg Med Chem 2012; 20:571-82. [DOI: 10.1016/j.bmc.2011.07.048] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/08/2011] [Accepted: 07/23/2011] [Indexed: 01/11/2023]
|
41
|
|
42
|
Xu R, Fisher M, Juliano RL. Targeted albumin-based nanoparticles for delivery of amphipathic drugs. Bioconjug Chem 2011; 22:870-8. [PMID: 21452893 DOI: 10.1021/bc1002295] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report the preparation and physical and biological characterization of human serum albumin-based micelles of approximately 30 nm diameter for the delivery of amphipathic drugs, represented by doxorubicin. The micelles were surface conjugated with cyclic RGD peptides to guide selective delivery to cells expressing the α(v)β(3) integrin. Multiple poly(ethylene glycol)s (PEGs) with molecular weight of 3400 Da were used to form a hydrophilic outer layer, with the inner core formed by albumin conjugated with doxorubicin via disulfide bonds. Additional doxorubicin was physically adsorbed into this core to attain a high drug loading capacity, where each albumin was associated with about 50 doxorubicin molecules. The formed micelles were stable in serum but continuously released doxorubicin when incubated with free thiols at concentrations mimicking the intracellular environment. When incubated with human melanoma cells (M21+) that express the α(v)β(3) integrin, higher uptake and longer retention of doxorubicin was observed with the RGD-targeted micelles than in the case of untargeted control micelles or free doxorubicin. Consequently, the RGD-targeted micelles manifested cytotoxicity at lower doses of drug than control micelles or free drug.
Collapse
Affiliation(s)
- Rongzuo Xu
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
| | | | | |
Collapse
|
43
|
Scomparin A, Salmaso S, Bersani S, Satchi-Fainaro R, Caliceti P. Novel folated and non-folated pullulan bioconjugates for anticancer drug delivery. Eur J Pharm Sci 2011; 42:547-58. [DOI: 10.1016/j.ejps.2011.02.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/15/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
|
44
|
Coyne CP, Jones T, Sygula A, Bailey J, Pinchuk L. Epirubicin-[Anti-HER2/ neu] Synthesized with an Epirubicin-(C 13- imino)-EMCS Analog: Anti-Neoplastic Activity against Chemotherapeutic-Resistant SKBr-3 Mammary Carcinoma in Combination with Organic Selenium. ACTA ACUST UNITED AC 2011; 2:22-39. [PMID: 26229727 DOI: 10.4236/jct.2011.21004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Discover the anti-neoplastic efficacy of epirubicin-(C13-imino)-[anti-HER2/neu] against chemotherapeutic-resistant SKBr-3 mammary carcinoma and delineate the capacity of selenium to enhance it's cytotoxic anti-neoplastic potency. METHODS In molar excess, EMCH was combined with epirubicin to create a covalent epirubicin-(C13-imino)-EMCH-maleimide intermediate with sulfhydryl-reactive properties. Monoclonal immunoglobulin selective for HER2/neu was then thiolated with 2-iminothiolane at the terminal ε-amine group of lysine residues. The sulfhydryl-reactive epirubicin-(C13-imino)-EMCH intermediate was then combined with thiolated anti-HER2/neu monoclonal immunoglobulin. Western-blot analysis was utilized to characterize the molecular weight profiles while binding of epirubicin-(C13-imino)-[anti-HER2/neu] to membrane receptors was determined by cell-ELISA utilizing populations of SKBr-3 mammary carcinoma that highly over-expresses HER2/neu complexes. Anti-neoplastic potency of epirubicin-(C13-imino)-[anti-HER2/neu] between the epirubicin-equivalent concentrations of 10-12 M and 10-7 M was determined by vitality staining analysis with and without the presence of selenium (5 μM). RESULTS Epiribucin-(C13-imino)-[anti-HER2/neu] between epirubicin-equivalent concentrations of 10-8 M to 10-7 M consistently evoked higher anti-neoplastic potency than "free" non-conjugated epirubicin which corresponded with previous investigations utilizing epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-[anti-EGFR]. Selenium at 5 mM consistently enhanced the cytotoxic anti-neoplastic potency of epirubicin-(C13-imino)-[anti-HER2/neu] at epirubicin equivalent concentrations (10-12 to 10-7 M). CONCLUSIONS Epirubicin-(C13-imino)-[anti-HER2/neu] is more potent than epirubicin against chemotherapeutic-resistant SKBr-3 mammary carcinoma and selenium enhances epirubicin-(C13-imino)-[anti-HER2/neu] potency. The methodology applied for synthesizing epirubicin-(C13-imino)-[anti-HER2/neu] is relatively time convenient and has low instrumentation requirements.
Collapse
Affiliation(s)
- Cody P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Andrzej Sygula
- Department Organic Chemistry, Mississippi State University, Mississippi State, USA
| | - John Bailey
- College of Osteopathic Medicine, William Cary University, Hattiesburg, USA
| | - Lesya Pinchuk
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| |
Collapse
|
45
|
Coyne CP, Jones T, Pharr T. Synthesis of a covalent gemcitabine-(carbamate)-[anti-HER2/neu] immunochemotherapeutic and its cytotoxic anti-neoplastic activity against chemotherapeutic-resistant SKBr-3 mammary carcinoma. Bioorg Med Chem 2010; 19:67-76. [PMID: 21169024 DOI: 10.1016/j.bmc.2010.11.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/15/2010] [Accepted: 11/22/2010] [Indexed: 02/06/2023]
Abstract
UNLABELLED Gemcitabine is a potent chemotherapeutic that exerts cytotoxic activity against several leukemias and a wide spectrum of carcinomas. A brief plasma half-life in part due to rapid deamination and chemotherapeutic-resistance frequently limit the utility of gemcitabine in clinical oncology. Selective 'targeted' delivery of gemcitabine represents a potential molecular strategy for simultaneously prolonging its plasma half-life and minimizing exposure of innocent tissues and organ systems. MATERIALS AND METHODS Gemcitabine was combined in molar excess with N-[p-maleimidophenyl]-isocyanate (PMPI) so that the isocyanate moiety of PMPI which exclusively reacts with hydroxyl groups preferentially created a carbamate covalent bond at the terminal C(5)-methylhydroxy group of gemcitabine. Monoclonal immunoglobulin with binding-avidity specifically for HER2/neu was thiolated with 2-iminothiolane at the terminal ε-amine group of lysine amino acid residues. The gemcitabine-(carbamate)-PMPI intermediate with a maleimide moiety that exclusively reacts with reduced sulfhydryl groups was then combined with thiolated anti-HER2/neu monoclonal immunoglobulin. Western-blot analysis was utilized to delineate the molecular weight profile for gemcitabine-(carbamate)-[anti-HER2/neu] while cell binding characteristics were determined by cell-ELISA utilizing SKBr-3 mammary carcinoma which highly over-expresses HER2/neu receptors. Cytotoxic anti-neoplastic potency of gemcitabine-(carbamate)-[anti-HER2/neu] between the gemcitabine-equivalent concentrations of 10(-12) and 10(-6)M was determined utilizing vitality staining analysis of chemotherapeutic-resistant SKBr-3 mammary carcinoma. RESULTS Gemcitabine-(carbamate)-[anti-HER2/neu] was synthesized at a molar incorporation index of 1:1.1 (110%) and had a molecular weight of 150kDa that was indistinguishable from reference control immunoglobulin fractions. Cell-ELISA detected progressive increases in SKBr-3 mammary carcinoma associated immunoglobulin with corresponding increases in covalent gemcitabine immunochemotherapeutic concentrations. The in vitro cytotoxic anti-neoplastic potency of gemcitabine-(carbamate)-[anti-HER2/neu] was approximately 20% and 32% at 10(-7) and 10(-6)M (gemcitabine-equivalent concentrations) after a 182-h incubation period. DISCUSSION The investigations describes for the first time a methodology for synthesizing a gemcitabine anti-HER2/neu immunochemotherapeutic by creating a covalent bond structure between the C(5)-methylhydroxy group of gemcitabine and thiolated lysine amino acid residues of monoclonal antibody or other biologically active protein fractions. Gemcitabine-(carbamate)-[anti-HER2/neu] possessed binding-avidity at HER2/neu receptors highly over-expressed by chemotherapeutic-resistant SKBr-3 mammary carcinoma. Alternatively, gemcitabine can be covalently linked at its C(5)-methylhydroxy group to monoclonal immunoglobulin fractions that possess binding-avidity for other receptors and membrane complexes uniquely highly over-expressed by a variety of neoplastic cell types. Compared to chemotherapeutic-resistant SKBr-3 mammary carcinoma, gemcitabine-(carbamate)-[anti-HER2/neu] immunochemotherapeutic is anticipated to exert higher levels of cytotoxic anti-neoplastic potency against other neoplastic cell types like pancreatic carcinoma, small-cell lung carcinoma, neuroblastoma, glioblastoma, oral squamous cell carcinoma, cervical epithelioid carcinoma, or leukemia/lymphoid neoplastic cell types based on their reportedly greater sensitivity to gemcitabine and gemcitabine covalent conjugates.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States.
| | | | | |
Collapse
|
46
|
Parrott MC, Luft JC, Byrne JD, Fain JH, Napier ME, Desimone JM. Tunable bifunctional silyl ether cross-linkers for the design of acid-sensitive biomaterials. J Am Chem Soc 2010; 132:17928-32. [PMID: 21105720 DOI: 10.1021/ja108568g] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Responsive polymeric biomaterials can be triggered to degrade using localized environments found in vivo. A limited number of biomaterials provide precise control over the rate of degradation and the release rate of entrapped cargo and yield a material that is intrinsically nontoxic. In this work, we designed nontoxic acid-sensitive biomaterials based on silyl ether chemistry. A host of silyl ether cross-linkers were synthesized and molded into relevant medical devices, including Trojan horse particles, sutures, and stents. The resulting devices were engineered to degrade under acidic conditions known to exist in tumor tissue, inflammatory tissue, and diseased cells. The implementation of silyl ether chemistry gave precise control over the rate of degradation and afforded devices that could degrade over the course of hours, days, weeks, or months, depending upon the steric bulk around the silicon atom. These novel materials could be useful for numerous biomedical applications, including drug delivery, tissue repair, and general surgery.
Collapse
Affiliation(s)
- Matthew C Parrott
- Departments of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | |
Collapse
|
47
|
Fiume L, Di Stefano G. Lactosaminated human albumin, a hepatotropic carrier of drugs. Eur J Pharm Sci 2010; 40:253-62. [PMID: 20403430 DOI: 10.1016/j.ejps.2010.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/07/2010] [Accepted: 04/10/2010] [Indexed: 12/29/2022]
Abstract
A selective delivery of drugs to liver can be obtained by conjugation with galactosyl terminating macromolecules. The conjugates selectively enter hepatocytes after interaction of the carrier galactose residues with the asialoglycoprotein receptor (ASGP-R) present only on these cells. Within hepatocytes the conjugates are transported to lysosomes where the drug is set free from the carrier, becoming concentrated in liver cells. The present article reviews the liver targeting of drugs obtained with lactosaminated albumin (L-SA), a neoglycoprotein exposing galactosyl residues. We report: (1) experiments which demonstrate the antiviral efficacy of the L-H(human)SA-ara-AMP conjugate in laboratory animals and in humans with viral hepatitis; (2) the property of a L-HSA conjugate with fluorodeoxyuridine to produce concentrations of the drug higher in hepatic sinusoids than in systemic circulation, with the potential of accomplishing a loco-regional, noninvasive treatment of liver micrometastases; (3) the increased anticancer activity of doxorubicin (DOXO) when coupled to L-HSA on all the forms of chemically induced rat hepatocellular carcinomas including those which do not express the ASGP-R.
Collapse
Affiliation(s)
- Luigi Fiume
- Department of Experimental Pathology, University of Bologna, via San Giacomo 14, I-40126 Bologna, Italy.
| | | |
Collapse
|
48
|
Abstract
Liposomal nanocarriers anchored with a cell-penetrating peptide and a pH-sensitive PEG-shield where later has ability to provide simultaneously better systemic circulation and site-specific exposure of cell penetrating peptide. PEG chains were incorporated into the liposome membrane via the PEG-attached phosphatidylethanolamine (PE) residue with PEG and PE being conjugated with the lowered pH-degradable hydrazone bond (PEG-HZ-PE), while cell-penetrating peptide (TATp) was added as TATp-PEG-PE conjugate. Under normal conditions, liposome-grafted PEG "shielded" liposome-attached TATp moieties, since the PEG spacer for TATp attachment (PEG(1000)) was shorter than protective PEG(2000). PEGylated liposomes accumulate in targets via the EPR effect, but inside the "acidified" tumor or ischemic tissues lose their PEG coating because of the lowered pH-induced hydrolysis of HZ and penetrate inside cells via the now-exposed TATp moieties. pH-responsive behavior of these constructs is successfully tested in cell cultures in vitro as well as in tumors in experimental mice in vivo. These nanocarriers also showed enhanced pGFP transfection efficiency upon intratumoral administration in mice, compared to control pH nonsensitive counterpart. These results can be considered as an important step in the development of tumor-specific stimuli-sensitive drug and gene delivery systems.
Collapse
Affiliation(s)
- Amit A Kale
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
49
|
Aroui S, Brahim S, Waard MD, Kenani A. Cytotoxicity, intracellular distribution and uptake of doxorubicin and doxorubicin coupled to cell-penetrating peptides in different cell lines: a comparative study. Biochem Biophys Res Commun 2009; 391:419-25. [PMID: 19914216 DOI: 10.1016/j.bbrc.2009.11.073] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 11/10/2009] [Indexed: 12/01/2022]
Abstract
One of the major obstacles which are opposed to the success of anticancer treatment is the cell resistance that generally develops after administration of commonly used drugs. In this study, we try to overcome the tumour cell resistance of doxorubicin (Dox) by developing a cell-penetrating peptide (CPP)-anticancer drug conjugate in aim to enhance its intracellular delivery and that its therapeutic effects. For this purpose, two cell-penetrating peptides, penetratin (pene) and tat, derived from the HIV-1 TAT protein, were chemically conjugated to Dox. The cytotoxicity, intracellular distribution and uptake were accessed in CHO cells (Chinese Hamster Ovarian carcinoma cells), HUVEC (Human Umbilical Vein Endothelial Cells), differentiated NG108.15 neuronal cell and breast cancer cells MCF7drug-sensitive or MDA-MB 231 drug-resistant cell lines. The conjugates showed different cell killing activity and intracellular distribution pattern by comparison to Dox as assessed respectively by MTT-based colorimetric cellular cytotoxicity assay, confocal fluorescence microscopy and FACS analysis. After treatment with 3 microM with Dox-CPPs for 2h, pene increase the Dox cytotoxicity by 7.19-fold in CHO cells, by 11.53-fold in HUVEC cells and by 4.87-fold in MDA-MB 231 cells. However, cytotoxicity was decreased in NG108.15 cells and MCF7. Our CPPs-Dox conjugate proves the validity of CPPs for the cytoplasmic delivery of therapeutically useful molecules and also a valuable strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Sonia Aroui
- Unité 05/UR/09-09, Mécanismes Moléculaires et Pathologies, Faculté de Médecine de Monastir, 5019 Monastir, Tunisie, Tunisia.
| | | | | | | |
Collapse
|
50
|
Characterisation of the conjugate of the (6-maleimidocaproyl)hydrazone derivative of doxorubicin with lactosaminated human albumin by 13C NMR spectroscopy. Eur J Pharm Sci 2009; 38:262-9. [DOI: 10.1016/j.ejps.2009.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/14/2009] [Accepted: 08/11/2009] [Indexed: 11/21/2022]
|